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A B S T R A C T

Mature CO2 capture technologies would reduce the net thermal efficiency of the coal-fired power plant by
7–13% points, leading to an electricity cost increase of at least 60%. To minimise the energy-intensity of CO2

capture, novel technologies and CO2 capture materials are being developed. This study assessed the techno-
economic feasibility of the CO2 capture system using acrylamide-based molecularly imprinted polymer (MIP)
sorbent in a 580MWel coal-fired power plant retrofit scenario. Under the initial design basis, the net efficiency
penalty and the energy penalty of the MIP retrofit scenario were estimated to be 5.3%HHV points and 14.1%,
respectively. Furthermore, the cost of CO2 avoided was estimated to be 29.3 £/tCO2. Such techno-economic
performance was found to be superior to the CO2 capture system using chemical solvents. The parametric study
revealed that the thermodynamic performance of the MIP retrofit scenario is mainly affected by the sorbent
capacity, as the net efficiency penalty was found to increase from 4.4 to 8.9%HHV points on reduction of the
sorbent capacity from 1 to 0.2 mmol CO2/g. Moreover, the economic performance was not only found to be
affected by sorbent capacity, but primarily on the cyclic performance of the MIP sorbent. It was shown that the
cost of CO2 avoided would increase linearly with increase of the MIP sorbent make-up at a rate of 6.8 £/tCO2 per
0.1% of sorbent make-up.

1. Introduction

Carbon capture and storage (CCS) is expected to play a pivotal role
in the reduction of greenhouse gas emissions from the power sector and
is expected to result in a 13% cumulative reduction of CO2 emission
between 2012 and 2050 [1,2]. However, rapid development and de-
monstration of CCS technologies are required if they are to be deployed
after 2020 to meet 2DS objectives [3]. Unfortunately, a first-of-a-kind
large-scale demonstration plant retrofitted to the coal-fired power plant
was only commissioned in 2014 [4]. A main challenge that keeps CCS
from large-scale deployment in the power sector is its considerable
capital and operating cost that would affect the cost of electricity.

The post-combustion technologies are claimed to have a large po-
tential for decarbonising the power sector in the short- to mid-term, as
they can be both easily retrofitted to the existing power plant fleet and
integrated to new greenfield systems [5–8]. Thus far, chemical solvent
scrubbing has been perceived as the technology of choice for dec-
arbonisation of coal-fired power plants [5–11]. Yet, retrofit of this
technology to coal-fired power plants was shown to impose a net
thermal efficiency penalty of 7–13% points [12,13], which is expected

to cause an increase in the cost of electricity by at least 60% [14–18].
Although other CO2 capture and separation technologies, such as ad-
sorption or membrane separation, have been successfully implemented
in other industries, these have thus far not been considered efficient
options for coal-fired power plants due to high impurities content and
low CO2 concentration in, and atmospheric pressure of, flue gas
[7,8,11]. Yet, the recent progress in development of these technologies
indicates that other technologies could result in lower parasitic load on
the power plant performance compared to chemical solvent absorption,
and thus may bring higher improvements to the economics of CCS.

As opposed to the absorption process, in which CO2 molecules dis-
solve in the bulk of the solvent, adsorption of CO2 takes place at the
surface of a solid sorbent. This is typically conducted in a fixed or
fluidised bed reactor using zeolites, activated carbon, metal oxides or
alumina, as well as new materials, such as functionalised amine-based
sorbents, metal-organic frameworks, and polymer-based sorbents
[13,19–23]. Compared to chemical solvents, such as mono-
ethanolamine, solid sorbents are neither corrosive nor toxic, and are
characterised by the need for lower regeneration energy [20,22,24].
The last quality makes these materials attractive for CO2 capture from
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coal-fired power plants, as they have the potential to reduce the energy-
intensity associated with CO2 capture.

Integration of the vacuum-swing adsorption process (adsorption at
2 bar, regeneration at 0.1 bar) using Zeolite 13X, which is the most
popular adsorbent [20], as the post-combustion CO2 capture plant to an
ultra-supercritical coal-fired power plant was found to impose a net
thermal efficiency penalty of 10.3% points [25]. This was found to be
0.6% lower than for chemical solvent scrubbing using mono-
ethanolamine (MEA). A similar conclusion can be drawn when ana-
lysing performance of the temperature-swing adsorption process using
dry sodium carbonate, in which CO2 was adsorbed at about 55 °C and
regenerated at about 140 °C. Namely, the net efficiency penalty of such
process on integration to a supercritical coal-fired power plant was
found to be 7.1–9.9% points, which was 1.9–4.5% points lower com-
pared to chemical solvent scrubbing using MEA [26]. Furthermore, the
use of metal oxides, such as calcium oxide, in high-temperature solid
looping temperature cycles is regarded as an emerging CO2 capture
technology suitable for decarbonisation of coal-fired power plants
[12,20,27]. In this temperature-swing adsorption process, CO2 is ad-
sorbed by the sorbent at 600–650 °C and reclaimed through sorbent
regeneration at temperatures higher than 900 °C. It has been reported
that depending on the operating conditions and the steam conditions in
the reference coal-fired power plant, the net efficiency penalty asso-
ciated with this technology is expected to be between 3 and 8% points
[28–35]. Finally, retrofit of the temperature-swing adsorption system
using novel materials, such as amine-based sorbent or metal organic
frameworks, was shown to impose net efficiency penalties of 10%
points and 7% points, respectively [36]. This performance was found to
be competitive compared to the advanced chemical solvent scrubbing
(Econamine FG+) process, for which the efficiency penalty was esti-
mated to be 11% points.

Although the adsorption processes using solid sorbents were shown
to impose lower net efficiency penalties on retrofit to coal-fired power
plants, there are several issues that may degrade their performance.
Namely, the presence of moisture and impurities, such as NOx and SOx,
in flue gas can dramatically degrade the capture capacity of zeolites and
metal organic frameworks [13,37,38]. Also, calcium-based sorbents are
prone to react with SOx [39,40] and their cyclic performance needs to
be improved prior to large-scale deployment [20,40]. Carbonaceous
materials are characterised by low sensitivity to moisture and flue gas
impurities [19], but their CO2 adsorption capacity is affected by low
CO2 partial pressure in the flue gas [19,41]. On the other hand,
polymer-based materials, such as acrylamide-based molecularly im-
printed polymer (MIP) particles, porous aromatic frameworks, hyper-
crosslinked polymers, and covalent organic polymers, have been shown

to have high selectivity and CO2 uptake, as well as high hydrothermal
stability [22,23,42–44]. The MIP particles, which are polymers with
template-shaped cavities within their matrix to enable molecular re-
cognition towards specific target molecule [23,45], were also shown to
be insensitive to moisture, SOx, NOx and O2 present in the flue gas
[46,47]. As the MIP sorbent was shown to be a suitable material for
fixed and fluidised bed systems [23,48], this study is conducted to as-
sess the techno-economic feasibility of a CO2 capture system using MIP
sorbent in a 580MWel coal-fired power plant retrofit scenario.

2. Model development

2.1. Supercritical coal-fired power plant

The 580 MWel supercritical coal-fired power plant was used in this
study as a reference system. The process model of this unit, which has
previously been developed in Aspen Plus® [49,50] based on the revised
NETL report [51], comprises three sub-models: supercritical boiler, flue
gas treatment train (NOx, SOx and fly ash), both modelled using the
Peng-Robinson-Boston-Mathias equation of state, and steam cycle re-
presented by STEAMNBS steam tables. The boiler heat exchange sec-
tions, which include the primary, secondary, and reheat superheaters,
as well as the economiser, were modelled using pressure drops and
temperature levels set based on the revised NETL report [51]. Both the
live (242.3 bar) and reheat steam generated in these sections were as-
sumed to leave the boiler at the temperature of 593.3 °C. Steam turbines
were modelled as individual turbine sections, hence the high-, inter-
mediate-, and low-pressure cylinders were further divided into the re-
quired steam turbine sections. The condenser was assumed to operate at
a fixed pressure of 0.069 bar, which corresponds to a condensation
temperature of 38.7 °C. The feedwater heating train comprised five LP
feedwater heaters including the deaerator, and three surface HP feed-
water heaters. At design conditions, the feedwater heaters were char-
acterised by the terminal temperature difference of 2.78 °C and the
minimal temperature difference between subcooled condensate and
inlet feedwater of 5.56 °C. The key performance parameters of the
model are provided in Table 1. The prediction accuracy of this model
was compared with data from a revised NETL report [51] and was
shown to closely represent both the process stream data (temperature,
pressure, mass flow rate) and the thermodynamic performance (gross
power output, net thermal efficiency) of the coal-fired power plant
[49,50].

The MIP sorbent needs to be preheated to 80 °C to reclaim CO2. The
configuration investigated in this study assumes that the heat for sor-
bent regeneration is provided by direct contact with steam extracted

Nomenclature

Parameters

AC Cost of CO2 avoided (£/tCO2)

a Turbine design parameter (–)
CF Capacity factor (–)
eCO2 Specific CO2 emission (g CO2/kWelh)
FC Fuel cost (£)
FCF Fixed charge factor (–)
FOM Fixed operating and maintenance cost (£)
LCOE Levelised cost of electricity (£/MWelh)
ṁ Mass flow rate (kg/s)
n Adiabatic index (–)
p Steam pressure (bar)
Q̇fuel Heat input from fuel combustion (MWth)
SCF Specific fuel cost (£/MWelh)
TCR Total capital requirement (£)

VOM Variable operating and maintenance cost (£/MWelh)
Ẇnet Net power output (MWel)
v Velocity (m/s)
ρ Density (kg/m3)
ηi Isentropic efficiency (–)
ηth Net thermal efficiency (–)

Superscripts

0 Parameter at design conditions

Subscripts

capture Corresponds to coal-fired power plant with CO2 capture
in Stream parameter at inlet to the unit operation
out Stream parameter at outlet from the unit operation
ref Corresponds to reference coal-fired power plant
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from the steam cycle. This is because extraction of steam was found to
be the most efficient option for providing heat for solvent regeneration
in mature chemical solvent scrubbing systems [44]. Moreover, the
process configuration based on a dual intermediate/low-pressure
crossover pressure system with heat integration [50] is adopted in this
study, as it allows reducing the steam pressure and temperature to the
values required for MIP sorbent regeneration while reducing the impact
of steam extraction on the coal-fired power plant performance (Fig. 1).

As reported for the chemical solvent scrubbing retrofit scenarios
[50,52], extraction of steam from the steam cycle results in off-design
operation of the low-pressure turbine. This results in the loss of power
output not only as a result of reduced low-pressure turbine throughput,
but also due to a loss in the inlet pressure to this turbine cylinder. As the
condenser pressure is assumed to be fixed at 0.069 bar, pressure gra-
dients across a turbine section are determined using Stodola’s ellipse
law presented in Eq. (1) [45–47] to determine the inlet pressure in a
back-to-front manner.
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Importantly, a drop in the steam pressure downstream of the ex-
traction point causes an increase in the steam velocity. As a result, the
kinetic energy at the inlet to the low-pressure turbine increases. With
further increase in the steam kinetic energy on expansion in the low-
pressure turbine stages, the turbine discharge loss is expected to in-
crease compared to the figure under design conditions. This, in turn,
would affect the isentropic efficiency of the low-pressure turbine and
could cause operational issues, such as vibration of the last stage
moving blades [48]. Therefore, the isentropic efficiency is updated
using Eq. (2), which is based on the approach used by Salisbury [49]
and Knopf [46] assuming that each turbine section reaches its optimal
performance at design conditions and comprises 50% reaction blading
(a= 0.7071).
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2.2. CO2 capture system using molecularly imprinted polymer sorbent

The process considered in this study utilises MIP sorbent as a CO2

capture sorbent (Fig. 2), the characteristics of which are listed in
Table 2, and comprises two interconnected fluidised beds with assumed
pressure drop of 200mbar. To ensure favourable operating conditions
in the adsorber, which is modelled as a conversion reactor, flue gas
from the coal-fired power plant is cooled in the direct contact cooler to
40 °C. The flash calculations are performed using the Rachford-Rice
equation [53] and the process streams are characterised using the Peng
Robinson equation of state.

Conversion of the MIP sorbent in the adsorber is determined using
its nominal capacity and the assumed adsorption extent of 70%, which

Table 1
Supercritical coal-fired power plant key performance parameters.

Parameter Value

Gross power output (MWel) 580.4
Net power output (MWel) 552.7
Net thermal efficiency (%HHV) 38.5
Flue gas stream (kg/s) 617.2
CO2 content in flue gas (%vol) 15.2
Coal consumption rate (kg/s) 53.8
Air consumption rate (kg/s) 526.5
Live steam generation rate (kg/s) 462.3
Excess air ratio (%vol) 20.0
Live steam pressure (bar) 242.3
Reheated steam pressure (bar) 45.2
Intermediate-/low-pressure crossover pipe pressure (bar) 9.3
Condenser pressure (bar) 0.069
Live and reheated steam temperature (°C) 593.3
Mechanical efficiency of the rotational machinery (%) 99.0

Fig. 1. Process flow diagram of reference supercritical coal-fired power plant.
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is commonly made for other CO2 capture systems comprising fluidised
beds, such as calcium looping [12,54]. In addition, the amount of the
sorbent fed to the adsorber is determined to ensure a CO2 capture level
of 90%. The CO2-rich sorbent is then heated using air preheated by the
lean sorbent leaving the desorber. This aims at reduction of the heat
requirements of the process by minimising the amount of waste heat in
the CO2 capture plant. CO2 is then reclaimed from the preheated CO2-
rich sorbent on its further heating to 80 °C in the desorber, which is also
modelled as a conversion reactor with the assumption that the con-
version of sorbent is complete. The heat requirement for the sorbent
regeneration is met by direct contact of CO2-rich MIP sorbent and steam
extracted from the steam cycle. CO2 is then separated from water va-
pour on cooling in the water knock-out tower, which is modelled using
the same approach as a direct contact cooler, and sent to the CO2

compression unit. Part of the condensed water is returned to the steam
cycle to balance the amount of steam extracted from the intermediate/
low-pressure crossover pipe. The CO2 compression unit comprises nine
intercooled compression stages, each of which was modelled as a
polytropic compression stage with a stage efficiency of 78–80% [7,55],
and the pressure ratio and polytropic head not exceeding 3 and 3050m,
respectively [56]. It is assumed that the CO2 delivery pressure of
110 bar [57] is achieved by a CO2 pump, which is characterised with an
isentropic efficiency of 80%.

3. Process performance evaluation

3.1. Considerations

Having linked the coal-fired power plant and the CO2 capture
system using MIP sorbent (MIP retrofit scenario), the thermodynamic
performance is evaluated using the system’s net power output (Ẇnet) and
net thermal efficiency (ηth), which is defined in Eq. (3) as the ratio of
the net power output and the heat input from fuel combustion (Qḟuel). In
addition, environmental performance of the MIP retrofit scenario is
represented in Eq. (4) as the specific CO2 emissions (eCO2), defined as
the ratio of CO2 emission rate (ṁCO2) and the net power output. This
parameter is commonly used to characterise the environmental per-
formance of the fossil fuel power generation systems [58–62].

=η W
Q

̇
̇th
net

fuel (3)

=e
m
W
̇
̇CO

CO

net
2

2

(4)

The economic performance of the proposed system is compared
with the reference coal-fired power plant without CO2 capture using the
levelised cost of electricity (LCOE) and the cost of CO2 avoided (AC)
that are calculated according to Eq. (5) and Eq. (6) [32,63,64], re-
spectively.
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These parameters correlate thermodynamic performance indicators,
such as net power output, net thermal efficiency (ηth), capacity factor
(CF) and specific emissions (eCO2), with economic performance, such as
total capital requirement (TCR), variable (VOM) and fixed (FOM) op-
erating and maintenance costs, specific fuel cost (SFC), and the fixed
charge factor (FCF), which considers the system’s lifetime and project
interest rate.

The capital cost of the coal-fired power plant and the key equipment
in the CO2 capture system, such as direct contact cooler and water

Fig. 2. Process flow diagram of the CO2 capture system using acrylamide-based molecularly imprinted polymer sorbent.

Table 2
Properties of acrylamide-based molecularly imprinted polymer sorbent.1

Property Value

Heat of adsorption (kJ/mol CO2) 31.2
Sorbent capacity (mmol CO2/g) 0.56
Sorbent heat capacity (kJ/kg K) 0.95–1.532

1 The properties of acrylamide-based molecularly imprinted polymer ma-
terial were provided by the CoERcE project partner and are not yet available in
the open literature.

2 The heat capacity of the MIP sorbent is given by
Cp=94.437× (T− 273.15)0.5882 within the temperature range of 50–120 °C.
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knock-out, pumps and fans, adsorber, desorber, heat exchangers and
CO2 compression unit, are determined using the exponential method
function [65] with economic data gathered from NETL [51] and Woods
[66]. Moreover, fixed and variable operating and maintenance costs are
calculated as a fraction of total capital cost, while operating costs as-
sociated with fuel consumption, and CO2 storage, transport and emis-
sion are determined based on process simulation outputs using eco-
nomic data from Table 3.

The techno-economic assessment of the MIP retrofit scenario is first
evaluated under the initial design basis using the sorbent characteristics
presented in Table 2 and with the assumption that there is no sorbent
degradation over multiple cycles; hence no purge is considered in the
initial assessment. Moreover, due to lack of information on the MIP
sorbent cost, which is, however, widely referred to as being lower
compared to other adsorbents for other applications [70], the initial
cost of sorbent is assumed to be 100 £/t. This is of the same order of
magnitude as synthetic calcium-based sorbents [71]. Nevertheless,
considering the uncertainty of the sorbent characteristics, the sensi-
tivity of the key techno-economic performance indicators to variation
in the sorbent cyclic performance, adsorption capacity, and specific cost
is assessed by varying the MIP sorbent:

• make-up rate between 0 and 1.5%;

• adsorption capacity between 0.2 and 1mmol CO2/g;

• specific cost between 50 and 5000 £/t.

3.2. Techno-economic performance evaluation

Retrofit of the CO2 capture system using MIP sorbent to the 580
MWel coal-fired power plant was found to impose a net efficiency
penalty of 5.3%HHV points and to result in an energy penalty of 14.1%
(Table 4). In addition, the specific coal consumption was found to in-
crease by 16.4%. Such thermodynamic performance is comparable to
the performance of calcium looping with a supercritical CO2 cycle
retrofitted to the same reference coal-fired power plant, which resulted
in a net efficiency penalty of 5.8%HHV points and 17.1% increase in the
specific coal consumption [35]. Yet, reduction in the net power output
in the MIP retrofit scenario can be expected to result in lower revenue
from the electricity sales compared to the calcium looping retrofit
scenario, which resulted in an increase of the system’s net power output
by about 45% [35]. Nevertheless, the performance of the MIP retrofit
scenario compares favourably with the CO2 capture systems using
chemical solvents, such as MEA or chilled ammonia scrubbing. Retrofits
of these systems to the same reference coal-fired power plant resulted in
net efficiency penalties of 9.5 and 9% points, and energy penalties of
24.7 and 23.3%, respectively [34,50]. The specific coal consumption
increased in these retrofit scenarios by 32.8 and 30.3%, respectively.

Therefore, the MIP retrofit scenario has the potential to significantly
reduce the impact of the CO2 capture system on the performance of
coal-fired power plants.

The analysis of the energy requirement of the CO2 capture system
using MIP sorbent revealed that the parasitic load arises primarily from
the CO2 compression unit (Fig. 3). This is because the heat requirement
for MIP sorbent regeneration (226.7MWth) was found to be only 44% of
the heat requirement in the amine scrubbing system (513.6 MWth).
Such reduction in the heat requirement can be associated with 1.15–3
times lower heat of adsorption of the MIP sorbent compared to the heat
of absorption of the MEA solvent within the same operating tempera-
ture envelope (40–80 °C) [72]. Moreover, this is reflected in the specific
heat requirement of the MIP sorbent (2.0MJth/kg CO2 at a sorbent
capacity of 0.56mmol CO2/g) that was found to be comparable to the
specific heat requirement reported for the following solvents: Cansolv
(2.33MJth/kg CO2), K2CO3 (2–2.5MJth/kg CO2), Econamine FG+
(3.12MJth/kg CO2), and MDEA-PZ (2.52MJth/kg CO2) [73]. As a result,
the steam extraction accounted only for 33% of the parasitic load in the
MIP retrofit scenario (Fig. 3), as opposed to about 60% in the chemical
solvent scrubbing retrofit scenarios [34].

The economic assessment (Table 4) revealed that retrofit of the CO2

capture system using MIP sorbent will result in an increase of the specific
capital cost of the entire system by 41.9% (486.8 £/kWel,gross) compared to
the specific capital cost of the reference coal-fired power plant. Such an
increase in the specific capital cost, along with reduction in the net
thermal efficiency, resulted in 55.8% increase in the levelised cost of
electricity (LCOE) from 36.9 to 57.5 £/MWelh. This corresponds to the cost
of CO2 avoided (AC) of 29.3 £/tCO2. Importantly, the key economic in-
dicators for the MIP retrofit scenario fall within the ranges reported pre-
viously for coal-fired power plants retrofitted with CO2 capture systems
using chemical solvents (LCOE=55–60 £/MWelh; AC=30–75 £/tCO2

[74–77]) and with calcium looping (LCOE=25.8–116.7 £/MWelh,
AC=7–87.5 £/tCO2 [28,32,63,69,78–80]). Therefore, considering lower
impact on the thermodynamic performance of the reference coal-fired
power plant, the MIP retrofit scenario can be expected to bring higher
profit from the electricity sales compared to the chemical solvent scrub-
bing retrofit scenarios.

Table 3
Key economic model assumptions.

Parameter Value

Variable cost as a fraction of total capital cost (%) [32,67] 2.0
Fixed cost as a fraction of total capital cost (%) [32,67] 1.0
CO2 transport and storage cost (£/tCO2) [68] 7.0
Coal price (£/t) [67,69] 1.5
Expected lifetime (years) [32,67] 25
Project interest rate (%) [32,67] 8.78
Capacity factor (%) [32,67] 80
Tax, freight, insurance cost (% of free-on-board supplier cost) [66] 20
Offsites, indirect costs for home office and field expenses (% of labour

and material cost including free-on-board supplier cost, freight,
delivery, duties and instruments) [66]

30

Contractors fees (% of bare module cost) [66] 4
Project contingency (% of bare module cost) [66] 15
Design contingency (% of bare module cost) [66] 20

Table 4
Summary of techno-economic performance indicators.

Parameter Reference coal-fired
power plant

MIP retrofit
scenario

Thermodynamic performance indicators
Heat input from coal combustion

(MWth)
1452.6 1452.6

Gross power output (MWel) 580.4 545.5
Auxiliary power requirement

(MWel)
27.7 70.7

Net power output (MWel) 552.7 474.8
Gross thermal efficiency (%HHV) 40.4 37.6
Net thermal efficiency (%HHV) 38.0 32.7
Specific coal consumption (g/

kWelh)
350.3 407.7

Specific CO2 emission (g/kWelh) 786.8 92.2
Net energy penalty (%) – 14.1
Net efficiency penalty (%HHV

points)
– 5.3

Increase in specific coal
consumption (%)

– 16.4

Economic performance indicators
Specific capital cost (£/kWel,gross) 1161.3 1648.1
Levelised cost of electricity

(£/MWelh)
36.9 57.5

CO2 avoided cost (£/tCO2) – 29.3
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3.3. Parametric study

Further to evaluating performance of the MIP retrofit scenario under
the initial design basis, it is important to assess the effects of un-
certainty in the sorbent characteristics on the system’s performance. As
shown in Fig. 4, increasing the amount of fresh MIP sorbent fed to the
system did not have an effect on the net efficiency penalty of the ret-
rofitted system. The main reason behind such performance is the low
temperature difference between the MIP sorbent purged from (40 °C),
and the fresh MIP sorbent fed to (25 °C), the system that results in a
very small increase (0.025%) of the steam requirement in the desorber.

Nevertheless, increasing the MIP sorbent make-up rate was found to
deteriorate the economic performance of the retrofitted system.
Namely, the cost of CO2 avoided would increase linearly with in-
creasing MIP sorbent make-up at a rate of 6.8 £/tCO2 per 0.1% of
sorbent make-up1 (Fig. 4). This implies that the CO2 avoided cost would
increase to 36.1 £/tCO2 and 63.4 £/tCO2 for MIP sorbent make-up rates
of 0.1% and 0.5%, respectively, which is comparable to the figures
reported for coal-fired power plant retrofits with CO2 capture systems
using chemical solvents [74–77] and calcium looping
[28,32,63,69,78–80] (Fig. 5a). Thus for higher values of MIP sorbent
make up rate, the MIP retrofit scenario would become less economically

favoured over mature CO2 capture technologies.
Conversely to the make-up rate, the adsorption capacity of the MIP

sorbent has a significant effect on both thermodynamic and economic
performance of the MIP retrofit scenario. Fig. 6 shows that the net ef-
ficiency penalty could be reduced to 4.4%HHV points, if the sorbent
capacity increased to 1mmol CO2/g. Interestingly, such sorbent capa-
city corresponds to the theoretical lime conversion in the calcium
looping process of 5.6%, which is slightly below the residual value of
the limestone sorbent (7–12%) [81]. On the other hand, for a sorbent
capacity of 0.2 mmol CO2/g, the net efficiency penalty increases
sharply to 8.9%HHV points, which is comparable to the figures reported
for other CO2 capture technologies (Fig. 5b). This is due to the higher
amount of sorbent that needs to be circulated in the system to achieve
the desired CO2 capture level of 90%, and thus increased heat re-
quirement associated with the sensible heat of the sorbent entering the
desorber. Importantly, the contribution of the sensible heat to the total
heat requirement for MIP sorbent regeneration was found to reduce
from 87% to 67% on increase of the sorbent capacity from 0.2 to
1mmol CO2/g. Nevertheless, increase in the net efficiency penalty for
lower sorbent capacities was found to bring a subsequent increase in
the cost of CO2 avoided, which was estimated to be 50 £/tCO2 for a
sorbent capacity of 0.2 mmol CO2/g and sorbent cost of 100 £/t. Upon
increasing the sorbent capacity to 1mmol CO2/g, the cost of CO2

avoided was found to reduce only by 3.7 £/tCO2 compared to the value
estimated under the initial design basis. Importantly, the economic
performance of the MIP retrofit scenario was found to be linearly de-
pendent upon the specific cost of the MIP sorbent. The cost of CO2

avoided was found to be only marginally affected if the MIP sorbent
cost is below 500 £/t, as its variation is not higher than 5% with respect
to the values estimated using the initial sorbent cost of 100 £/t (Fig. 6).
However, if the MIP sorbent cost increases to 5000 £/t, the cost of CO2

avoided would increase by 40–65%, from 29.3 to 42–69.3 £/tCO2, de-
pending on the sorbent capacity. For this reason, the MIP sorbent needs
to be further tested in order to quantify its cyclic performance, ad-
sorption capacity under different operating conditions and sorbent cost.
Moreover, the potential correlation between sorbent cost and adsorp-
tion capacity needs to be assessed.

4. Conclusions

This study assessed the techno-economic feasibility of the CO2

capture system using MIP sorbent in a 580 MWel supercritical coal-fired
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Fig. 3. Distribution of the parasitic load in the MIP
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power plant retrofit scenario. Under the initial design basis, the net
efficiency penalty and the energy penalty of the MIP retrofit scenario
were estimated to be 5.3%HHV points and 14.1%, respectively. Such
thermodynamic performance was found to be superior to CO2 capture
systems using chemical solvents, such as MEA or chilled ammonia,
retrofitted to the same reference coal-fired power plant. The specific
heat requirement of the MIP sorbent (2.0MJth/kg CO2 at a sorbent
capacity of 0.56mmol CO2/g) was found to be comparable to advanced
CO2 capture materials. Furthermore, the cost of CO2 avoided for the
MIP retrofit scenario was estimated to be 29.3 £/tCO2, and fell within
the lower end of the range reported for coal-fired power plants retro-
fitted with CO2 capture systems using chemical solvents. To account for
the uncertainty in the MIP sorbent characteristics, a parametric study
was conducted. It was found that the thermodynamic performance of
the MIP retrofit scenario is mainly affected by the sorbent capacity, as
the net efficiency penalty was found to increase from 4.4 to 8.9%HHV

points on reduction of the sorbent capacity from 1 to 0.2mmol CO2/g.
Moreover, the economic performance was shown to be not only de-
pendent upon sorbent capacity, but primarily on the cyclic performance
of the MIP sorbent. This study revealed that the cost of CO2 avoided
would increase linearly with increasing MIP sorbent make-up at a rate

of 6.8 £/tCO2 per 0.1% of sorbent make-up. To reduce the uncertainty
associated with this material, the MIP sorbent needs to be further tested
in order to quantify its cyclic performance, adsorption capacity under
different operating conditions and sorbent cost. Moreover, the potential
correlation between sorbent cost and adsorption capacity needs to be
assessed.
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