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A B S T R A C T

For the flexible operation of mono-ethanol-amine-based post-combustion carbon capture processes, recent stu-
dies concentrate on model-based protocols which require underline model parameters of carbon capture pro-
cesses for controller design. In this paper, a novel application of the model-free adaptive control algorithm is
proposed that only uses measured input-output data for carbon capture processes. Compared with proportional-
integral control, the stability of the closed-loop system can be easily guaranteed by increasing a stabilizing
parameter. By updating the pseudo-partial derivative vector to estimate a dynamic model of the controlled plant
on-line, this new protocol is robust to plant uncertainties. Compared with model predictive control, tuning tests
of the protocol can be conducted on-line without non-trivial repetitive off-line sensitivity or identification tests.
Performances of the model-free adaptive control are demonstrated within a neural network carbon capture plant
model, identified and validated with data generated by a first-principle carbon capture model.

1. Introduction

1.1. Background

Power generation from fossil fuel combustion is the single largest
contributor of CO2 emission [1]. The mono-ethanol-amine (MEA)-based
post-combustion carbon capture (PCC) [2] technology is feasible for the
large-scale CO2 absorption since it can be achieved with relative simple
retrofits of conventional fossil-fuel power plants [3]. To compensate
load variations, for instance, due to intermittent renewable power
sources, a fossil-fuel power plant usually supplies flexible power gen-
eration and sometimes serves as a swing generator for the power net-
work. These inevitably cause fluctuations of the emitted flue gas flow
rate and the mass fraction of CO2 in the flue gas which are external
disturbances [4] of the MEA-based PCC process and deteriorate model-
based control performances. A control protocol for the process must be
robust when confronting these uncertainties. Furthermore, for a tight
CO2 emission target [4] or a time-variant CO2 allowance market con-
dition [5], the plant controller should be appropriately designed such
that the closed-loop system has fast responses.

1.2. Literature review

Previous studies of MEA-based PCC processes concentrated on

proportional-integral (PI) control [4,6,7] with the relative gain array
pairing strategy. Due to the optimality and flexibility requirements,
recently, model predictive control (MPC) is implemented for the pro-
cesses [8,9]. This model-based method is more appreciated since its
optimality leads to faster responses or lower energy consumption ac-
cording to a diverse range of the real-time objectives or scheduled load
variations of a power plant. Although a dynamic PCC model [1] can be
constructed in terms of the rigorous rate-based approach considering
both chemical and physical properties, such a first-principle model is
too complicated for the model-based control [10,11]. An identified
model serving as the underline model is imperative to reduce the model
complexities while ensure the model-based control performances. Pre-
vious studies focused on the optimal operation of the model-based
control such as MPC but paid little attention to system identification
before implementing such a control protocol. On the other hand, when
the PCC process operation is coupled with a power plant [4], uncertain
conditions of the power plant may degrade dynamic performances of
the carbon capture facilities. For instance, fluctuations of either the flue
gas flow rate or the CO2 mass fraction in the flue gas, dependent on the
power plant load conditions, will change the operating point of the PCC
process. These disturbances cause extra mismatches between the model
and the controlled non-linear PCC plant, which is classified as model
uncertainties. A large number of sensitivity [6] or identification [12]
tests for different operating points of the controlled plant must be
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conducted before the controller can be properly tuned and im-
plemented on-line. It makes the model-based controller design a non-
trivial issue.

1.3. Aim of the paper and its novelties

In this paper, a novel model-free adaptive control (MFAC) protocol
[13,14] is applied to a non-linear MEA-based PCC plant model identi-
fied based on a validated neural network model using the validated data
[15] generated by a first-principle model. Compared with PI control
using predefined tuning parameters around fixed operating points,
MFAC uses compact form dynamic linearisation (CFDL) or partial form
dynamic linearisation (PFDL) to form a time-variant PCC model on-line,
inferring that the model adapts to plant operating point changes.
Compared with the model-based protocol which requires non-trivial
sensitivity or identification tests to determine a model for off-line
tuning before on-line implementation, MFAC has a simpler tuning
procedure. The identified PCC model is only used for the initial off-line
tuning. Thereafter, the tuning parameters can be flexibly retuned on-
line with the measured input–output data of the controlled non-linear
PCC plant. No model parameters identified off-line are required on-line.
The underline model parameters, however, are essential for model-
based protocols. They are used to ensure the stability and performances
of the closed-loop system, inferring a complex and repetitive off-line
tuning procedure. PI control requires no underline model parameters
same as MFAC, but its stability analysis is based on models. MFAC can
easily guarantee stability by a stabilizing parameter.

1.4. Outline of the paper

This paper is organized as follows. Firstly, the system identification
problem is discussed to build a validated non-linear PCC model with a
neural network structure using the data generated by a first-principle
model. Secondly, compared with generalized predictive control (GPC),
MFAC is designed based on an iterative algorithm including on-line
linear model update, control policy update and a reset rule. Thirdly,
with the identified PCC model serving as the controlled non-linear
plant, simulation results of MFAC are presented compared with PI
control and GPC. Conclusions are given in the end.

2. Model development

2.1. Dynamic modelling of the post-combustion carbon capture process

The first-principle dynamic model of the PCC process in this paper
has been developed in gPROMS® with the rate-based approach using the
design and operation specifications in [17]. All the reactions in PCC are
assumed to attain equilibrium. Validation of this model was made using
data of pilot plants [4,15]. The flow diagram (Fig. 1) shows the flue gas
is initially fed into the bottom of the absorber while the lean MEA so-
lution is injected from the top. After chemical reactions between CO2

and the lean MEA countercurrently in the column, the purified gas with
less CO2 is vented to the atmosphere while a carbon-rich MEA solution
is pumped into the downstream lean/rich cross heat exchanger and
exchanges energy with the lean solution from the stripper. The stripper
has the analogous structure as the absorbers. The pre-heated rich MEA
from the exchanger outlet is pumped to the upper-stage and heated up
when flowing down through the column. The heat is provided via a
reboiler which separates CO2 from the rich MEA and reproduces the
lean MEA to process the consecutively discharged flue gas. Although a
rigorous model can be built considering chemical reactions, it is too
complex for control design [10]. A feasible mathematical model must
be identified [8].

2.2. Identification of neural networks for dynamic carbon capture processes

For the PCC process which is complex and non-linear, neural net-
works [18,19] can be selected to identify mathematical models based
on off-line data generated by the above first-principle model. Note that
the tracking problem of the carbon capture level is primarily considered
in Section 3. For brevity, the lean loading and the re-boiler temperature
are assumed to be fixed around 0.28 mol/mol and 387 K, respectively,
for all cases in the later simulations. On that basis, a model related to
the carbon capture level dynamics is built with three inputs and one
output. The three inputs are the flue gas flow rate (kg/s), d t( )1 , mass
fraction of CO2 in the flue gas, d t( )2 and the lean MEA flow rate (kg/s),
u t( ), respectively. The output is the CO2 or carbon capture level (%),
denoted by y t( ). The candidate models of this process are neural net-
works with one hidden layer. Referring to Fig. 2, the model structure is
represented by

̂ + = +y t t bw z x( 1) ( ( ))T
o (1)

where ̂ +y t( 1) is the estimated capture level of the carbon capture
process at time +t 1; = … ∈w w ww ( , , , )H

T H
1 2 and ∈bo are the

weight vector and the bias, respectively, between the hidden and
output layers; and ∈tx( ) n is the input features at time t and defined
as ≜ …

= − … − + − … − + − …
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with = + + +n n n n na b d d1 2. n n n, ,a b d1, and nd2 are model orders
which must be determined in terms of model performances. z x( ) is the
output of the hidden layer, i.e., ≜z x( ) … =z z z( , , , )H

T
1 2

+ ∈g Vx b( ) Hwith g (·) being an element-wise activation function for
each entry of +Vx b where ∈ ×V H n and ∈b H are the weight
matrix and the bias vector, respectively, between the input layer and
hidden layer. Without losing generality, for ∈h , the scalar activation
function is logistic, i.e., = + −g h h( ) 1/(1 exp( )). For a specific candi-
date model based on neural networks, the model parameters are
weights w V( , ) and biases b b( , )o which should be identified using the
input and output data from the first-principle model. The total number
of model parameters including weights and biases for the above neural
network is = + +D n H[( 2)· ] 1. To avoid overfitting [20], for two
candidate models with similar model validation performances, the
model with less complexity, i.e., smaller D, is preferred.

2.3. Model order selection with AIC

Akaike’s information criterion (AIC) is used to determine the
number of model parameters D0. For a candidate model, i.e., the model
structure (Eq. (1)) with a specific hidden layer size H and model orders,
the residual is defined as the difference between the observation and

Fig. 1. The process flow diagram of a PCC plant [16].
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the one-step-ahead prediction of the output, which is ̂∊ = −t y t y t( ) ( ) ( ).
y t( ) is the observed capture level of PCC processes. On that basis, the
AIC value is estimated by ̂= +σ D NAIC ln( ) 2 /2

0 with
̂ = ∑ ∊=σ N t(1/ ) ( )t

N2
1

2 where ̂σ is an estimate of the noise standard
deviation σ N; is the number of data samples; and = +D D 10 is the
number of model parameters including σ . In practice, the model orders
may not be exactly selected by AIC. Residual analysis is used to validate
the candidate models.

2.4. Residual analysis

The residual analysis [12] suggests a validated model has residuals
∊ t( ) which are serially independent and unrelated to past inputs. Two
correlation-based intermediate variables are defined as

= ∑ ∊ ∊ −∊ =R τ N t t τ( ) (1/ ) ( ) ( )N
t
N

1
 and = ∑ ∊ −∊ =R τ N t u t τ( ) (1/ ) ( ) ( )u

N
t
N

1
 .

ζ τ( )1 and ζ τ( )2 are then defined as ̂= ∼∊ζ τ N σ R τ χ( ) ( / )·( ( )) (1)N
1

4 2 2 and
̂= ∼∊ζ τ N σ P τ R τ( ) / ( ) ( ) (0,1)u

N
2

2 N with = ∑ −=P τ N u t τ( ) (1/ ) ( )t
N

1
2.

For a validated model, ζ τ( )1 and ζ τ( )2 should be within the α-level
confidence intervals determined by the chi-squared- and normally-dis-
tributed random variables, respectively.

3. Model-based and model-free control protocols

The tracking problem of the carbon capture level y t( ) for the con-
trolled non-linear PCC plant is considered in this section. The ma-
nipulated input is the lean MEA flow rate u t( ) [4,6]. The disturbances
are the flue gas flow rate (kg/s) d t( )1 and the mass fraction of CO2 in the
flue gas d t( )2 . Two possible protocols are discussed. One is model-based,
called GPC; the other is MFAC. MFAC should be more favourable since
it can be implemented easily on-line without models identified off-line.

3.1. Generalized predictive control

The advanced model-based protocol called GPC is briefly in-
troduced, which requires an underline model (i.e., a prediction model)
of the controlled plant
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1 2. The control objective is defined as
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Using Diophantine equation [21] iterations, the objective is rewritten as
= + ′− + ′− +J Gu f r Q Gu f r u Ru( ) ( )T T where ′f is the filtered re-

sponses [21]. The control policy is then derived as

= + − ′−u G QG R G Q r f( ) ( )T T1 (4)

where only the first row of u is implemented for the controlled plant.
Note that for a model-based protocol, the underline model parameters
from sensitivity or identification tests are usually required. For this
specific GPC algorithm, the model parameters are − −A q B q( ), ( )1 1 and

−L q( )1 which approximate the PCC plant in some standard mathema-
tical form (Eq. (2)). These model parameters are the indispensable
priori knowledge for the model-based control design. To implement the
control policy (Eq. (4)), both the matrix G and the filter ′f should be
determined by − −A q B q( ), ( )1 1 and −L q( )1 beforehand, which infers that
GPC is model-based.

3.2. Model-free adaptive control

The PCC process is commonly modelled by first-principle strategies
such as equilibrium-based or rate-based approaches [3], which infers
that the process involves non-linearities. Note that the time-variant flue
gas flow rate, d t( )1 and the mass fraction of CO2 in flue gas, d t( )2 may
cause variations of the process operating point. Thus, non-linearities
will lead to mismatches between the controlled plant and the underline
model of the model-based controllers, such as GPC. The model-free
protocol [14] can form a dynamic linear model on-line for the con-
trolled non-linear plant with a pseudo-partial derivative (PPD) vector

tΦ( ). No off-line model parameters are required when the controller is
implemented in real time. As the process operating point varies, tΦ( )
adapts to the changes. The control method with tΦ( ) is termed as PFDL
which describes the relationship between the input and the output with

+ =y t t tUΔ ( 1) Φ( )Δ ( ) (5)

where

= ⋯ ∈ ×t ϕ t ϕ t ϕ tΦ( ) ( ( ), ( )), , ( )) ,L
L

1 2
1

= − ⋯ − + ∈t u t u t u t LUΔ ( ) (Δ ( ),Δ ( 1), ,Δ ( 1)) .T L

u t( ), the lean MEA flow rate, is the manipulated input while y t( ), the
capture level, is the controlled output. When =L 1, Eq. (5) is reduced to
the CFDL-based description. True tΦ( ) can be estimated by ̂ tΦ( ) based
on the optimisation problem of ̂ ̂= − −J t t(1/2)‖Φ( ) Φ( 1)‖Φ

2 subject to
̂= −y t t tUΔ ( ) Φ( )Δ ( 1) which can be solved by the modified projection

algorithm [14]. A control objective is defined as
= + − + +J r t y t λ tU‖ ( 1) ( 1)‖ ‖Δ ( )‖U

2 2. By minimizing both JΦ and JU,
the on-line model update is

̂ ̂ ̂
= − +

− − − −

+ −
t t

η y t t t t
μ t

U U
U

Φ( ) Φ( 1)
(Δ ( ) Φ( 1)Δ ( 1))Δ ( 1)

‖Δ ( 1)‖

T

2 (6)

and the control policy update is

Fig. 2. A multi-input–single-output neural network with one hidden layer.
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of the output. For stability of the closed-loop system, the reset rule is
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Eqs. (6)–(8) form the iterative algorithm of the MFAC protocol [13]. To
apply this algorithm, tuning parameters within constraints (i.e.,

∈ > = ⋯ρη μ ρ ρ ρ(0,1), 0, ( , , , )L
T

1 2 with ∈ρ (0,1)m for any
> > >m λ λ α, 0, 1min , and >b 0) should be determined by the user. η

and μ are related to the adaptive performances of the dynamic linear
model for the controlled PCC plant. ρ and λ are related to the control
performances for the plant. For fast responses, η and ρ should be in-
creased while for smooth dynamics, μ and λ should be increased. The
PPD vector ̂ tΦ( ) is updated on-line without using any prior knowledge
of the off-line model, which implies the iterative algorithm is model-
free. Arbitrary initial conditions of ̂ =tΦ( 1) should be specified to set
up the iteration.

Compared with PI control, the above iterative method is easy to
guarantee stability. If the closed-loop system is unstable or marginally
stable, only the stabilizing parameter λ should be increased for the
stabilization while PI control requires stability analysis such as the
Nyquist criterion to determine whether to increase or decrease tuning
parameters. In addition, the Nyquist criterion is a model-based method
requiring model parameters. Furthermore, PI control is generally de-
signed around fixed operating points while MFAC forms an adaptive
dynamic linear model using on-line model update (Eq. (6)), i.e., MFAC
already considers model uncertainties and should have strong robust-
ness.

Compared with GPC requiring a prediction model, MFAC can be
easily tuned on-line with measured input–output data of the controlled
plant. If the underline model is inaccurate, the performances of GPC
will be deteriorated. For the PCC process which is sensitive to ambient
environments and is non-linear, a large number of sensitivity or iden-
tification tests should be conducted around different operating points of
the controlled plant before the controller can be applied on-line. MFAC
only uses input–output data of the PCC plant. No off-line model para-
meters are necessary for the on-line control implementation. The
identified mathematical model of the PCC process is only used for the
initial off-line tuning. Afterwards, if the control performance is un-
satisfactory, MFAC can be retuned on-line [13] without off-line models.
However, if the control performance of a model-based controller is
poor, the model may be re-identified off-line based on new data

generated by the first-principle model, which is non-trivial. Therefore,
the implementation of MFAC is easier.

4. Simulation results

4.1. Identification of a carbon capture plant model with neural networks

The observed data for the plant model identification are generated
by the first-principle PCC model [17] with the sampling time =T 2.5 ss .
During preprocessing, dc-offsets of both the input features tx( ) and
output y t( ) are removed. The model structure is a neural network with
an unknown hidden layer size and model orders, both reflected by D0,
the total number of model parameters. In Section 4.1, D0 is determined
by n n n n, , ,a b d d21 and H. To reduce the number of candidate models,

= =n n nb d d1 2 with the hidden layer size =H 1 is assumed for the in-
itial model order selection. Only na and nb should be determined to fix
D0. For both na and nb ranging from 1 to 10, the model performances
are quantized by AIC. Theoretically, the selected model orders should
have the minimum AIC value (Fig. 3a), i.e., =n 10a and =n 5.b The
model order pair selected by Akaike’s information criterion with a
correction for finite sample sizes (AICc) or Bayesian information cri-
terion (BIC) [20] is =n 5a and =n 5b .

Correspondingly, the selected candidate models must pass the
whiteness and independence tests so as to validate their performances
on approximating the first principle PCC model [17]. The tests are
conducted not only for the models selected by AIC, AICc or BIC, but the
candidate models with orders around the neighbours of the criterion-
based ones, i.e., na and nb are searched within {1,2,3,4,5,6,7,8,9,10}.
The hidden layer size H is enumerated from 1 to 10. For each specified
H and na-nb pair, a validated model must meet two constraints: (a) It
can achieve a good fit (over 90% fit) with the observed data generated
by the first-principle model; (b) the residual ∊ t( ) of the candidate model
can pass whiteness and independence tests. If there exists any H such
that the whiteness and independence tests are passed, this na-nb pair is
recorded with “pass” (Fig. 3b). Although the model order pair, =n 5a
and =n 5b , is selected by AICc or BIC, the corresponding candidate
model fails the tests (Fig. 3b). Table 1 only gives the smallest hidden
layer sizes Hmin with respect to some typical model order pairs (de-
termined by AIC, AICc, BIC, etc.) such that the candidate models can

Fig. 3. Model order searching results.

Table 1
Validated model orders and fit percentages.

(n n,a b) Hmin fit (%)

(5,5) / /
(7,5) 3 97.77
(10,1) 1 98.41
(10,5) 1 98.42
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pass the whiteness and independence tests. It is observed that if the
model has passed the tests, the fit percentage is generally over 90%.
Instead of the above constraints for validated models, the number of
model parameters D0 is further considered to avoid over-fitting. A
candidate model with = =n n10, 1a b , and =H 1min is finally selected
since = + + =D n H( 2)· 2 170 is the smallest among all the validated
models. The selected model should have the one-step-ahead structure
(Eq. (1)) since the control protocols are based on one-step-ahead al-
gorithms (Eqs. (4) and (7)). According to input and output dynamics
(Fig. 4), the fit percentage of the selected model is 98.41% for the one-
step-ahead prediction. Furthermore, the selected model also has rea-
sonable performance on the multi-step-ahead prediction. The fit per-
centage for the carbon capture level is 93.43%. This value is lower than
98.41% of the one-step-ahead prediction but still well above 90%. The
residual analysis (Fig. 5) of the model indicates ζ τ( )1 and ζ τ( )2 are
within the 99% confidence intervals.

4.2. Model-free adaptive controller design

The performances of CFDL- and PFDL-MFAC are evaluated based on
the previous validated non-linear PCC plant model, i.e., the controlled
plant in the subsequent sections. PI control results are also given for
comparisons. The lean MEA flow rate is the manipulated input while
the carbon capture level is the controlled output. The original con-
trolled plant is supposed to be free of disturbances. During the tuning
process, Kp and Ki (Table 2) of PI control [17] are tuned to ensure
tracking performances of the capture level as best as possible. Then,
instead of PI control, MFAC can be tuned as discussed in Section 3.2 and
implemented to achieve similar performances (Fig. 6a) with the de-
signed tuning parameters (Table 2). Although the number of tuning
parameters for MFAC is larger than that for PI control, MFAC is easy to
ensure stability [14]. PI control needs extra stability analysis of the

closed-loop system.
Afterwards, the time-variant disturbances, i.e., the flue gas flow rate and

the CO2 mass fraction of the flue gas (Fig. 7), are applied to the controlled
non-linear PCC plant, which can be periodical ramp changes due to the
variations of power generation [4]. Simultaneously, the reference signal of
the carbon capture level is generated identically to the one of the un-
disturbed system (Fig. 6a). Based on the previous tuning parameters
(Table 2), only the capture level deviations from the references (Fig. 6b) are
plotted, where PFDL-MFAC has the smoothest transient responses of the
output, i.e. the smallest carbon capture level deviations than the PI control
and CFDL-MFAC algorithms. PFDL-MFAC is better (Fig. 6b) than CFDL,
since time-variant PPD ̂ tΦ( ) of PFDL with a longer length =L 3 (Table 2)
adaptively catches more system dynamics. CFDL-MFAC with fewer tuning
parameters than PFDL-MFAC, however, can be designed more easily for
simple plants [14]. Both CFDL- and PFDL-MFAC can guarantee stability by
increasing the stabilizing parameter λ. Time-variant ̂ tΦ( ) for CFDL and
PFDL (Fig. 8) dynamically estimate the controlled non-linear plant.

Fig. 4. Comparison between the first-principle and neural network models.

Fig. 5. Residual analysis with 99% confidence level.

Table 2
Controller design.

PI CFDL-MFAC PFDL-MFAC

Kp 0.01 μ 0.002 0.002
Ki 0.017 λ 25 40

ρ (1) (0.8, 0.05, 0.001)T

α 200 200
η 0.4 0.4
b 0.1 0.1
L 1 3

̂Φ(1) (3) − −(3, 5, 2)
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4.3. Comparison between model-based and model-free controllers

PFDL-MFAC is compared with GPC in this section. Note that the
controlled non-linear PCC plant is the validated neural network selected

in Section 4.1. The prediction model (Eq. (2)) is linearised based on this
non-linear plant using the first-order Taylor approximation so as to
derive − −A q B q( ), ( )1 1 and −D q( )1 . These polynomials inevitably gen-
erate model uncertainties due to plant non-linearities. For the same
input dynamics (Fig. 4a), there exist mismatches between the output
responses of the prediction model, the controlled non-linear plant and
the first-principle model (Fig. 9a). Based on the prediction model, to
implement the GPC algorithm, the time horizon Nr , and the weight
matrices Q and R in the control objective (Eq. (3)) should be de-
termined by the user. Nr is the concerned time horizon. Q is the penalty
of the tracking error (i.e., + − +r t k y t k( ) ( )) within the time horizon Nr .
R is the penalty of the manipulated input deviation (i.e.,

+ = + − + −u t k u t k u t kΔ ( ) ( ) ( 1)) within the time horizon Nr . The
control objective (Eq. (3)) indicates there should be trade-off between
the tracking error and the input manipulation. For the smooth input
dynamics, entries of Q should be large while those of R should be small.
In contrast, for the fast output responses, entries of Q should be small
while those of R should be large. In this case study, the best perfor-
mance of GPC is obtained with the tuning parameters of

Fig. 6. MFAC and PI control results.

Fig. 7. Disturbances.

Fig. 8. PPD vector dynamics.
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= = ×N IQ3, 1·r N Nr r and = ×IR 30· N Nr r where ∈×
×IN N

N N
r r

r r is an
identity matrix. Simultaneously, Fig. 9b shows PFDL-MFAC achieves a
similar tracking performance as GPC. Nevertheless, an underline model
should be identified before the tuning parameters of GPC can be tested
on-line. The model not only lacks non-linearities of the controlled plant
but is usually obtained with off-line sensitivity or identification tests.
Both of them make the tuning procedure more complex than MFAC.

5. Conclusions

We have identified a validated non-linear PCC plant model using the
data generated by a first-principle model. The candidate models are
approximately located by model order selection criteria such as AIC,
AICc and BIC, and then searched around the neighbours of the cri-
terion-determined model orders. The plant model can pass residual
analysis and fit well with the data set.

We have implemented the PI control and the model-free algorithms,
namely, CFDL- or PFDL-MFAC within the validated non-linear PCC
plant model. PFDL-MFAC has shown the best performance when con-
fronting model uncertainties caused by time-variant disturbances.
CFDL-MFAC, however, can be tuned easily since it has fewer tuning
parameters. Both CFDL- and PFDL-MFAC can guarantee the stability of
the closed-loop system by the stabilizing parameter λ, easier than PI
control using the model-based Nyquist criterion.

We have compared PFDL-MFAC with a model-based method called
GPC. PFDL-MFAC can be more flexibly tuned on-line without model
parameters determined during the off-line system identification. GPC,
however, must be applied based on underline models, which is line-
arised around specified equilibrium points of the controlled non-linear
plant. Extra time should be taken to ensure the model performances.
When performances of such a model-based controller are un-
satisfactory, re-identification of underline models may be required,
which is non-trivial. Consequently, PFDL-MFAC can be flexibly de-
signed and implemented easily on-line with a simplified off-line tuning
process.

References

[1] Lawal A, Wang M, Stephenson P, Yeung H. Dynamic modelling of CO2 absorption
for post combustion capture in coal-fired power plants. Fuel 2009;88(12):2455–62.

[2] Bui M, Gunawan I, Verheyen V, Feron P, Meuleman E, Adeloju S. Dynamic mod-
elling and optimisation of flexible operation in post-combustion CO2 capture plants-
A review. Comput Chem Eng 2014;61(Supplement C):245.

[3] Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2

capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des
2011;89(9):1609–24.

[4] Lawal A, Wang M, Stephenson P, Obi O. Demonstrating full-scale post-combustion
CO2 capture for coal-fired power plants through dynamic modelling and simulation.
Fuel 2012;101(Supplement C):115–28.

[5] Li Z, Ding Z, Wang M. Operation and bidding strategies of power plants with carbon
capture. IFAC-Papers OnLine 2017;50(1):3244–9. 20th IFAC World Congress.

[6] Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA. Dynamic modelling and
control of MEA absorption processes for CO2 capture from power plants. Fuel
2014;116(Supplement C):672–91.

[7] Lin YJ, Wong DSH, Jang SS, Ou JJ. Control strategies for flexible operation of power
plant with CO2 capture plant. AIChE J 2012;58(9):2697–704.

[8] Arce A, Mac Dowell N, Shah N, Vega LF. Flexible operation of solvent regeneration
systems for CO2 capture processes using advanced control techniques: Towards
operational cost minimisation. Int J Greenhouse Gas Control 2012;11:236–50.
Complete.

[9] Sahraei MH, Ricardez-Sandoval L. Controllability and optimal scheduling of a CO2

capture plant using model predictive control. Int J Greenhouse Gas Control
2014;30(Supplement C):58–71.

[10] Peng J, Edgar TF, Eldridge RB. Dynamic rate-based and equilibrium models for a
packed reactive distillation column. Chem Eng Sci 2003;58(12):2671–80.

[11] Hou ZS, Wang Z. From model-based control to data-driven control: survey, classi-
fication and perspective. Inf Sci 2013;235:3–35.

[12] Ljung L. System Identification: theory for the user. PTR Prentice Hall Information
and System Sciences Series; 1987.

[13] Hou Z, Jin S. Data-driven model-free adaptive control for a class of MIMO nonlinear
discrete-time systems. IEEE Trans Neural Networks 2011;22(12):2173–88.

[14] Hou Z, Jin S. A novel data-driven control approach for a class of discrete-time
nonlinear systems. IEEE Trans Control Syst Technol 2011;19(6):1549–58.

[15] Dugas RE. Pilot plant study of carbon dioxide capture by aqueous mono-
ethanolamine [Ph.D. thesis]; 2006.

[16] Li Z, Ding Z, Wang M. Optimal bidding and operation of a power plant with solvent-
based carbon capture under a CO2 allowance market: a solution with a reinforce-
ment learning-based sarsa temporal-difference algorithm. Engineering
2017;3(2):257–65.

[17] Biliyok C, Lawal A, Wang M, Seibert F. Dynamic modelling, validation and analysis
of post-combustion chemical absorption CO2 capture plant. Int J Greenhouse Gas
Control 2012;9:428–45.

[18] Sipcz N, Tobiesen FA, Assadi M. The use of artificial neural network models for CO2

capture plants. Appl Energy 2011;88(7):2368–76.
[19] Li F, Zhang J, Oko E, Wang M. Modelling of a post-combustion CO2 capture process

using neural networks. Fuel 2015;151(Supplement C):156–63.
[20] Burnham KP, Anderson DR. Model selection and multimodel inference: a practical

information-theoretic approach. Springer Science & Business Media; 2002.
[21] Camacho EF, Alba CB. Model predictive control. Springer Science & Business Media;

2013.

Fig. 9. GPC and PFDL-MFAC results.

Z. Li et al. Fuel 224 (2018) 637–643

643

http://refhub.elsevier.com/S0016-2361(18)30504-0/h0005
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0005
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0010
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0010
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0010
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0015
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0015
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0015
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0020
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0020
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0020
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0025
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0025
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0030
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0030
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0030
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0035
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0035
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0040
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0040
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0040
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0040
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0045
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0045
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0045
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0050
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0050
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0055
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0055
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0065
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0065
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0070
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0070
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0080
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0080
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0080
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0080
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0085
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0085
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0085
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0090
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0090
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0095
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0095
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0100
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0100
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0105
http://refhub.elsevier.com/S0016-2361(18)30504-0/h0105

	Model-free adaptive control for MEA-based post-combustion carbon capture processes
	Introduction
	Background
	Literature review
	Aim of the paper and its novelties
	Outline of the paper

	Model development
	Dynamic modelling of the post-combustion carbon capture process
	Identification of neural networks for dynamic carbon capture processes
	Model order selection with AIC
	Residual analysis

	Model-based and model-free control protocols
	Generalized predictive control
	Model-free adaptive control

	Simulation results
	Identification of a carbon capture plant model with neural networks
	Model-free adaptive controller design
	Comparison between model-based and model-free controllers

	Conclusions
	References




