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HIGHLIGHTS GRAPHICAL ABSTRACT

« Water/biodiesel emulsions were
prepared from industrial biodiesel.

« Water content and average droplet
size were experimentally determined.

« NIR spectra was collected in order to
develop PLS and ANN models.

« PLS model showed better
performance compared to ANN model
to predict water content.

« To predict the average droplet size,
ANN model achieved better results.
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NIR spectroscopy was used to predict the average droplet size and water content in water/biodiesel
emulsions. The emulsions were prepared from industrial biodiesel obtained from soybean oil (85 wt%)
and animal fat (15 wt%) by methylic route. NIR spectra was collected in the transmittance mode with
the diffuse reflectance technique. Based on the NIR spectroscopy results, it can be pointed out that this
methodology has the sensibility to infer the droplet size and water content in the biodiesel emulsions.
Two techniques were used to obtain the multivariate models: the partial least squares (PLS) and artificial

K.ey V‘.lordS: neural network (ANN) models. Satisfactory values of mean error for the external validation were
Biodiesel . . o . o .

NIR spectroscopy obtained, with 9.53% to PLS model for average droplet size and 8.79% for water content, since they are
Emulsion close to the experimental standard deviation. The performance of ANN models demonstrated that this
Droplet size technique allowed the prediction of average droplet size and water content with mean errors of 6.10%

and 13.20%, respectively. These errors are close to the analytical error associated to the method used indi-
cating that the NIR spectroscopy is a good alternative to be used for this purpose.
© 2013 Elsevier Ltd. All rights reserved.

Water content

1. Introduction of using biodiesel include biodegradability, low toxicity, domesti-

cally produced, good lubricity, higher combustion efficiency and

Biodiesel is one of the most promising renewable fuels, pro-
posed as an alternative to replace fossil diesel [1]. The advantages
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favorable combustion emissions profile, represented by reduced
levels of particulate matter and carbon monoxide, despite of the
increasing in the nitrogen oxides emission [2-4]. Besides, has a
higher cetane number compared to diesel from petroleum and
can be used without mechanical modification when used in
conventional diesel engines or other combustion engines [3-5].
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Transesterification or alcoholysis is the most common method
to produce biodiesel [5,6]. Most commercial production is alka-
line-catalyzed, which is relatively fast, but sensitive to water and
free fatty acids contents [6-8]. The content of free fatty acids in
the reaction medium must be up to 0.5% and water content up to
0.06% relative to the vegetable oil content that in process condi-
tions are not commonly achieved [4]. Water can hydrolyze the tri-
glycerides in diglycerides producing free fatty acids, reacting in the
alkaline catalyst producing soaps [6]. The presence of soap in
the reaction increases the viscosity forming gels and stabilizing
the emulsion (biodiesel/glycerol), impairing the steps of separation
and purification of biodiesel to be conducted [4,6,9,10]. Moreover,
it can increase the contaminants in the final product [11].

The water content as a contaminant in the final product as free
or emulsified water, with suspended water droplets, depends the
utilized feedstock quality, the production process adopted and
the water absorption during the storage, that can achieve
1500 ppm [12,9]. Free water is strongly associated with the micro-
organism proliferation and corrosion in the storage tanks and can
affect the stability of the fuel [9,12,13]. The water in oil emulsion
stability is influenced by size and distribution of water droplets
dispersed in the continuous phase and other parameters as tem-
perature, continuous phase viscosity and volume of dispersed
phase [14,15]. Emulsion is considered stable when dispersed drop-
lets remain on the continuous phase for 5 days or more without
phase separation [16]. Size distribution of water droplets can be
used to explain the formation of stability mechanisms and assist
the emulsion separation to a desired condition [17]. The determi-
nation of the droplet size distribution is carried out mainly through
off-line measurements from different commercial apparatus. The
exact values of droplet size are hardly determined, once that differ-
ent difficulty is related to each one of the usual techniques. Since
each analysis technique is based on different physical principles,
the results obtained from these analyses may be different. More-
over, laboratory results are generally obtained with delays that
may reach some hours. As a consequence, in the context of process
control, online and reproducible measurements becomes a funda-
mental importance [18,19].

Near infrared spectroscopy (NIR) appears as an interesting
alternative compared to conventional methods of analysis [2,13].
The NIR spectroscopy associated with multivariate data analysis
has been employed in recent studies [2,13,20-22] for biofuels
and petroleum analysis. Is an analytic technique based on the
absorption of the electromagnetic energy, due to the vibration of
the chemical bonds of the molecules in the region from 4000 to
12,800 cm~' (780-2500 nm) [23-25].

This technique allows the multi component analysis in a fast
and no destructive method, without requiring a complex sample
preparation [2]. Generally, use of NIR spectroscopy is associated
with partial least squares model (PLS) and principal component
analysis (PCA). But, recently the use of non linear models, as artifi-
cial neural networks (ANN), has been reported in the literature
with advantages in some cases over PLS models, due to its nonlin-
earity. An ANN is a parallel processor consisting of simple process-
ing units (neurons), which has the natural propensity for storing
experiential knowledge and making it available for use. In a simple
form of an ANN, each neuron is connected to other neurons of a
previous layer through weights. Neuron receives information from
other neurons of the previous layer through its incoming connec-
tions. First, this information is added so weighted by the weights
associated with the connections and then the result is passed
through an activation function to the next neuron [24-30].

Typical NIR applications in biodiesel fuel include the transeste-
rification monitoring and determination of chemical composition
and properties, as iodine value, density and stability [24,31-33].
According to the Zhang [33], in recent research, was not found

the use of NIR spectroscopy to evaluate the water average droplet
size in biodiesel emulsions. In this context, the aim of this paper
was to evaluate the use of the NIR spectroscopy with multivariate
calibration and artificial neural network models to predict the
average droplet size and water content in the soybean and animal
fat biodiesel emulsions.

2. Experimental section
2.1. Materials

Industrial biodiesel obtained from soybean oil (85 wt%) and ani-
mal fat (15 wt%) by methylic route without biocides were kindly
donated by BIOPAR (Usina de Bioenergia do Parana LTDA, Rolandia,
PR, Brazil) were utilized. According to the report emitted by BIO-
PAR laboratory, biodiesel samples presented a total contamination
of 6.9 mg/Kg and a clear aspect. For the emulsions preparation, dis-
tilled water and ethanol (MERCK, 99.9%) were used.

2.2. Emulsions preparation and characterization

In a first stage the emulsions were prepared adding 1% (v/v) of
ethanol to biodiesel in a heated plate under agitation (FISATOM,
model 752 A). The temperature was kept close to 35 °C. In a second
stage, a known amount of water (concentration range 840-
1.900 mg kg~ !) was added slowly to the sample, reaching a final
volume 200 mL. The water range was based on the initial concen-
tration of the biodiesel sample and the research of Felizardo et al.
[2]. According to these authors, in this water range concentration
there is no phase separation in the emulsions. The samples were
homogenized during three minutes with five different stirring
rates in two homogenizers, in order to obtain different droplet size
distributions. A SILVERSON homogenizer (model L4RT) was used at
stirring rate of 1500, 5500 and 9500 rpm and a TURRATEC homog-
enizer (model TE 102), at 14,000 and 22,500 rpm. Seventy-five
water/biodiesel emulsions were obtained with fifteen different
water contents for each agitation speed.

Droplet size was determined using a microscope (Olympus,
model BX 50) linked to a video camera (Sony, model DXC 107a).
Two slides were prepared for each sample and two images were
captured for each slide with 200x of magnification. The measure-
ments were carried out with the software Olympus microsuite
(TM) Basic, for Windows 1991, previously calibrated with 5.0 pm
diameter. The water content was performed by titration in a Met-
ronhm 756 titro processor according to the reference method of
Karl Fisher.

2.3. NIR spectra acquisition

NIR spectra of seventy-five samples in triplicate in a spectral re-
gion from 10,000 cm~! to 4000 cm™~! in the transmittance mode
with the diffuse reflectance technique were scanned with resolu-
tion of 8 cm~!. Thirty-two scans were averaged for each sample
spectrum. A FTNIR spectrophotometer (BRUKER, model TENSOR
37) was used at controlled temperature (20 °C). The measurements
were carried out in an integrating sphere with are solution of
8 cm ! and the software OPUS 6.0, with Fourier Transform. The
spectra were obtained as an average of thirty-two scans for each
sample. The first spectrum was collected 1 h after emulsion prep-
aration; the second one, 1 h and 10 min after and the third one,
1 h and 20 min after.
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2.4. Multivariate analysis and neural network model

MatLab 7.0.1 software was utilized to develop a multivariate
calibration model using principal component analysis (PCA) and
the partial least squares (PLS) regression. The method of PLS uses
a linear combinations to relate the spectra X with a given property
of interest Y; in this case, Y is equivalent to the average droplet size
and the content of water in the biodiesel [2].

In order to verify the clustering of biodiesel samples by the dif-
ferences contained in the samples, all spectral regions were treated
with principal component analysis (PCA) to compose calibration
and external validation groups. Several pre-processing techniques
were applied to the data. The pretreatment methods tested was:
Mean Centering (MC); Multiplicative Scatter Correction (MSC);
Normalize (NL); first order Savitsky-Golay derivative (SG1); sec-
ond order Savitsky-Golay derivative (SG2) and Orthogonal Signal
Correction (OSC); beyond the original spectrum without pre-pro-
cessing, none (N). Combinations of pre-treatments were also tested
as Mean Scattering Correction followed by Mean Centering
(MSC + MC); Mean Scattering Correction followed by Normalize
(MSC +N); Mean Scattering Correction followed by first order
Savitsky-Golay derivative (MSC + SG1) and Mean Scattering Cor-
rection followed by second order Savitsky-Golay derivative
(MSC + SG2).

The optimal number of principal components for PLS model was
determined by leave-on-out cross-validation procedure. Outliers
were detected based on leverage and Student residuals values with
95% of confidence. The prediction capability of model was evalu-
ated by root mean square error for external validation group
(RMSEP).

The development of neural network models was performed in a
home code written in Fortran 90 language. The multilayer percep-
tron neural networks with only one hidden layer were trained with
a training data set of sixty-three patterns and a validation data set
of 12 patterns. The root mean square error was the objective func-
tion and the Simulated Annealing algorithm [34] was used in the
minimization function. Data were normalized between —1 and 1
for hyperbolic tangent transfer function. The architecture of neural
network was investigated until seventeen hidden units.

The transmittance values obtained in NIR region in a wavenum-
bers of 9863, 8803, 8552, 7375 and 7260 cm™~! were used as input
variables of the neural model. The only output of neural network
was the average droplet size. For the content water, the wavenum-
bers used were 9022, 7680, 6662, 6403 and 4702 cm™! as inputs,
the water content was the output of the neural network.

3. Results and discussion
3.1. NIR spectra for the water/biodiesel emulsions

Fig. 1 shows the average of NIR spectra collected in triplicate for
all emulsions. The spectra obtained for biodiesel emulsions pre-
sented well defined transmittance bands and peaks in the same
spectral regions. The regions near to 9610-8650 cm™!, 8260-
7290 cm~!, and 6910-6140 cm~! presented higher transmittance
values, due to the lower molar absorptivity of medium. The spec-
tral region above 9000 cm~! was excluded in the development of
model calibration by partial least squares by presenting noise as
verified in Fig. 1.

In order to evaluate the spectrophotometer sensibility in rela-
tion to the water droplet size, the spectra of emulsion samples with
water content near to 1781 mg kg~! obtained with different stir-
ring rates were compared, as shows in Fig. 2. The different stirring
rates used resulted in different droplet sizes. Average droplet sizes
4.55, 4.22 and 3.68 pum were obtained with stirring rates of 1500,

0.065

Transmittance

0 9230 8460 7680 6920 6150 5370 4600
Wavenumber (cm-)

Fig. 1. NIR spectra of seventy-five water/biodiesel emulsions with different droplet
sizes and different water contents.
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Fig. 2. NIR spectra of emulsion samples with different stirring rates and water
content near to 1781 mg kg .

5500 and 9500 rpm, respectively. Is possible observe in Fig. 2 the
presence of a discrepancy in the spectra baseline, that can be
attributed to the difference in the light scattering by the different
water droplet sizes in the emulsions. Since the water content of
samples was similar, is possible assume that a higher stirring rate
promotes formation of a higher number of water droplets with
smaller size, and as consequence, a higher amount of droplets in-
creased the light scattering [18]. This tendency can be confirmed
in Fig. 2, where the transmittance decreasing could be noted in
the samples with smaller droplet size. Based on the results showed
in this figure, we can affirm that the NIR spectroscopy has sensibil-
ity to be used to infer the droplet size in biodiesel emulsions.
The spectrophotometer sensibility at different concentrations of
water can be verified through the spectra behavior of samples ob-
tained using 5500 rpm as intermediate stirring rate (Fig. 3). In the
spectra, is possible to observe a slight change from baseline, where
a decreasing of the transmittance peaks in some spectral regions
for samples with water concentration 1386 mgkg~' and
1463 mg kg~!. When 1749 mg kg~! of water content was used is
possible to observe a larger decrease when compared to the others
samples. The transmittance decrease with water content increased.
Increasing the water concentration in the medium the absorption
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Fig. 3. NIR spectra of emulsion samples with different water contents and speed
agitation of 5500 rpm.

of electromagnetic energy will increase, and a smaller amount of
energy is transmitted, which demonstrates the sensitivity of the
equipment to changes in water concentration.

3.2. Models development for the water average droplet size

The pre-processing method in PCA analysis resulted in the best
discrimination of samples was the second derivative, where two
principal components could explain 69.16% of the total variance
of the data. Based on the qualitative results provided by PCA anal-
ysis, the model was constructed using 85% of the data in calibration
set and 15% in external validation set.

Among the pre-processing methods investigated for PLS model
development, the Savisky-Golay second order derivative with a
fifteen filter width applied to data set matrix X, and the second
polynomial order with Mean Centering applied to the data set ma-
trix Y presented the best results by comparing the RMSEP values.
Analyzing the parameters of leverage and Student residues two
outlier samples were detected.

According to Feudale et al. [35], the choice of methodology will
depend of the application, because no single method is ideal for all
situations. The preprocessing derivative is often used to improve
the definitions of bands that are overlapped, removing noise in
the same spectral region and/or for correction of the baseline.
The derivative aims to give more emphasis to the peaks, allowing
an increase in its resolution and eliminate additive effects [36].

For a better evaluation of the minimum number of latent vari-
ables, PLS models with 3-6 latent variables were developed with
external validation procedure. The performance parameters of
these models are presented in Table 1. It can be seen in this table
that the root mean square error of calibration set (RMSEC) de-
creased with the number of latent variables (LVs), while the root

Table 1

Root mean square error for calibration (RMSEC), cross validation (RMSECV) and
external validation (RMSEP) steps and determination coefficients (R?) of calibration
and cross validation steps of PLS model for droplet size prediction with different
number of latent variables (LVs).

LVs Calibration = RMSEC Cross RMSECV RMSEP
R? (um) validation R? (um) (um)
3 0.846 0.235 0.607 0.354 0.455
4 0.904 0.188 0.632 0.346 0.507
5 0.942 0.147 0.636 0.346 0.507
6 0.980 0.088 0.627 0.354 0.510
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Fig. 4. Correlation between experimental and predicted average droplet size for PLS
model ((x) calibration data set; (#) validation data set).

mean square error of cross validation (RMSECV) presented a little
variation in this latent variables range. It can also be verified that
the model with three latent variables presented the lowest RMSEP
value and the increase in the number of latent variable resulted in
higher RMSEP values, indicating a model overfitting from four la-
tent variable models. Based on these results, the PLS model with
three latent variables was considered more adequate to predict
the average droplet size. Araujo et al. [18] showed only calibration
data set of developed PLS model. They obtained a correlation of
0.995, with four latent variables and, RMSEP of 3.0 pm.

Fig. 4 shows the model performance of the PLS model with
three latent variables for calibration and external validation sets,
which achieved a satisfactory agreement in the calibration and val-
idation data sets.

Regarding to the development of neural network model, the
optimal architecture had eight hidden units in the internal layer.
The calibration and external validation data sets used for ANN
model were the same used for the PLS model. Fig. 5 presents the
ANN model performance for the training and validation data sets.
As can be seen in the figure, the predicted values are in a good
agreement with experimental data in the calibration and valida-
tion data set.
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Fig. 5. Correlation between measured and predicted average droplet size for ANN
model ((x) calibration data set; () validation data set).
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Table 2
Results of partial least squares (PLS) and artificial neural networks (ANN) models for
prediction of Average Water Droplet Size.

Model Calibration  External Mean validation Standard
R? validation R? error (%) deviation

PLS 0.8460 0.6070 9.53 +0.2814

ANN 0.8016 0.7301 6.10 +0.1353

The determination of coefficients for calibration and validation
sets, and the average validation error are presented in Table 2 for
both models. According to the results the correlation coefficients
the performance of ANN model was slightly superior to the PLS
model. Although the calibration coefficient of both models was
similar, the external validation coefficient showed that ANN model
was more robust and performed better in predicting new samples.
This result, (Table 2), is corroborated by the comparison of Figs. 4
and 5, which allows verifying the superiority of ANN model. This
may be due to the presence of some non-linearity in NIR spectral
data, which is not overcome by a linear model like PLS.

For the PLS model the mean error for external validation was
9.53%, which is a satisfactory value, since it is close to experimental
standard deviation of 15.64% of these samples. The F statistical test
applied between PLS and ANN models not presented significant
different at 5% for droplet sizes results. The mean error obtained
for validation set by ANN was 6.10%. The performance of ANN
model demonstrated that this model allowed the prediction of
the average droplet size with similar errors to the associated error
to the analytical method used, indicating that NIR spectroscopy
may be a good alternative to be used for this purpose.

3.3. Models development for the water content

In the PCA analysis, the pre-processing with better discrimina-
tion of samples was the first derivative whereas only two principal
components could explain 99.45% the total variance of data. Based
on the result of samples distribution the sets calibration were com-
posed with 80% of the data (spectra) and the external validation set
with 20% of the data (spectra).

For the calibration model developed by partial least squares
(PLS), pre-processing of the first derivative (Savisky-Golay, with
a fifteen filter width, second polynomial order) applied to data
set matrix X and Mean Centering applied to data set matrix Y
showed better results when the RMSEP value was compared. By
analyzing the parameters of leverage and Student residues four
anomalous samples were detected.

The number of latent variables (LVs) used in the construction of
model was based on the results of RMSEC, RMSECV and RMSEP. For
a better evaluation of the minimum number of latent variable the

Table 3

Root mean square error of calibration (RMSEC), cross validation and (RMSECV)
external validation (RMSEP) steps and determination coefficients (R?) of calibration
and cross validation steps of PLS model for water content prediction with different
number of latent variables.

LVs Calibration RMSEC (mg Cross RMSECV RMSEP (mg
R? kg™ validation (mg kg™ 1) kg™ 1)
RZ
3 0.843 158.59 0.809 173.64 212.16
4 0.915 119.14 0.865 148.00 118.03
5 0.940 100.86 0.881 139.86 143.65
6 0.973 68.49 0.885 137.64 146.66
7 0.995 51.47 0.888 136.33 145.55
8 0.993 35.25 0.893 133.51 155.40
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Fig. 6. Correlation between measured and predicted water contents for PLS model
((x) calibration data set; (#) validation data set).

models were developed with three to eight latent variables. The re-
sults of predictive models for water content and predictive errors
are shown in Table 3.

The parameters most commonly used in stage external valida-
tion are the RMSEP or RMSECV. The RMSEP is the most recom-
mended when it is possible to develop a model using a data set
for calibration and another for external validation [37].

The model with four latent variables presented better results
when RMSEP value was compared. The determination coefficients
of calibration, cross-validation and RMSECV value for the model
with four latent variables, presented slight variation when com-
pared with the other models. After the fourth latent variable, the
RMSEP value increased again. Based on the results, PLS model for
prediction of water content was built with four latent variables.

For the prediction of water content in W/O emulsions using
models developed by PLS, Balabin et al., [24] obtained a RMSEP
of 99 ppm, used six latent variables. Araujo et al. [18] obtained a
correlation of 0.997 with four latent variables and RMSEP of 0.5%
and, Felizardo et al. [2] used four latent variables and obtained
RMSEP of 75 mg kg~

As exposed above, the performance of the model obtained in
this study was in good agreement with the literature, indicating
that the model has good predictive ability for the water content.
The correlation model for predicting water content was assessed
by the graph of predicted values versus experimental values for
both calibration set and external validation.

Fig. 6 shows the PLS model performance with four latent vari-
ables. The correlation for the calibration set, cross validation and
mean error for external validation are presented in Table 4.

The built model showed a good correlation. The predicted val-
ues are close to the experimental values, indicating that the model
is sensitive and can detect the differences among the samples.

The development of a neural network model to predict the
water content followed the same procedures that used to building
the model to predict the water average droplet size. The calibration

Table 4
Results of partial least squares regression (PLS) and artificial neural network (ANN)
for prediction of water content.

Model Calibration Validation Validation error Standard
R? R? (%) deviation

PLS 0.9150 0.8650 8.79 +80.2660

ANN 0.8711 0.5055 13.20 +124.3546
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Fig. 7. Correlation between measured and predicted water contents for ANN model
((x) calibration data set; () validation data set).

and external validation data sets used for ANN model were the
same used for PLS model. Fig. 7 presents ANN model performance
for training and validation data sets. The correlation values of
calibration set of cross validation and mean error for the external
validation are shown in Table 4.

According to the determination coefficients results (Table 4),
the performance of PLS model was superior to ANN model.
Although the calibration performance of both models was similar,
the external validation showed that PLS performed is better in pre-
dicting new samples.

The mean error of PLS model for the external validation was
8.79%, which is a satisfactory value, since it is close to the experi-
mental error 12.2% of these samples. The mean error obtained for
the validation set by ANN was 13.20%. The performance of PLS
model demonstrated that this model allowed the prediction of
water content with a superior error compared to analytical method
and ANN model errors. However, the F statistical test applied be-
tween the results of PLS and ANN models not presented signifi-
cantly different at 5% for water content.

4. Conclusions

In this work, NIR spectroscopy was utilized to estimate the
average droplet size and water content in water/biodiesel emul-
sions. The NIR spectra obtained by diffuse reflectance presented
reproducibility and sensitivity to the droplet size and water con-
tent variations in biodiesel. Both techniques PLS and ANN used to
obtain the models showed a satisfactory performance based in
the experimental error associated to analytical method.

The model obtained by PLS, based on data from near-infrared
spectroscopy, showed good predictive ability of the analyzed prop-
erties of biodiesel. In addition, the RMSEP was 9.53% for average
droplet size and 8.79% for water content which were lower values
than the experimental error for both properties. The ANN model
presented a better performance compared to PLS model for droplet
size prediction, providing a mean error 6.10% and an inferior per-
formance with a mean error 13.30% for water content in the exter-
nal validation data set.

NIR spectroscopy showed to be a good alternative to determine
the average droplet size and water content in water/biodiesel
emulsions with a good potential to application in on-line biodiesel
quality control and storage.
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