
Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Chemical study of fly ash deposition in combustion of pelletized residual
agricultural biomass
Javier Royo⁎, Paula Canalís, David Quintana
University of Zaragoza, c/ María de Luna 3, E-50018 Zaragoza, Spain

A R T I C L E I N F O

Keywords:
Agricultural residual biomass
Combustion
Fixed bed reactor
Fly ash deposition
SEM-EDS
XRD

A B S T R A C T

Agricultural residual biomass has great potential as an energy source, but is used only to a limited extent mainly
because of the characteristics of its ash (quantity and composition), which can lead to problematic phenomena
during combustion, among them fly ash deposition, the focus of this study. A previous work presented the results
of laboratory experiments carried out using a fixed-grate reactor and involving four different agropellets under
different operating conditions; the variables tested were deposition rate, bottom ash proportion and sintering
degree during combustion. Based on these results, the analysis has been taken further and the fly ash deposits
collected during these tests have been characterized by SEM-EDS and XRD. A methodology to differentiate
between deposits caused by condensation (including thermophoresis and turbulent diffusion) and by inertial
impact of coarse fly ash entrained from the bed has been proposed. Deposition by condensation has been found
to decrease for higher values of excess air ratio in all cases. Conversely, deposition by inertial impact does not
show a common behavior, due to the influence of bottom ash sintering degree and fuel composition. The ulti-
mate aim of this study is to gain a better understanding of fly ash deposition, in order to develop better fuel
blends, boiler design and operating parameters, enhancing the market penetration of agricultural residual
biomass.

1. Introduction

The main contribution of biomass to the generation of renewable
energy in the EU is found in the heating and cooling sector [1], where
important growth is expected in coming years; the target for 2020
having been set at 3785 PJ [1]. New uses for forest biomass [2,3], in
addition to the traditional energy production, make imperative to find
new resources with which to meet the predictable rise in demand for
thermal energy. The biggest growth in supply should come from the
agricultural sector, where an increase of over 150% compared with
2006 is expected [1].

In addition to energy crops and some types of residual agro-in-
dustrial biomass, these new resources mainly comprise agricultural
crop residues: herbaceous crop residues and pruning residues of per-
manent woody crops. In particular, this paper focuses on three residual
agricultural biomasses: vineyard pruning residues, corn stover and
barley straw. These were selected due to their potential as sources of
energy both in Europe and the rest of the world. FAOSTAT data
(available at [4]) indicate that the area covered by vines and maize and
barley crops in the EU in 2017 was nearly 23.4 Mha. Using conservative
availability indices (50% for vineyard pruning residue and corn stover,
and 10% for barley straw), this translates into an energy potential of

over 500 PJ/yr for the EU. In consequence, their use could contribute
significantly to achieve the objectives set.

Thermal conversion of agricultural biomass, mainly of the herbac-
eous type, shows clear differences compared with forest biomass. This is
mainly due to the characteristics of the ash (quantity and composition),
which can lead to certain problems in conversion facilities.

During combustion, ash undergoes physical and chemical transfor-
mations which cause fractioning. Part of the components of the ash
remain as a solid fraction which accumulates in the grate (bottom ash)
and in some cases can sinter, affecting conversion in the bed, restricting
efficiency of the grate and negatively affecting the control of gaseous
emissions: carbon monoxide, nitrogen oxides, and volatile organic
compounds [5–9].

Other part, mainly related with alkali metal compounds, is volati-
lized. After complex and not always well known mechanisms [10,11],
these compounds can directly condense or after forming aerosols be
deposited by thermophoresis and/or turbulent diffusion [11–13] on the
surfaces of the equipment used for heat exchange, in the form of small
crystals (e.g., potassium chloride -KCl-, potassium sulfate -K2SO4- and
potassium carbonates -K2CO3 and KHCO3-). An ash entrainment of solid
particles (coarse fly ash) in gas combustion flow from the bed can also
be generated and, in some conditions, these particles can be deposited
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on convective areas by inertial impact. These phenomena (volatiliza-
tion and ash entrainment) are responsible, alongside deposition, for
corrosion and erosion, which reduce equipment performance and use-
life [5,9].

In recent decades, several prestigious research centers have been
working towards identifying key factors in the conversion of biofuels, as
well as in the transformation of their ash, in order to understand pro-
blems caused by the latter [8,14–23]. In all cases, the critical influence
of ash chemical composition, especially the concentration of Na, Mg, Al,
Si, P, S, Cl, K and Ca [24], is recognized in issues associated with
thermal conversion (e.g. sintering, deposition, corrosion, erosion and
emissions). However, chemical composition is not the only factor, since
ash behavior is also affected by combustion conditions in the bed,
which are themselves related to design [23–26] and operational para-
meters [27].

Owing to the complexity of the phenomena that contribute to ash
fractioning, combustion tests are often undertaken in laboratory re-
actors, most of which operate with a fixed-grate in order to keep
combustion conditions under control [23,28–32]. This type of reactor
enables, in the simplest way, the collection of important information
concerning the behavior of fuels under different operating conditions. It
allows the evaluation of fuel reactivity (ignition front velocity and ig-
nition rate [33]), quantifying of bottom ash in the bed and determining
its propensity to sintering, as well as quantifying the amount of solid
residue deposited on heat exchange surfaces per time and unit area
(deposition rate) [31]. Furthermore, these reactors allow samples to be
taken for the characterization of solid residues (bottom ash fraction and
fly ash deposits), allowing a better understanding of the phenomena
driving ash fractioning. In addition, the analysis of gaseous (e.g. CO,
NOx or volatile organic compounds) [34–37] and particle emissions
[18,38,39], is also possible.

In a previous work [40], authors presented the results analysis of
the four first points (reactivity, bottom ash quantity, sintering degree
and deposition rate) for different pellets made of residual agricultural
biomass (agropellets). These pellets were evaluated under a range of
operating conditions in a laboratory fixed-grate reactor. In this paper, it
is intended to go a step further and characterize fly ash deposition
samples collected in combustion tests by means of scanning electron
microscopy (SEM) with energy dispersive X-ray spectrometry (EDS),
and powder X-ray diffractometry (XRD). These methods are widely
used to identify and characterize ash compounds [9,13,41–47].

SEM-EDS provides detailed imaging information about morphology,
as well as defining the elemental chemical composition of samples. This
technique is both easy and highly precise. Although elements which are
present in concentrations below 0.1–0.5% are below detection limits
[41], in general it does not affect the detection of the previously
commented most significant ash-forming elements responsible for ash-
related operational problems during combustion.

The XRD method is applied to identify and quantify crystalline
phases present in the sample by measuring their concentrations, as well
as determining the amorphous fraction [41].

These are complementary techniques. On the one hand, XRD allows
for a better understanding of how chemical elements detected by SEM-
EDS are associated. On the other hand, the identification of minor
minerals in a multicomponent system by means of XRD is uncertain due
to such issues as detection limits, peak overlapping and unknown
amorphous matter. SEM-EDS results facilitate the identification of
phases and can provide confirmation of XRD results [48].

From the results obtained by means of SEM-EDS and XRD, a
methodology is proposed to differentiate between deposits caused by
condensation (including thermophoresis and turbulent diffusion) and
by inertial impact of coarse fly ash entrained from the bed.

The ultimate aim is to gain a better understanding of deposition
phenomena affecting agricultural residual biomass. This will, it is
hoped, help researchers and technologists to make better decisions re-
garding fuel blends, boilers design and optimum operating parameters,
increasing the market penetration of this important type of biomass.

2. Material and methods

2.1. Fuels

Fly ash deposition chemistry of four different agropellets (agri-
cultural residual pellets) is studied in this paper:

• Woody agropellet: 100% Vineyard pruning pellet (PV)1.
• Mixed agropellets (Vineyard pruning blended with an herbaceous
component):

Table 1
Fuel properties (% m/m: mass percentage; d.b.: dry basis; w.b.: wet basis).

PV PVB PVC PVCB

Bulk density (kg·m−3)a 599 562 556 546
Proximate analysis (% m/m d.b.) Volatile

matterb
76.5 72.4 72.1 72.3

Fixed carbonc 20.5 21.7 18.6 21.2
Ashd 3.1 5.9 9.3 6.5

Total moisture (% m/m w.b.)e 9.0 9.1 9.2 9.0
Ultimate analysis (% m/m d.b.) Carbonf 48.9 46.36 46.01 46.36

Hydrogen f 5.8 5.77 5.64 5.55
Nitrogen f 0.55 0.56 0.55 0.60
Sulfur g 0.09 0.055 0.050 0.094
Chlorine g 0.03 0.047 0.080 0.090
Oxygen c 41.6 41.29 38.33 40.58

HHV (d.b. at p = constant) (MJ·kg−1)h 19.11 18.54 18.06 18.36
LHV (w.b. at p = constant) (MJ·kg−1)h 16.01 15.48 15.06 15.40

a EN 15103:2009
b EN-ISO 18123:2016
c Calculated
d EN-ISO 18122:2016
e EN-ISO 18134:2016
f EN-ISO 16948:2015
g EN-ISO 16994:2015
h EN-ISO 14918:2011

1 Vineyard pruning residues used to produce this agropellet were not the same
as those used for mixed agropellets.
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o 70% Vineyard pruning + 30% Barley straw (PVB).
o 70% Vineyard pruning + 30% Corn stover (PVC).
o 60% Vineyard pruning + 20% Corn stover + 20% Barley straw
(PVCB).

The main thermochemical properties of selected fuels are re-
produced from [40] and shown in Tables 1 and 2.

2.2. Reactor

As noted, research of ash-related phenomena during combustion is
generally carried out with the aid of laboratory reactors. In the case of
fixed-bed reactors, simplified geometries are used to being able to
consider one-dimensional behavior [49].

In order to perform the combustion tests, an experimental fixed-
grate reactor was used (see Fig. 1). In this reactor, inlet air is injected
through the grate from the bottom by means of a fan equipped with a
variable-frequency drive which allows airflow to be regulated. Since
experiments require inlet air temperature to remain under control, the
reactor is equipped with a refrigerator and an electrical resistor either
to cool the air or heat it as needed. This allowed two different types of
tests to be undertaken: without preheating (inlet air at 25 °C) and with
preheating (inlet air at 80 °C). The reactor is fitted with fifteen N
thermocouples to monitor temperature both at the bed and the free-
board.

In addition, the facility includes a deposition probe, with a re-
movable sampling ring in the chimney of the reactor [50]. This is a
common device used to simulate fly ash deposition in furnace pipes and
heat exchangers [48]. Prior to the experiment, the removable sampling
ring is cleaned, dried, measured and weighed. During the stable com-
bustion period, the deposition probe is inserted inside the chimney and
the ring is cooled by compressed air, keeping its surface at an appro-
priate temperature for studying deposition [50]. For the tests presented
here, compressed inlet air was adjusted to keep an average temperature
of 335 ± 25 °C. Once extracted, the dirty ring is dried and weighed
again to determine the mass of deposits, allowing deposition rate (DR,
g·m−2·h−1) to be calculated and, thus, the different propensity of each
fuel used for deposition to be assessed [31,40,51–55].

Finally, once combustion is completed and the reactor cools down,
bottom ash is collected from the surface of the grate for weighing and
classification, which allows the sintering tendency of each fuel to be
determined [5,21,40,56,57]. Three fractions were considered: S1,
which passes through a 3.15 mm sieve and is considered to be not
sintered; S2, which does not pass through a 3.15 mm sieve, but is easily
disaggregated by hand and presents a low sintering degree; S3, which
does not pass the 3.15 mm sieve, is difficult to disaggregate by hand and
presents a high sintering degree. Since the difference between S2 and S3
is subjective, a fraction S2/3 encompassing both classes was used.

2.3. Ash analysis

In all the tests, once deposits had been weighed and deposition rate
calculated, a sample was taken from the front face of the removable
sampling rings, that is, from the side facing and perpendicular to the
flow of combustion gases. Samples of S1 bottom ash fractions were also
collected. All samples were glued onto metal plates with carbon tape
and coated with carbon, before being analyzed by SEM-EDS. The
equipment used was a Carl Zeiss Merlin electronic field emission

Table 2
Ash properties (% m/m: mass percentage; d.b.: dry basis).

PV PVB PVC PVCB

Chemical ash
composition (% m/m
d.b.)a

Al2O3 0.91 2.72 2.19 2.30
CaO 42.39 45.77 48.17 40.54
Fe2O3 0.71 2.22 1.98 1.27
K2O 30.09 14.88 15.79 19.43
MgO 10.45 8.64 7.64 11.01
Na2O 0.62 0.41 0.39 0.38
P2O5 7.35 4.45 4.00 4.36
SO3 3.95 2.32 3.24 4.39
SiO2 2.65 17.70 15.31 15.22
TiO2 0.07 0.17 0.18 0.16
Cl 0.12 0.21 0.57 0.54

Ash melting points in
oxidizing conditions
(oC)b

Initial deformation
temperature (DT)

1240 1130 1310 1330

Hemisphere
temperature (HT)

>1500 1310 1460 1460

Flow temperature
(FT)

>1500 1370 1480 1470

a EN-ISO 16967:2015
b CEN/TS 15370-1:2006

Fig. 1. Scheme of the experimental test facility [40].

Table 3
Outline of test features.

PV PVB PVC PVCB

Number of tests
performed

Without preheating
(Ta = 25 °C)

10 10 10 12

Preheated tests (ph)
(Ta = 80 °C)

8 6 6 6

λ Min 1.15 1.21 1.18 1.23
Max 2.04 2.30 2.29 2.07

Fed fuel (kg) 4.03 3.78 3.74 3.67
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microscope equipped with Gemini Column, with acceleration voltages
between 0.02 and 30 kV, fitted with an EDS X-MAS detector by Oxford
Instruments with a window of 20 mm2 and energy resolution between
127 eV and 5.9 keV. For each sample, three 1 mm2-zones were selected,
and images taken with the retro-dispersed detector (asb). Average
elemental composition was obtained through EDS, using a voltage of
15 kV. INCA software was used to process the results. Major partici-
pating elements in the most important ash transformation pro-
cesses–namely Na, Mg, Al, Si, P, S, Cl, K, Ca and Fe– were included in
the analysis.

In addition, four combustion experiments without air preheating
were selected for each fuel. These tests were chosen to cover evenly the
common range of excess air ratio (λ) for each fuel (see Table 3). A
preheated experiment was also selected for each agropellet, all four
with an almost identical excess air ratio value (λ≈1.3). For all these
tests the crystalline matter composition of the fly ash deposition sam-
ples collected in the ring was determined by XRD. Standard X-ray dif-
fraction patterns were collected at room temperature using a Rigaku D/
max instrument with a copper rotating anode and a graphite mono-
chromator to select CuKα wavelength. The measurements were per-
formed at 40 kV and 80 mA, in the angular range from 5° to 80° on 2θ,
applying a step size of 0.03° and a counting rate of 1 s/step. X-ray
patterns were analyzed with JADE software, with access to the JCPDS-
International Centre for Diffraction Database (2000) and profile-based
RIR analyses.

3. Results and analysis

3.1. Tests and results

A total of 68 combustion tests were carried out following the same
protocol with the four fuels. As already noted tests both with and
without preheating (“ph” experiments) –varying inlet air temperature
(Ta)– were undertaken for every fuel. In the tests the excess air ratio
ranged from 1.1 to 2.3 (over-stoichiometric conditions), in order to
reproduce the combustion conditions found in small domestic equip-
ment. Table 3 summarizes the main features of the experiments per-
formed.

Table 4 shows mean values (and range) of elemental composition
obtained by SEM-EDS for each of the four fuels of fly ash deposits,
expressed as a percentage of the total mass of measured elements (Na,
Mg, Al, Si, P, S, Cl, K, Ca and Fe).

Furthermore, Fig. 2 plots the values summarized in Table 4 against
excess air ratio, keeping out the elements with a concentration sig-
nificantly lower than 10% in all the samples (Al, Si, P and Fe) of fly ash
deposits collected in the combustion experiments (with and without
preheating). Due to their chemical similarity and the almost identical
role they play in the reactions that take place in ash transformation
processes, the concentrations of K and Na [24], as well as Ca and Mg
[58] have been aggregated in Fig. 2.

Table 5 shows the crystalline phases and amorphous concentrations
detected in the samples of the five selected tests per fuel using XRD.

Although a preliminary analysis can be made from data presented in
Fig. 2 and Tables 4 and 5, in Section 3.3 an analysis methodology is
proposed to expand the study of these results. In order to apply this
methodology, it was also necessary to determine the elemental com-
position of S1 bottom ash fractions by SEM-EDS. Results are shown in
Fig. 3 (only Na, Si and K) as a function of excess air ratio (with and
without preheating tests).

3.2. Preliminary analysis

Based on the results presented in Fig. 2 and Tables 4 and 5 of the
previous subsection, an initial analysis can be made regarding deposi-
tion phenomena for the various fuels.

In Fig. 2 it can be noted that in all cases, the main elements presentTa
bl
e
4

M
ea
n
va
lu
es
(r
an
ge
)o

ft
he

el
em

en
ta
lc
om

po
si
tio

n
(S
EM

-E
D
S)
of
fly

as
h
de
po
si
ts
ex
pr
es
se
d
as
a
pe
rc
en
ta
ge

of
th
e
to
ta
lm

as
so

fm
ea
su
re
d
el
em

en
ts
(N
a,
M
g,
A
l,
Si
,P
,S
,C
l,
K
Ca

an
d
Fe
).
Te
st
w
ith

ou
ta
nd

w
ith

(p
h)

in
le
ta
ir

pr
eh
ea
tin

g
(%

m
/m

:m
as
s
pe
rc
en
ta
ge
).

SE
M
-E
D
S
an
al
ys
is
re
su
lts

(%
m
/m

)

N
a

M
g

A
l

Si
P

S
Cl

K
Ca

Fe

PV
0.
48

(0
.3
5–
0.
67
)

4.
80

(3
.4
0–
7.
33
)

0.
25

(0
.1
5–
0.
35
)

0.
64

(0
.4
0–
0.
86
)

3.
50

(2
.4
0–
5.
30
)

6.
91

(5
.3
8–
8.
66
)

5.
54

(3
.0
4–
9.
35
)

49
.8
4
(4
0.
26
–5
7.
93
)

27
.6
6
(2
1.
03
–3
6.
61
)

0.
39

(0
.2
3–
0.
52
)

PV
(p
h)

0.
41

(0
.2
4–
0.
51
)

6.
09

(4
.2
0–
7.
67
)

0.
37

(0
.2
1–
0.
70
)

0.
74

(0
.5
9–
0.
91
)

4.
32

(3
.1
2–
5.
14
)

5.
68

(4
.9
6–
6.
48
)

6.
29

(3
.7
1–
10
.6
8)

40
.8
7
(3
4.
46
–4
7.
30
)

34
.7
7
(2
7.
97
–4
2.
06
)

0.
46

(0
.2
9–
0.
64
)

PV
B

0.
28

(0
.2
0–
0.
38
)

0.
72

(0
.3
6–
1.
07
)

0.
27

(0
.1
1–
0.
37
)

1.
21

(0
.5
7–
1.
81
)

0.
51

(0
.2
5–
0.
69
)

8.
21

(6
.9
1–
10
.0
3)

24
.2
0
(2
0.
56
–2
7.
41
)

57
.9
9
(5
3.
27
–6
2.
07
)

6.
34

(3
.3
1–
8.
92
)

0.
27

(0
.0
7–
0.
48
)

PV
B
(p
h)

0.
28

(0
.2
0–
0.
41
)

0.
98

(0
.3
5–
1.
54
)

0.
32

(0
.1
7–
0.
45
)

1.
35

(0
.5
0–
2.
27
)

0.
70

(0
.2
9–
1.
11
)

7.
21

(6
.0
9–
8.
68
)

24
.3
9
(2
1.
46
–2
8.
31
)

56
.7
7
(5
3.
41
–6
0.
30
)

7.
67

(2
.5
9–
11
.9
3)

0.
34

(0
.1
0–
0.
56
)

PV
C

0.
25

(0
.1
9–
0.
30
)

2.
60

(1
.1
8–
4.
28
)

0.
66

(0
.3
5–
1.
08
)

3.
12

(1
.3
9–
4.
54
)

1.
36

(0
.7
4–
2.
41
)

6.
07

(5
.1
7–
8.
10
)

20
.7
7
(1
4.
23
–2
7.
57
)

40
.0
9
(2
8.
42
–4
9.
57
)

24
.4
6
(1
1.
88
–3
8.
82
)

0.
62

(0
.2
7–
1.
13
)

PV
C
(p
h)

0.
23

(0
.2
0–
0.
25
)

3.
33

(2
.1
4–
4.
03
)

0.
76

(0
.5
1–
0.
98
)

3.
38

(2
.1
0–
3.
97
)

1.
73

(1
.2
2–
2.
30
)

5.
33

(4
.6
3–
6.
25
)

17
.5
7
(1
4.
62
–2
2.
50
)

37
.6
4
(3
3.
74
–4
6.
29
)

29
.3
8
(1
8.
41
–3
4.
15
)

0.
65

(0
.3
5–
0.
86
)

PV
CB

0.
26

(0
.1
6–
0.
35
)

2.
89

(1
.5
6–
4.
94
)

0.
75

(0
.4
5–
1.
28
)

3.
55

(2
.2
6–
5.
31
)

1.
61

(0
.8
8–
2.
71
)

7.
80

(5
.9
4–
10
.1
2)

16
.4
1
(9
.2
0–
20
.1
9)

44
.3
7
(3
2.
91
–5
3.
16
)

21
.6
3
(1
3.
04
–3
5.
71
)

0.
72

(0
.4
8–
1.
18
)

PV
CB

(p
h)

0.
28

(0
.2
4–
0.
33
)

3.
54

(1
.8
1–
4.
32
)

0.
83

(0
.4
8–
1.
07
)

3.
78

(1
.8
7–
5.
08
)

2.
11

(1
.2
8–
2.
66
)

6.
79

(5
.6
1–
7.
65
)

14
.1
1
(1
2.
00
–2
0.
15
)

42
.2
8
(3
7.
13
–5
2.
14
)

25
.5
8
(1
3.
93
–3
1.
32
)

0.
70

(0
.4
4–
0.
90
)

J. Royo, et al. Fuel 268 (2020) 117228

4



Fig. 2. Elemental composition (SEM-EDS) of fly ash deposits expressed as a percentage of the total mass of measured elements (Na, Mg, Al, Si, P, S, Cl, K, Ca and Fe)
against excess air ratio (λ) for PV, PVB, PVC and PVCB (% m/m: mass percentage).

Table 5
Deposits composition (selected combustion tests).

λ

XRD analysis results

Crystalline matter (%)a Amorphousb(%)c

KCl K2SO4 KHCO3 CaCO3 SiO2 Ca2SiO4 MgO Ca(OH)2

PV 1.16 1.6 19.6 15.5 21.9 31 10.3 -d

1.46 5.5 19.6 21.2 18.4 25 10.3 -d

1.73 7.9 19.8 36.7 11.9 19.4 4.3 -d

2.04 4.8 21.8 27.6 17.1 21.2 7.4 -d

Mean 5.0 20.2 25.3 17.3 0 0 24.1 8.1 -d

1.34 (ph) 3.2 15.2 61.0 20.6 25.5

PVB 1.24 29.6 34.5 23.8 4.2 7.8 12.1
1.67 42.1 25.3 18.0 10.3 4.2 6.7
1.98 36.9 29.4 33.7 20.1
2.30 41.1 31.3 27.6 14.2
Mean 37.4 30.1 4.5 23.9 2.1 2.0 0 0 13.3
1.29 (ph) 34.4 29.1 31.4 5.1 24.0

PVC 1.18 30.0 18.4 35.7 6.1 6.5 3.3 17.4
1.38 27.7 23.7 33.9 3.8 6.8 4.2 12.9
1.76 27 23.7 32.7 6.6 6.2 3.7 5.4
2.29 13.3 14.3 55.6 2.2 8.6 6 18.7
Mean 24.5 20.0 0 39.5 4.7 7.0 0 4.3 13.6
1.31 (ph) 32.6 18.8 41.3 7.4 21.4

PVCB 1.23 27.1 41.9 26.5 4.5 16.6
1.44 24.2 38.3 25.9 11.6 18.9
1.70 27.8 34.3 33.7 4.2 13.8
2.07 15.9 29 45.3 9.8 9.2
Mean 23.8 35.9 0 32.9 7.5 0 0 0 14.6
1.28 (ph) 26.1 34.0 31.2 8.8 19.3

a Expressed as mass percentages with regard to the total amount of crystalline matter in the deposits.
b A conservative approach to amorphous matter was adopted, and only crystallite size (XS) under 80 Å was included (crystalline matter with low particle size can

be included).
c Expressed as mass percentage with regard to the total amount of deposit.
d Cannot be determined because small size of samples leads to too much noise in the diffractogram.
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in the ash deposited in the sampling ring are K + Na, the percentage of
which tends to decrease as excess air ratio increases (especially in the
case of PVCB). Also noteworthy is the high concentration of Ca + Mg,
except in the case of PVB. In contrast to K + Na, concentration of al-
kaline earth metals increases with greater excess air ratios, especially in
the case of PVCB. Concentration of Cl is also significant, except for PV. S
content does not vary significantly for all the fuels and along the whole
excess air ratio range analyzed, remaining slightly below 10%. The
remaining elements measured (Al, Si, P and Fe) present concentrations
below 6% in all cases (see Table 4).

In line with SEM results, XRD findings (Table 5) underline the high
concentration of alkali metal compounds, mainly KCl –although this is
not the case with PV, also endorsed by SEM results– and K2SO4, but also
KHCO3 in the PV case and in a sample of PVB. Compounds of Ca
(CaCO3, Ca2SiO4 and Ca(OH)2) and to a lesser extent of Si (SiO2) are
very abundant too, except in PV, in which the latter compound does not
appear because of its low Si content, MgO taking its place. Based on
XRD results, it is not possible to determine clear tendencies between
excess air ratio and compounds concentration, which remain fairly
constant across the analyzed range.

Concerning the effect of inlet air temperature, Fig. 2 illustrates the
increase in concentration of Ca + Mg for all fuels, and the slight de-
crease in K + Na (except for PVB) and Cl (except for PV and PVB) in
tests involving preheating. The decrease in K + Na is especially re-
markable in the case of PV, as is also indicated by XRD results, because
the concentration of K compounds in preheated tests is significantly
lower (even KHCO3 does not appear).

With regard to the amorphous matter fraction, Table 5 shows lower
values for tests without preheating (13.9% on average) than with pre-
heating (21.6% on average).

The differences in the behavior of each fuel observed in Fig. 2 and
Table 5, concerning both deposits composition and trends related to
excess air ratio and inlet air temperature, are probably related to the
importance of the various deposition mechanisms that apply for each
fuel, and of the operating conditions.

3.3. Deposition mechanisms analysis

This subsection aims to go in depth in the analysis of fly ash de-
position phenomena for the four fuels under consideration in relation to
ash composition, excess air ratio and inlet air temperature.

As noted in [40], the increase in excess air ratio leads to less ash
deposition in the probe for all agropellets. In order to analyze this result
in detail and to enable practical conclusions to be reached, deposition
process will be divided into two mechanisms.

There are two ways in which ash can leave the bed, by vaporization
and by entraining. Each of these leads to a different deposition me-
chanism, one produced by condensation and another by inertial impact,
respectively:

• Condensation: some compounds, mainly alkali-metal chlorides,
sulfates and hydroxides, are vaporized and can be deposited on the
heating surface chiefly as chlorides, sulfates and carbonates by di-
rect condensation or after forming aerosols by thermophoresis or
turbulent diffusion. In the case of alkali metal sulfates and chlorides,
because of their low melting points, a sticky layer is formed, to
which other deposits adhere [11,12,51,59-61]. Part of these alkali
metal compounds can also condense into coarse fly ash
[11,12,59–62].
• Inertial impact: some of the coarse fly ash entrained from the bed,
which contained mainly silicates, aluminosilicates and phosphates,
as well as oxides, carbonates, sulfates, and hydroxides of Mg, Si, Ca
and/or Fe, can form deposits on the sticky initial layer by inertial
impact [11,12,51,59–61].

The alternate combination of deposits by condensation and by in-
ertial impact results in the construction of an overlapping multi-layered
structure [12,59].

In the following subsection, it is proposed a methodology that al-
lows estimating the percentage and the amount of ash deposited by
each of these two processes.

Fig. 3. Elemental composition (SEM-EDS) of S1 bottom ash fraction expressed as a percentage of the total mass of measured elements (Na, Mg, Al, Si, P, S, Cl, K, Ca
and Fe) against excess air ratio (λ) for PV, PVB, PVC and PVCB (% m/m: mass percentage).
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3.3.1. Methodology description
The two mechanisms involved in ash deposition are highly complex,

and it is helpful to stablish several simplifications in order to facilitate
the analysis of results.

A first set of assumptions is related to bottom ash and the entrain-
ment of coarse fly ash. It is assumed that Si forms compounds (silicates,
aluminosilicates and oxides) that remain solid regardless of combustion
temperatures [12,24]. Consequently, all Si present in the sampling ring
(subscript “Probe”) is assumed to have been deposited by inertial im-
pact (subscript “Imp.”)2:

=Si SiProbe Imp. (1)

It has been reported that the chemical composition of coarse fly ash
entrained from the bed resembles that of bottom ash [51,63]. For the
development of this methodology it is only necessary to consider that
Si/K proportion in S1 fraction (subscript “S1”, a fraction that is con-
stituted by particles that can be easily dragged) remains the same in
entrained ash (which can subsequently be deposited by inertial impact).
This assumption, together with Eq. (1), leads to the following Eq. (2):

= =(K/Si) (K/Si) K /SiS1 Imp. Imp. Probe (2)

Following Eq. (2), and considering that, out of the total amount of K
found in sampling ring deposits, a fraction can be ascribed to inertial
impact of solids entrained directly from the bed, with the remainder
ascribed to condensation (subscript “Cond.”), Eq. (3) follows:

= =K K K K (K/Si) ·(Si)Cond. Probe Imp. Probe S1 Probe (3)

The argumentation that leads to Eqs. (2) and (3) would also work
for Na instead of K.

A second set of considerations is related to the compounds present
in deposits. Based on XRD results (see Table 5), crystalline phases re-
lated chlorides, sulfates and carbonates of alkali metals (condensation)
are KCl, K2SO4, KHCO3, while those related to Mg, Si and Ca (inertial
impact) are CaCO3, Ca(OH)2, MgO, SiO2 and Ca2SiO4.

Bearing in mind the molecular mass of the aforementioned com-
pounds, it can be noted that:

• 1 kg of KCond. present in the probe implies 1.9 kg of KCl, 2.23 kg of
K2SO4 or 2.56 kg of KHCO3. That is to say, 1 kg of KCond. implies
deposits of the order of 2 kg forming KCl, K2SO4 and/or KHCO3.
Other chlorides, sulfates and carbonates of alkali metals which can
be volatilized and then deposited by condensation, even those which
do not appear in these XRD results (e.g. K2CO3 and K3Na(SO4)2),
also follow, in order of magnitude, the proportion of 2 kg of deposits
per kg of K + Na3.
• 1 kg of Ca present in the probe implies 1.85 kg of Ca(OH)2 or 2.5 kg of
CaCO3; 1 kg of Mg implies 1.67 kg of MgO; 1 kg of Si implies 2.14 kg of
SiO2; 1 kg of Ca + Si (0.74 kg of Ca + 0.26 kg of Si) implies 1.59 kg of
Ca2SiO4. That is to say, 1 kg of Ca + Mg + Si also implies deposits of
the order of 2 kg in the form of MgO, CaCO3, Ca(OH)2, SiO2 and/or
Ca2SiO4. Likewise, the compounds of Ca, Mg, Si, P, Al and/or Fe,
which are typically formed in combustion and can be entrained from
the bed (mainly silicates, aluminosilicates, phosphates, oxides, carbo-
nates, sulfates, and hydroxides, where K and Na can also be present
[64]), also follow, in order of magnitude, the proportion of 2 kg of
deposits per kg of Ca + Mg + Si + P + Al + Fe + K + Na4.

In view of the fact that, on one side, each mass unit of KCond. + NaCond.
and, on the other side, of Ca +Mg+ Si + P+Al + Fe+ KImp. + NaImp.
produces approximately (in terms of order of magnitude) the same amount
of deposits, it is possible to approximately determine the mass ratio of
deposits due to condensation (DMCond., kg) and inertial impact (DMImp.,
kg) according to Eq. (4)5:

= + + + + + + + +

DM /DM

(K Na) /((Ca Mg Si P Al Fe) (K Na) )
Cond. Imp.

Cond. Probe Imp.

(4)

Taking into account the relationship shown in Eq. (4), the mass
fraction of deposits caused by condensation (mf_depositsCond.) and in-
ertial impact (mf_depositsImp.) can be accounted for, as shown in Eqs.
(5) and (6):

= +

= + +
+ + + + + + + +

= +
+ + + + + + +

mf_deposits DM /(DM DM )

(K Na) /((K Na)
((Ca Mg Si P Al Fe) (K Na) ))

(K Na)
/(K Na Ca Mg Si P Al Fe)

Cond. Cond. Cond. Imp.

Cond. Cond.

Probe Imp.

Cond.

Probe (5)

= +

= + + + + + + +

+ + + + + + +
+ +

= + + + + + + +

+ + + + + + +

mf_deposits DM /(DM DM )

((Ca Mg Si P Al Fe) (K Na) )

/( (K Na) ((Ca Mg Si P Al Fe)
(K Na) ))

((Ca Mg Si P Al Fe) (K Na) )

/(K Na Ca Mg Si P Al Fe)

Imp. Imp. Cond. Imp.

Probe Imp.

Cond. Probe

Imp.

Probe Imp.

Probe (6)

By multiplying each of these mass fractions by the deposition rate it
is possible to share out the total mass of deposits between both me-
chanisms, obtaining the deposition rate by condensation (DRCond.,
g·m−2·h−1) and by inertial impact (DRImp., g·m−2·h−1), Eqs. (7) and
(8):

=DR mf_deposits ·DRCond. Cond. (7)

=DR mf_deposits · DRImp. Imp. (8)

Naturally, this methodology only provides approximate values, but
based on some reasonable hypotheses and simplifications, it allows
obtaining conclusions about the mechanisms of deposition (condensa-
tion or inertial impact), as can be seen in next subsection.

3.3.2. Methodology application and discussion
The combination of the elemental composition (SEM-EDS) of ring

deposits (Fig. 2 and Table 4) and S1 bottom ash fractions (Fig. 3), the
deposition rate [40] and Eqs. (3) to (8), leads to Fig. 4, which expresses
deposition rates by condensation and by inertial impact as a function of
excess air ratio for each of the four fuels analyzed (tests with and
without preheating are shown).

Regarding tests without inlet air preheating, it can be verified that,
for all fuels analyzed, deposition by condensation clearly decreases as
excess air ratio increases (for all fuels and within the range of λ ana-
lyzed, there is a factor of about 3 between the highest and the lowest
condensation deposition rate values). The reason for this lies in the fact
that a greater excess air ratio leads to a reduction of combustion tem-
perature, limiting the volatility of the main reactive ash elements that
play a role in deposition by condensation (mainly K, Cl and S) [65,66].

2 In equations (1) to (3) “Si” and “K” can be mass or molar contents of each
element.

3 If the 7 compounds of this type mentioned in [65] with a presence over 1%
are considered, it is obtained a maximum value of 2.52, minimum of 1.77 and
mean (unweighted) of 2.19 kg of deposits per each kg of K+Na (deposited by
condensation).

4 If the 45 compounds of this type mentioned in [65] with a presence over 1%
are considered, it is obtained a maximum value of 3.40, minimum of 1.40 and
mean (unweighted) of 1.93 kg of deposits per each kg of Ca+Mg+Si+P+Al

(footnote continued)
+Fe+K+Na (for alkalis, the fraction from deposits by inertial impact is only
included).

5 In equations (4) to (6) “Ca”, “Mg”, “Si”, “P”, “Al”, “Fe”, “K” and “Na”, are
mass contents of each element.
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In addition, the substantial values of deposition by condensation
presented by PVB, especially at low excess air ratios, are noteworthy.
This is confirmed by the chemical analysis of the deposits:

• XRD analysis (see Table 5): PVB has a high percentage of KCl (37.4%
on average in the four samples analyzed, much higher than the other
pellets) and K2SO4 (30.1% on average in the four samples analyzed,
only below PVCB).
• SEM-EDS analysis (see Fig. 2 and Table 4): PVB presents the highest
percentages of K and Cl, and also of S.

However, there is no obvious correlation between these results and
ash properties obtained in fuel analysis (see Tables 1 and 2), as PVB
presents lower concentrations of K and Cl than the other mixed pellets,
and lower concentration of S than PVCB. This fact corroborates that
trying to predict the performance of ash biomass based only on indices
obtained from fuel analysis is not always accurate; in fact, the useful-
ness of these indices has been questioned in other research works (e.g.,
[47,55,67–69]).

Continuing with the results of tests without preheating, they also
reveal that PV presents slightly lower values of deposition rate by
condensation than mixed pellets (≤13 g·m−2·h−1 in all cases), espe-
cially when excess air ratios are low. This fact is related to the different
composition of these deposits, which present low percentages of K2SO4

and, above all, of KCl detected by XRD (Table 5), although this is
partially compensated by the high percentage of KHCO3 (25.3%,
whereas in the rest of fuels it is only detected in one PVB sample). The
low concentration of KCl in the deposits can be explained by the low
concentration of Cl in this fuel (Tables 1 and 2). Concerning K2SO4,
although PV presents a high percentage of K and S (Tables 1 and 2), K
has a greater affinity for P (it is found in very significant amounts in this
fuel (Table 2)), what could facilitate the formation of K-phosphates
before K-sulfates [24].

Concerning deposition by inertial impact, no common tendency has
been found to apply to all fuels in tests without preheating. Whereas in
PV its value clearly decreases when excess air ratio is higher, in mixed
pellets it remains practically constant. These different tendencies
among fuels may be caused by the fact that an increase in excess air
ratio leads to two opposite effects that interact with different weights:
on the one hand, increasing the air flow raises its speed in the bed,
encouraging the entrainment of coarse fly ash; on the other hand, the
adhesion of solid particles is discouraged, as sticky deposits in the ring
(alkali metal sulfates and chlorides) become less substantial, owing to
reduced vaporization and subsequent condensation.

To deepen the analysis of the behavior presented by each fuel,
Table 6 shows total deposition rate, by condensation and by inertial
impact, together with bottom ash proportion and sintering degree
(fraction S2/3) as reflected by the experimental results presented in
[40].

Table 6 seems to indicate that, in mixed pellets, sintering prevents
deposition by inertial impact by discouraging the entrainment of par-
ticles from the bed. As a result, PVB, which presents high sintering
values, yields a much lower deposition rate by inertial impact values
than PVC and PVCB.

The results of inlet air preheating tests (represented by unfilled
markers in Fig. 4) can be used to corroborate this behavior of mixed
pellets. Inlet air preheating increases air velocity in the bed, encoura-
ging entrainment, but does not lead to a significant increase of com-
bustion temperature [40]:

• Due to the fact that combustion temperature remains practically
unchanged, ash vaporization and therefore deposition by con-
densation is not affected substantially by preheating for any of the
mixed pellets.
• In contrast, it may be observed that air preheating largely increases
deposition by inertial impact in PVC and PVCB, but much less in the

Fig. 4. Deposition rates (DR) by condensation and by inertial impact against excess air ratio (λ) to PV, PVB, PVC and PVCB.
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case of PVB. In other words, an increase in air velocity causes a
much bigger impact in particle entrainment and its subsequent de-
position in fuels which are less susceptible to sintering.

The case of PV is somewhat different, because high entrainment
(there is very little ash retention in the bed) does not directly translate,
in tests without preheating, into a greater amount of deposits by inertial
impact compared to that of other fuels, possibly owing to the lower
quantity of sticky deposits. In fact, it seems that given that this fuel
presents low concentrations of KCl and K2SO4, the sampling ring was
saturated by deposits from inertial impact. As a result of this saturation,
following an increase of excess air ratio and hence a decrease in sticky
deposits due to condensation, the capacity of PV to retain deposits by
inertial impact decreases (Fig. 4). It is worth analyzing the results of the
tests with preheating for this fuel. First, a sharp decrease in deposition
by condensation can be noticed compared with tests without pre-
heating. This is due to the lower combustion temperatures reached in
experiments with preheating [40], which discourages the evaporation
of alkali metals from the bed, as expected in view of Table 5. The fact
that KOH has greater affinity for SO2/SO3 and HCl than for CO2 [24]
explains at least partly the aforementioned non-appearance of K-car-
bonates in the preheated test. In addition, preheating of inlet air entails
no significant increase of deposition by inertial impact, which re-
inforces the idea of saturation.

3.3.3. (K + Na)/(Cl + 2S) molar ratios
To complete the comparative analysis of the various fuels, Table 7

shows (K + Na)/(Cl + 2S) molar ratios, calculated from SEM results for
deposit samples (Fig. 2), Eq. (3) and the initial analysis of the fuels
(Tables 1 and 2).

Regarding (K + Na)Probe/(Cl + 2S) molar ratio using total alkali
metal concentration in deposits by SEM, it can be observed that all fuels
present values higher than 1, i.e., there is an excess of alkali metals
compared with Cl and S. The reasons for this are twofold:

• Part of K and Na have vaporized as hydroxides and condensed as
carbonates (mainly KHCO3, which was detected by XRD in PV and
in one PVB sample, see Table 4).
• Ash entrainment of solid particles containing K and Na from the bed
occurs.

If the second ratio is considered, (K + Na)Cond./(Cl + 2S) –after
discounting alkali metals compounds deposited in the sampling ring by
inertial impact (following Eq. (3))– it can be noted that, in the case of

PVCB and PVC, the value obtained is very close to 1 (practically all
alkali metal have condensed as chlorides or sulfates), while in PVB and
especially in PV it is higher, owing to the aforementioned presence of
KHCO3. The coherence of these ratios with XRD results corroborates
that the hypotheses and assumptions on which Eq. (3) was based were
sound.

Finally, it should be stressed that it is not possible to easily predict
the values of these molar ratios (obtained by analyzing the deposits) nor
to explain differences in the behavior of the various fuels on the basis of
ratios calculated with fuels preliminary analysis (last column of
Table 7), since there is no direct correspondence between them.

4. Conclusions

This study has presented the results of chemical analysis of deposits
obtained in combustion tests carried out with four varieties of agro-
pellet in a laboratory fixed-grate reactor. The analyses were carried by
electron microscopy (SEM) with energy dispersive X-ray spectrometry
(EDS) and X-ray diffractometry (XRD).

In order to take the results further, a simple methodology was de-
veloped that allows for deposits produced by condensation (including
thermophoresis and turbulent diffusion) and by inertial impact of
coarse fly ash entrained from the bed to be distinguished.

This methodology, alongside the results of chemical analysis and the
data for deposition rates presented in a previous work [40], has yielded
important results concerning the deposition phenomena affecting the
four agropellets under study.

It was confirmed that an increase in excess air leads to a decrease in
deposition by condensation, owing to a reduction in combustion tem-
peratures, which limits the volatility of K, Cl and S. The lower de-
position rates attested for PV could be related to its high P content.

However, concerning deposition by inertial impact, no common
behavior has been found, probably because an increase in excess air
ratio leads to two opposite effects. First, an increase in excess air ratio
also increases the air flow, encouraging the entrainment of coarse fly
ash. This effect becomes less acute as sintering increases; although
sintering undermines the operation of the grate, it also discourages ash
entrainment. Second, an increase in air excess ratio leads to a decrease
of deposits by condensation, some of which take the shape of a sticky
layer (mainly alkali metal sulfates and chlorides), and thus the adhesion
of coarse fly ash entrained from the bed. In fact, at least concerning PV,
it is argued that the adhesion of solid particles to sticky deposits can
result in saturation.

The quantification of deposits produced by condensation and by

Table 6
Bottom ash proportion, sintering degree and deposition rates (total, by condensation and by inertial impact) mean values (range) of all tests without inlet air
preheating.

Bottom ash proportion a Sintering degree (fraction S2/3)a DR DRCond. DRImp.

% % g·m−2·h−1 g·m−2·h−1 % g·m−2·h−1 %

PV 25.3 (18.1–31.3) 1.6 (0.3–3.1) 16.6 (11.0–21.3) 8.1 (3.7–13.0) 49.0 (31.0–62.5) 8.5 (5.5–12.8) 51.0 (37.5–69.0)
PVB 74.7 (72.8–77.7) 51.8 (26.7–62.2) 20.9 (10.5–29.9) 17.3 (8.2–24.3) 82.9 (73.4–90.8) 3.6 (1.9–5.6) 17.1 (9.2–26.6)
PVC 50.0 (48.3–50.7) 33.8 (23.5–40.7) 19.4 (14.2–25.0) 10.1 (5.4–15.5) 52.0 (32.9–74.1) 9.3 (5.3–14.0) 48.0 (25.4–67.1)
PVCB 59.5 (58.4–60.9) 40.1 (26.4–49.8) 19.2 (13.5–23.8) 9.7 (4.3–16.1) 54.0 (30.1–68.8) 8.3 (6.2–10.8) 46.0 (31.2–69.9)

a % with regard to total mass of ash introduced with the fuel.

Table 7
(K + Na)/(Cl + 2S) molar ratios (mean values of tests with and without preheating).

(K + Na)Probe/(Cl + 2S) Deposits SEM (K + Na)Cond./(Cl + 2S) Deposits SEM (K + Na)/(Cl + 2S) Fuel analysis

PV 2.13 1.71 3.16
PVB 1.26 1.21 4.08
PVC 1.11 1.01 6.02
PVCB 1.24 1.09 3.29
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inertial impact, although achieved through a series of simplifications
and assumptions, provides useful information which, it is hoped, will
contribute to finding solutions to the problem posed by high deposition
rates in the combustion of agricultural residual biomass, leading to both
better fuel blends and boiler design and operational parameters, in-
creasing the market penetration of this important kind of biomass.

As noted, fly ash deposition and bottom ash sintering are related;
sintering and the relationship between both phenomena will be ad-
dressed in depth from bottom ash chemical characterization, as part of
complementary further research studies.
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