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ARTICLE INFO ABSTRACT

Keywords: Emulsion formation is one of the most important problems faced by petroleum companies to guarantee the flow
Cardanol of fluids during petroleum production, once its formation is often associated to the colloidal state of asphaltenes
Demulsifiers in petroleum. For this reason, chemical additives should be frequently used to stabilize the asphaltenes and
Emulsion

reduce or prevent emulsion formation. Unfortunately, it does not exist any widespread chemical compound that
could be used for petroleum reservoirs indistinctly. Consequently, scanning and screening analysis for new
compounds should be performed with the purpose to find more efficient and eco-friendlier demulsifiers. In this
paper, four different chemical routes (hydrogenation, ethoxylation, formaldehyde polycondensation, and
ethoxylation of formaldehyde polycondensation) have been used to synthetize four new products from cardanol
to evaluate their activity as demulsifier agents. These additives were characterized by FTIR and 'H NMR ana-
lysis. The demulsification activity were studied in emulsions using three Brazilian crude oil produced with a 30%
(v/v) brine cut, 60 and 240 g/L NaCl of salinity, at different pH (range from 3 to 10), under agitation (3200 rpm).
Bottle test was carried out at 60 °C in graduated tubes for water separability tests, by adding a constant com-
position (200 ppm) of each chemical tested. The results show that demulsification is more significant for

Ring opening ethoxylation

ethoxylated compounds, at neutral pH.

1. Introduction

Petroleum extraction is often associate to water (or brine) co-pro-
duction [1,2]. During petroleum processing or refining there are many
points of changes in speed, pressure and direction of flow, making
possible the formation of emulsions [3]. These formation is frequently
responsible for serious problems on petroleum field, such as: corrosion
of pipelines and plant equipment; viscosity increase and subsequent
high transportation costs; and, additional costs for water and oil se-
paration, reducing the potential petroleum recover [4-6]. The main
mechanism of emulsion stabilization is attributed to the colloidal ag-
gregation of asphaltenes [7-9], acting as a natural surfactant at inter-
face, creating a rigid and mechanically strong film around the water
droplets, prevents them from coalescing [4,10,11].

Asphaltenes are the heaviest fraction of petroleum, with associative
characteristics and high polarity [10]. Typically, they are defined as
solubility class of crude oil, insoluble in n-alkanes (e.g., n-pentane and

n-heptane) and soluble in aromatic compounds (e.g., toluene) [12-14].
Due to broad definition, asphaltenes exhibit different properties and
molecular weights, mainly dependent on the type of crude oil [15,16].
However, they present an interfacial behavior with a certain degree of
uniformity [17].

Therefore, high investments are made to develop efficient strategies
for separating or inhibiting the formation of W/O emulsions.
Demulsification refers to process of breaking up emulsions to separate
the water from crude oil. There are several methods that are used in
petroleum industries, such as: mechanical, thermal, electrical, and
chemicals techniques [18-21]. Nevertheless, chemical demulsifiers at-
tracted great attention, because is the most economical and commonly
applied method [22,23]. This technique consists of the addition of
minimal amounts of surfactant (usually from 10 to 1000 ppm) to en-
hance phase separation rates [24]. Surfactant additives are common
amphiphilic compounds used to break up emulsions. These compounds
should have a great tendency to interfacial adsorption at oil-water
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Table 1

Crude oil properties (PET-1, PET-2, and PET-3) used for emulsion preparation.
Properties PET-1 PET-2 PET-3
Density at 60 °C (g.cm’3) 0.8718 0.9224 0.9118
Viscosity at 60 °C (mPa.s) 15.795 108.400 56.119
Saturates (% wt) 42.5 30.1 43.0
Aromatics (% wt) 26.0 25.0 25.9
Resins (% wt) 31.5 38.4 29.6
Asphaltenes (% wt) 1.14 6.43 1.55

droplets to replace the stable asphaltene films, occupying quickly the
water/oil interface [23,25], and promoting the coalescence and film
drainage with high efficiency [26]. Traditionally, petroleum industry
uses non-ionic surfactant mixtures based mainly in ethoxylate polymers
and alkylphenols, but several compounds could be applied as de-
mulsifiers [26-29].

In the last decades, petroleum industry is trying to replace petro-
leum-based surfactants for natural demulsifies, as a result of their low
biodegradability and toxicity that can cause hazardous risk to the
ecosystem [25,30]. Natural demulsifies are favorable due to lower
production cost, when compared to petroleum-based surfactants, along
with easy handling, high efficiency, and low toxicity [31,32]. There-
fore, the development of new surfactant molecules remains still a
challenger for petroleum industry.

Cardanol is a compound extracted from cashew nut shell liquid
(CNSL), widely available as an agricultural byproduct in Asia, Africa,
and South America [33]. It is a phenolic compound with an aliphatic
C15 chain meta-substituted, and less aggressive to the environment
[34]. Considered a versatile raw material, cardanol presents itself an
attractive molecular structure due to the phenolic ring functionalities
and the presence of double bonds in the aliphatic chain, allowing sev-
eral chemical modifications [10,35]. Many applications have been
mentioned in the literature for cardanol and derivates, acting as varn-
ishes, paints, stabilizers, plasticizers, ion exchange resins, and surface
treatment agents [35-38]. Furthermore, due to the similarity with the
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chemical structure of the alkylphenols used as asphaltene stabilizers, it
has also been studied for this purpose [25,39]. There are several
modifications that may be proposed to improve the demulsification
capacity of cardanol. Among the most frequent reactions are the
synthesis of ethoxylated products [40] and alkylphenol formaldehyde
resins [33], due to their known high performance as demulsifiers [41].

This work aims to develop natural surfactant compounds based on
cardanol as an alternative to traditional petroleum based demulsifiers.
This study is divided into two stages. Firstly, it consists on the synthesis
and characterization of the surfactant additives based on cardanol,
obtained from different chemical routes: hydrogenated cardanol (HC),
ethoxylated cardanol (EC), cardanol formaldehyde resin (CFR) and
ethoxylated cardanol formaldehyde resin (ECFR). Secondly, it has been
evaluated the performance of these additives on emulsion separation
capability.

2. Experimental section
2.1. Materials

Cardanol extracted to CNSL was obtained from Resibras — Brazilian
Company of Resins Ltd. (Brazil). Hydrogen (grade 6.0) was supplied by
Whyte Martins Industrial Gases Ltd. (Brazil). Citric acid (99.5% mass
fraction) and methanol (99.8% mass fraction) were supplied by Vetec
Quimica Fina Ltd. (Brazil), while formaldehyde (37% mass fraction)
was purchase by Dinidmica Quimica Contemporidnea Ltd. (Brazil).
Cardanol, methanol, Raney-Nickel catalyst (Sigma-Aldrich, USA), and
hydrogen were used to prepare hydrogenated cardanol. Ethoxylation
and resins synthesis were based on hydrogenated cardanol.
Triphenylphosphine (PPh3, 99%) and ethylene carbonate (98% mass
fraction) were used for ethoxylation, both from Sigma-Aldrich (USA).
Citric acid, methanol, formaldehyde, and ethyl acetate (from Sigma-
Aldrich, USA, 99.8% mass fraction) were used for resins synthesis. It is
important to mention that all chemical used in this work were used
without any further purification process.
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Fig. 1. Scheme of the cardanol reactions, forming: (a) hydrogenated cardanol, (b) ethoxylated cardanol, (c) cardanol formaldehyde resin, and (d) ethoxylated

cardanol formaldehyde resin.
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Fig. 2. FTIR spectra of (a) hydrogenated cardanol, (b) ethoxylated cardanol, (c)
cardanol formaldehyde resin, and (d) ethoxylated cardanol formaldehyde resin.

Three Brazilian crude oils were used to formulate emulsions, here
named as PET-1, PET-2, and PET-3 oils. Crude oils properties are
summarized in Table 1. The water used for the formulation of emul-
sions was synthesized from deionized water (18.2 MQ.cm at 25 °C) and
sodium chloride (NaCl, Dindmica Quimica Contemporanea Ltd.), with
brine concentrations based on the natural reservoir composition of each
oil. Sodium hydroxide (NaOH) and hydrochloric acid (HCl) were used
to pH regulation, both supplied by Vetec Quimica Fina Ltd.

2.2. Synthesis and characterization of demulsifiers

2.2.1. Hydrogenated cardanol

Cardanol (0.21 mol, 62.41 g), methanol (240 mL), and Raney-Nickel
catalyst (5% wt/wt) were added to a reactor (Paar, 1L capacity, with a
maximum operation pressure of 300 bar, and a maximum temperature
of 550 °C) and kept under stirring (250 rpm). After reach temperature of
80 °C, reactor was pressurized with hydrogen to 10 bar. The reaction
occurs in 5 h. After that, reaction mixture was filtered and the solvent
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removed by evaporation under reduced pressure (250 mbar).
Hydrogenated cardanol is purified by distillation in a high vacuum glass
oven (250 °C and 2 mbar), whereby a white solid is obtained at room
temperature.

2.2.2. Ethoxylated cardanol (EC)

Hydrogenated cardanol (3.0 g) and PPh3 (10% wt/wt) are mixed
and heated (150 °C) in a three-necked flat bottom flask coupled to a
condenser and a digital temperature thermocouple. The third inlet was
used to add ethylene carbonate (20:1 mol/mol), by slow dripping. After
the addition of ethylene carbonate, the temperature was adjusted to
190 °C and the reaction occurs for 5h. The intense bubbling indicates
the reaction progress.

2.2.3. Cardanol formaldehyde resin (CFR)

Citric acid (10% wt/wt) was dissolved in methanol (2 mL) under
gentle heating and added to the hydrogenated cardanol (5 g) in a three-
necked flat bottom flask, with a condenser and a digital thermocouple
of temperature. A solution of formaldehyde (13 mmol) in methanol
(3 mL) was prepared, and slowly added dropwise through the third inlet
of the flask. At the end of the drip, temperature was controlled (130 °C)
and the system stirred. After 4 h of reaction the product is cooled and
purified by addition of ethyl acetate (20mL) and deionized water
(20 mL), with subsequent decanting and drying. Final product is a
reddish and viscous liquid.

2.2.4. Ethoxylated cardanol formaldehyde resin (ECFR)

Previously produced, CFR (3.0 g) is mixed with PPh3 (10% wt/wt)
and heated (at 150 °C) in a three-necked flat bottom flask coupled to a
condenser and a digital temperature thermocouple. This procedure is
identical to that proposed for ethoxylated cardanol, with the addition of
excess ethylene carbonate (20:1 mol/mol) at 190°C, and reaction
duration of 5h. The intense bubbling also indicates the reaction pro-
gress.

2.2.5. Characterization

Qualitative analysis of the structures was conducted by Fourier-
transform infrared spectroscopy (FTIR), carried out on an Agilent Cary
630 spectrometer coupled to a germanium attenuated total reflectance
(ATR) element. Spectrum range was from 4000 to 400 cm™'. Proton
nuclear magnetic resonance (‘"H NMR) was also applied to confirm the
structures of the resulting products from proposed synthesis, by inter-
mediate of a Bruker Avance III 500 spectrometer, at 300 MHz, at 28 °C,
using deutered chloroform as solvent.

2.3. Demulsification tests

Firstly, water-in-oil emulsions were prepared with synthetic brine as
an aqueous phase containing 60 g/L of NaCl for PET-2 and PET-3 oils,
from mature oil fields. Nevertheless, 240 g/L of NaCl was used for PET-
1 oil, from a recent developed oil field. Aqueous phase pH control was
done by the addition of NaOH and HCI solutions, to reach samples of 3,
7 and 10 pH, since stabilizing agents usually have ionizing groups that
depend on the pH of the medium [42,43]. Organic phase was prepared
with 35mL of crude oil doped with 200 ppm (v/v) of additive in a
100 mL beaker, for each test. These emulsions were prepared in a
water/oil ratio of 30:70 (%, v/v), totalizing 50 mL. Then, these mix-
tures were subjected to shear in an IKA Turrax T-25 homogenizer,
under rotation of 3200 rpm. The system was left under stirring for 5 min
for PET-1 oil and for 15 min for PET-2 and PET-3 oils, at room tem-
perature. Time required for emulsion formulation, from PET-1 and PET-
2 oil, were determined by intermediate of a screening test made pre-
viously, in order to guarantee no water resolution on the first 2h test
and to obtain similar droplets distribution. It is interesting to state that
blank tests were made following the same experimental procedure de-
scribed here. From emulsion formulation tests, it was calculated an
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Fig. 3. 'H NMR spectra of (a) hydrogenated cardanol, (b) ethoxylated cardanol, (c) cardanol formaldehyde resin, and (d) ethoxylated cardanol formaldehyde resin.

overall average deviation of 2% (v/v). For all these tests, a minimum of
three parallels test were performed. It is important to notice that all
molecules synthetized in this work were used as demulsifiers, i.e., ad-
ditives were added after emulsification process.

Droplet size distribution were evaluated by using an Alltion trino-
cular LED microscope, coupled with 5MP digital camera and ImageJ
software. From these images, it was carried out the following treatment
procedure: i) the conversion of original image (16-bits, color) into a 8-
bits image; ii) use of bandpass filter to contrast enhance; and, iii) image

24

binary transformation. Microscope calibration slide was used in order
to convert pixels to micrometers. Droplets diameters were measure by
pixel area that cover the droplet image (Waddel disk diameter).
Diameter distributions were calculated by volume fraction of each
diameter range. For that, at least three images were used to ensure that
a minimum of one thousand particles are observed, providing con-
fidence level of 95% for droplet size distribution.

Water/oil separation was done by using a bottle test [44]. Emulsion
were placed in graduated tubes and maintained in a transparent water
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Fig. 4. Water-in-oil emulsions micrograph formulated in a ratio of 30:70 (%, v/v) with PET-1 (a), PET-2 (b), and PET-3 (c) oils, under rotation of 3200 rpm, for 2 h at

60 °C. Total magnification of 180 x.
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Fig. 5. Droplet size distribution for emulsions prepared with PET-1, PET-2 and
PET-3 oils, after 2h at 60 °C.

bath at 60 °C. Water resolution was measured at 5 min intervals in the
first half hour of the test, 10 min intervals in the second half hour of the
test, and at 20 min in the last hour, totalizing 2 h total test. The results
were expressed in terms of water volume separated (mL) as a function
of time (min).

3. Results and discussion
3.1. Synthesis and characterization of demulsifiers

Four additives were synthesized according to the schemes shown in
Fig. 1. Hydrogenation reaction aims to complete saturation of the car-
danol aliphatic side chain, giving a hydrogenated cardanol. This pro-
duct has been used for subsequent reactions. Ethoxylation reaction
occur on the hydroxyl group and consist in the addition and opening of
the ethylene carbonate ring. Moreover, resin formation is a poly-
merization reaction through the cardanol aromatic ring.

Demulsifiers synthetized were characterized by FTIR spectrometry,
as represented in Fig. 2. It is possible to observe that FTIR spectra
confirm the synthesis proposed on Fig. 1. For hydrogenated cardanol
(Fig. 2a) an intense band at 721 cm ™! was observed, related to out-of-
plane angular deformation associated with four or more —-CH, groups
present in alkyl chain. Wavenumber 1459 cm ™' is associate to the
asymmetric angular deformation related band of —CHj, although wa-
venumber 1367 cm ™! is related to the symmetrical angular deforma-
tion. In 2922 cm ™! the band relative to asymmetric stretch of -CH, is
found. In addition, with broad bands in the v C-H region of CH, and v
C-H of CHj3, the spectrum confirms the hydrogenation of the side chain
of the cardanol.

Structural confirmation of the ethoxylation of cardanol and the
formation of cardanol formaldehyde resin could be observed by the
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significant increase of absorbance in the region of 1070 cm ™! (Fig. 2b
and d), which appears associated with peaks in the 1275-1200 cm ™!
region, due to the aromatic character of the ethers synthesized. The
confirmation of formaldehyde resin formation is made by comparing
region 770-730cm ™! and 710-690 cm ! of panels a, c, and d. This
reduction observed is associated with a reduction of adjacent hydrogens
in the aromatic ring, possibly caused by polycondensation synthesis.

Additionally, chemical structures of the synthetized in this paper
were elucidated from 'H NMR, as represented in Fig. 3. According to
the panel a (Fig. 3a) chemical shifts are evident in the aromatic region
of the hydrogenated cardanol molecule, as: two narrow and partially
overlapping duplets, at approximately 7.12 ppm; one singlet elongated
at approximately 6.65ppm and one duplet partially unfolded and
overlaid on the singlet. These displacements are an indicative of the
characteristic meta-substitution of cardanol. In addition, the hydroxyl
group is indicated by the extended singlet in the region of 4.8-5.3 ppm.
The insignificance in the displacement of region bound to presence of
olefinic hydrogens (5.3-5.5 ppm) and elevation in the region of satu-
rated hydrogens (0.5-4.0 ppm) indicates the efficiency of the hydro-
genation. From this result, it could be observed, from peaks integration
of chemical shift in the 5.3-5.5 ppm range, a almost complete hydro-
genation process, with an olefinic hydrogen fraction of 0.4% (m/m).

The presence of peaks in chemical displacements of 3.3-4.7 ppm
could be associated to the addition of ethoxylated groups (Fig. 3b e d).
These panels also shows the presence of a 4.517 ppm displacement peak
that could be associate to the hydrogen signal in the cyclic ring struc-
ture of ethylene carbonate [45]. Thus, confirming the ethoxylated
structure. From these results, it could be stated, from the integration
peaks of chemical shift between 3.5 and 4.5 ppm, that it was obtained a
conversion of ethoxylated cardanol (EC) of 96.9% (m/m) during
ethoxylation.

The synthesis of cardanol formaldehyde resin is associated with the
appearance of Ph-CH,-Ph characteristic peaks in the region of
3.4-4.1 ppm, as observed in Fig. 3c. However, in the synthesis com-
bining polymerization on the aromatic ring of cardanol for resin for-
mation and ethylene carbonate ring aperture for ethoxylation, it was
not possible to determine structural parameters characterizing the
product formed by intermediate of 'H NMR spectrum due to the
overlapping of signals in the range of 3.5 and 4.5 ppm. Average number
of phenolic units were calculated by the ratio of area for chemical shifts
between 3.4 and 4.1 ppm (attributed to phenol-CH?-phenol bonds) and
6.4-7.2 ppm (attributed to aryla-H bonds) giving a number of 2 phe-
nolic units, in other words, a mean of two cardanol molecules are
condensed to form cardanol formaldehyde resin (CFR). Nevertheless,
for ECFR product, it is important to mention that it was not possible to
calculate both average number of phenolic units neither ethylene car-
bonate conversion, due to the superposition of characteristics chemical
shifts.

3.2. Effects of additives in water-in-oil demulsification

Fig. 4 shows a comparative micrography for emulsions prepared by



F.X. Feitosa, et al.

(a) 100 | T T T T T T ]
/Q—o— - e
- n n
80 o?-/ -
g | & e
3 A
[}
T 7 / A/ ]
< Vi
[
g |7 &
T 40 A <
g &
) j
207 —e—pH7 ]
- —m—pH3
/ | —A—pH 10
0 T T T T T T T T T T T
0 20 40 60 80 100 120
Time (min)
®) o T T T T —e—pH7
—s—pH3
—4—pH 10
80 i
=
o}
5 60 -
2
2
o
S 40 -
[0
n
20 4 -
I ] o
e
o——f" m—u 8 8w  w a
0 —.&r1 T T T T T
0 20 40 60 80 100 120
Time (min)
(€) 100 4 ' ' ] ' I ' ' —m—pH 3
—e—pH7 |
—A—pH 10
80 -
=
% 60 - 4
2
L
o
& 40 -
Q.
3 l
’/uon—o—o—o—o—o—o
20 4@ -1
|
A A A
0 p————w—Ah—a [ [ n n
T T T T T T
0 20 40 60 80 100 120
Time (min)

Fig. 6. Water resolution as a function of time for emulsions prepared with PET-
1 (a), PET-2 (b) and PET-3 (c) oils, containing ethoxylated cardanol for-
maldehyde resin (ECFR). Test of 2 h, with pH variation and 60 °C.

using PET-1, PET-2, and PET-3 oils. It could be observed that there is a
formation of stable emulsions with droplet sizes visually similar, con-
firmed on Fig. 5, discussed later. Nevertheless, there is two important
points regarding these results: firstly, PET-1 emulsion presents a well-
defined droplets sphericity; secondly, it is clearly observed a better
micrograph definition when using PET-1 oil, probably due to the
translucency of this sample.

Fig. 5 depicts droplet size distribution analysis by using ImageJ
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Fig. 7. Water resolution as a function of time for emulsions prepared with PET-
1 (a), PET-2 (b) and PET-3 (c) oils, containing ethoxylated cardanol (EC). Test
of 2h, with pH variation and 60 °C.

software. From this analysis, it could be seen that the largest diameter
in volumetric frequency was around 30 um for emulsions prepared with
PET-2 oil and the smallest one was near 5.5 um for PET-1 oil. Average
diameters based on the volumetric fraction weight were 11.2, 15.1 and
15.2 um for emulsion prepared with PET-1, PET-2 and PET-3 oils, re-
spectively. A 2 um uncertainty was established for this technique. For
this reason, average diameter measured for all emulsion presented the
same value, i.e., 13 um.

Water resolution test performed with hydrogenated cardanol (HC)
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Table 2

Performance of chemical modification from Cardanol related on literature and
this work and conditions of tests: concentration, demulsifier efficiency (DE),
time, temperature, water cut.

Compound Concentration DE (%) Time Temperature (°C) Water
(mg.L™ Y (min) Cut (%)
DECA [31] 50 68 420 60 30
TECA [31] 100 60 600 60 30
QTECA [25] 10 90 180 60 30
QDECA [25] 10 100 60 60 30
CPEHA [48] 50 84 600 60 30
QCPEHA [48] 50 84 540 60 30
ECFR 175 95 50 60 30
EC 175 100 10 60 30

DECA - Di-etherfied cardanoxy amine; TECA - Tri-etherfied cardanoxy amine;
QDECA - Quaternized Di-etherfied cardanoxy amine; QTECA — Quaternized Tri-
etherfied cardanoxy amine; ECFR - Ethoxylated cardanol formaldehyde resin;
EC - Ethoxylated cardanol.

* Results observed for PET-1 as depicted on Fig. 6(a).

** Results observed for PET-3 as depicted on Fig. 7(c).

and cardanol formaldehyde resin (CFR) additives do not show any
water separation. These results demonstrate the absence of demulsi-
fying activity for these additives, once it misses a strong polar group
that could act as amphiphilic group that could increase this activity, as
can be seen in Fig. 3(a) and (c). However, ethoxylated cardanol (EC)
and ethoxylated cardanol formaldehyde resin (ECFR) showed some
water separation under different conditions tested. This behavior in-
dicates a possible ability of ethoxylated compound to stabilize asphal-
tene in the emulsion. Figs. 6 and 7 show water resolution kinetics plots
that present demulsifier action of ECFR and EC additives, respectively.
It is important to mention that it has been also performed a pH varia-
tion (pH 3, 7, and 10) studies also described in Figs. 6 and 7. From these
results, it is possible to state that best performance was attained for
emulsions prepared with PET-1 oil, for both additives, due to lower
viscosity range, as described in Table 1. Additionally, it could be also
observed that there is a complete water separation for all pH tested
when used EC additive. Nevertheless, for ECFR additive, best results
was obtained at neutral pH.

For emulsions prepared with PET-2 and PET-3 oils, it was not ob-
served higher water resolution (less than 30% water resolution) when
using ECFR additive, as seen in Fig. 6. This result could be directly
associated to the low content of average number of phenolic units, as
discussed previously. Likewise, it is clear that neutral pH presents best
results for all emulsions tested. These results could be attributed to the
smaller elastic compression modules for neutral pH, which may be an
indicative of lower interfacial action of asphaltenes, thus lower emul-
sion stability [46]. Conversely, pH 10 was favorable when using
ethoxylated cardanol (EC) additive, for all emulsion systems studied.
This behavior runs away from expectation, once at basic pH (pH = 10)
emulsions are less stable when using distilled water in their prepara-
tion, once no ionization effects occur [47]. Possible additive size plays
an important role on water resolution when EC additive is used.

From literature data, it was possible to compare and contrast

Table 3
Properties of the crude oil used on this work and literature [31,35,48].
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cardanol chemical modification to produce demulsifier additives.
Table 2 shows performance comparison between additives produced in
this work (EC and ECFR) and those produced by Atta and coauthors
(2018) [31,48] and Ezzat and coauthors (2018) [25], showing additive
concentration used, best demulsifier efficiency (DE), and time required
to reach DE. Table 3 shows a comparison between crude oils (PET-1,
PET-2, and PET-3) used in this work with three different arabian heavy
oils. It is important to stressed temperature (60 °C) and water cut (30%)
were the for all selected data, in order to be able to compare all data.
Additive produced by Ezzat and coauthors, a quaternized di-etherfied
cardanoxy amine (QDECA) show a complete water resolution, even
using the lowest additive concentration (10 mg.L ™). Ethoxylated car-
danol (EC) produced in this work has obtained same DE value, but in a
lower time. In spite of using a higher concentration (175 mg.L ™). Also
from Table 3, it could be observed that higher asphaltene content leads
to a need of more complex structures of demulsifiers for a complete
water separation. In this work, using more simple modification on
cardanol than literature, the worst result of DE is observed by the PET-
2, crude oil with the higher asphaltene content. It should be emphasized
that there is an important commitment solution among additive con-
centration, demulsifier efficiency, complexity reaction chemical route
to additive synthetize and time. This comparative analysis shows how
difficult is the development of new chemical demulsifier additives for
petroleum industry, once a large effort should be done on individual
tests and chemical compatibility analysis for all additives used in the
field.

4. Conclusion

Four different additives (hydrogenated cardanol, ethoxylated car-
danol, cardanol formaldehyde resin and ethoxylated cardanol for-
maldehyde resin) have been synthetized based on cardanol, which
structures have been characterized by FTIR and 'H NMR. These ad-
ditives have been tested for three Brazilian petroleum samples, at 60 °C,
30% water cut, 3200 rpm, and 200 ppm additive concentration, at
different pH. Ethoxylated cardanol and ethoxylated cardanol for-
maldehyde resin present some demulsifier activity, probably due to
ethoxylated compounds that are responsible for asphaltene stabiliza-
tion. Nevertheless, best additive performance was obtained for
ethoxylated cardanol with a complete water resolution in 10 min for a
crude oil with low asphaltene content (1.14 wt%).
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Crude oil °API Saturates (wt%) Aromatics (wt%) Resins (wt%) Asphaltenes (wt%)
PET-1 [this work] 25.4 42.5 26.0 31.5 1.14

PET-2 [this work] 17.2 30.1 25.0 38.4 6.43

PET-3 [this work] 18.8 43.0 25.9 29.6 1.53

Arabian Heavy [25] 20.8 ni ni ni 6.0

Arabian Heavy [31] 19.8 ni ni ni 12.0

Arabian Heavy [48] 20.8 ni ni ni 8.3

ni — not informed.
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