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The paper presents a new approach to the modelling of heating and evaporation of dual-fuel droplets with
a specific application to blends of biodiesel (represented by the widely used soybean methyl ester, SME)
and Diesel fuels in conditions representative of internal combustion engines. The original compositions,
with up to 105 components of Diesel and biodiesel fuels, are replaced with a smaller number of
components and quasi-components using the recently introduced multi-dimensional quasi-discrete
(MDQD) model. Transient diffusion of these components and quasi-components in the liquid phase and

K?y M.mrdS: temperature gradient and recirculation inside droplets are taken into account. The results are compared
Biodiesel fuel . T . L . .
Diesel fuel with the predictions of the case when blended biodiesel/Diesel fuel droplets are represented by pure bio-

diesel fuel or pure Diesel fuel droplets. It is shown that droplet evaporation time and surface temperature
predicted for 100% SME, representing pure biodiesel fuel, are close to those predicted for pure Diesel fuel.
Also, it is shown that the approximations of the actual compositions of B5 (5% SME and 95% Diesel) and
B50 (50% SME and 50% Diesel) dual-fuels by 17 quasi-components/components, using the MDQD model,
lead to under-predictions in droplet lifetimes by up to 9% and 4%, respectively, under the same engine
conditions. The application of the latter model has resulted in above 83% reduction in CPU time compared
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to the case when all 105 components are taken into account using the discrete component model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in Diesel and biodiesel fuel blends has been mainly
stimulated by depletion of fossil fuels and the need to reduce car-
bon dioxide emissions that contribute towards climate change
[1,2]. The use of biodiesel fuel is expected to contribute to the
reduction of global warming [3]. Also, using a blend of biodiesel fuel
as an alternative to pure fossil fuels has a number of other advan-
tages: it is less polluting, cost effective, it has higher lubricity and
a higher flash point, and it can be used in Diesel engines with min-
imal, or no, modifications [4-8]. According to the U.S. Environmen-
tal Protection Agency Tier I and Tier Il standards (see [9] for details),
fatty acid methyl ester (FAME) biodiesel types produced over the
last decade pass the testing requirements for health effects [10].

Studies on the heating and evaporation processes of automotive
fuel droplets are crucial to the design of internal combustion
engines and to ensuring their good performance [11,12]. Accurate
modelling is essential to the understanding of these processes and
ultimately to the improvement of engine design. Previous studies

* Corresponding author.
E-mail address: Mansour.alQubeissi@Coventry.ac.uk (M. Al Qubeissi).

http://dx.doi.org/10.1016/j.fuel.2016.09.060
0016-2361/© 2016 Elsevier Ltd. All rights reserved.

of these processes have been either based on the analysis of indi-
vidual components (Discrete Component (DC) model [13,14]), or
on the probabilistic analysis of a large number of components
(continuous thermodynamics [15-17] and the distillation curve
[18-20] models). The first approach is generally applicable to cases
when a relatively small number of components needs to be taken
into account to avoid computationally expensive runs. In the sec-
ond approach a number of simplifying assumptions are commonly
used; for example, the species inside droplets are assumed to mix
infinitely quickly (infinite diffusivity model).

The DC model based on the analytical solutions to the heat trans-
fer and species diffusion equations was suggested in [21] and vali-
dated against experimental data in [22]. In our analysis, the
predictions of the new simplified models will be compared with
the prediction of the above-mentioned version of the DC model,
taking into account the contributions of all components. Direct
applications of this model were limited to the case when the num-
ber of components in fuels was relatively small (e.g. biodiesel fuels).
In the case of fossil, or blended-fossil, fuels (containing potentially
hundreds of components), however, the DC model would be com-
putationally very expensive when directly applied to the modelling
of droplet heating and evaporation. In response to this problem, the
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multi-dimensional quasi-discrete (MDQD) model was introduced
in [23]. In this model, a large number of components was replaced
with a much smaller number of components/quasi-components (C/
QC) without losing the main features of the DC model. This model
was applied to the analysis of heating and evaporation of realistic
Diesel and gasoline fuel droplets [23,24]. It was shown to accurately
predict the droplets’ lifetimes and surface temperatures and to be
computationally efficient [12].

In this paper, the analysis presented in [23,24] is generalised to
the case of blended biodiesel/Diesel fuel droplets. The main features
of the model used in our analysis and fuel compositions are sum-
marised in Section 2. The results of calculations are presented in
Section 3. The main results of the paper are summarised in Section 4.

2. Model and fuel compositions

As in [23,24], our analysis is based on the assumption that dro-
plets are spherically symmetric. The MDQD model, in which the
actual composition of fuel is reduced to a much smaller number
of representative components/quasi-components (C/QC), is used.

The concept of quasi-components was first introduced in [25]
and is based on a replacement of several actual alkane components
with close carbon numbers n by a new alkane component with an
average value of n, taking into account molar fractions of the orig-
inal components. This averaging procedure led to non-integer val-
ues of n for the new component, in most cases, which do not have
any physical meaning as components with non-integer values of n
do not exist. Hence, we called these new components quasi-
components. Although quasi-components are not real components,
they were treated as real for the analysis of heat/mass transfer pro-
cesses in droplets. In [23,24] the concept of quasi-components was
generalised to include other groups of components (e.g. cycloalka-
nes, aromatics). Please note, however, that the selection of these
C/QCs was based on trial and error. We are still working on the
development of a more rigorous algorithm for this selection.

The effects of finite liquid thermal conductivity, diffusions of
C/QCs in the liquid phase and recirculation inside droplets are taken
into account using the Effective Thermal Conductivity/Effective
Diffusivity (ETC/ED) models. The analysis is based on the previously
obtained analytical solutions to the heat transfer and species diffu-
sion equations within droplets (see [11]). The blended-fuel vapour
is replaced with the vapour of n-dodecane; the binary diffusion
coefficient of n-dodecane vapour in air is estimated as [26]:

Dyq = 5.27 x 10 8(T¢/300)*%p~1 (m? s71), (1)

where Tef = %TS + % T, is the reference temperature (in K), T and T,
are droplet surface and ambient gas temperatures, respectively, and
p is ambient pressure (in bar).

The diffusion coefficient for liquid species is estimated using the
Wilke-Chang approximation [23,27]:

 74x10°TVM

D
l :ulv(z)/ﬁ

(2)

7 . . kg
where M is the average molar mass (in %) of all components

based on their mass fractions at the surface of the droplet, V, is esti-
mated as [23,27]:

V,=(0/1.18)°, (3)
o is the Lennard-Jones length (in A), estimated as [27,28]:
o = 1.468M°%%%7, (4)

As in [23,24,29], all liquid properties are calculated at the
average temperature inside droplets and all gas properties are
calculated at the reference temperature T..r; enthalpy of evapora-

tion and saturated vapour pressure are estimated at the droplet
surface temperature T;.

The effects of thermal radiation are ignored in our analysis.
These effects for heating and evaporation of mono-component dro-
plets were studied in a number of papers including [26,30]. For suf-
ficiently high radiative temperatures, it was shown that this effect
leads to the non-monotonic approach of the surface temperature of
a heated and evaporated droplet to the wet bulb temperature. We
anticipate a similar effect during heating and evaporation of multi-
component droplets, although this process has not been investi-
gated to the best of our knowledge.

FAME biodiesel can be blended with Diesel fuel in various pro-
portions. The most common blends are: B100 (pure biodiesel), B20
(20% biodiesel, 80% Diesel), B5 (5% biodiesel, 95% Diesel) and B2
(2% biodiesel, 98% Diesel) [8,31,32]. Note that B5 can be called Die-
sel fuel, with no separate labelling required at the pump [8],
although no comparative analysis of heating and evaporation char-
acteristics of droplets of these fuels, including droplet lifetimes, has
been performed to the best of our knowledge.

The molar fractions of methyl esters in biodiesel fuel, assumed
to be soybean methyl esters (SME), are inferred from the data
reported in [29]; and those for Diesel fuel hydrocarbons are
inferred from [23] (see Appendix A). Our analysis is focused on
the following Diesel-biodiesel fuel blends: B80 (80% SME and
20% Diesel), B50 (50% SME and 50% Diesel), B20, and B5. The fol-
lowing cases will be considered: (1) pure SME (B100), taking into
account the contributions of all 7 components, using the DC model;
(2) the mixtures B5, B20, B50 and B80, taking into account all 105
components (7 components of SME and 98 components of Diesel
fuel), using the DC model; (3) pure Diesel fuel, taking into account
the contributions of 98 components (B0), using the DC model; and
(4) the mixture B50, taking into account the contributions of all
105 components, using the MDQD model.

3. Results

The plots of droplet surface temperatures T and radii Ry versus
time for biodiesel (SME) and Diesel fuels and their blends, taking into
account the contributions of all 105 components, as predicted by the
DC model, are shown in Fig. 1. As in [23], the initial droplet radius is
taken equal to 12.66 um, its axial velocity in still air (assumed con-
stant) and initial temperature are assumed equal to Ugrop = 10 m/s
and T, = 360 K, respectively; ambient air (gas) pressure and temper-
ature are assumed equal to pg = 32 bar and T, = 700 K, respectively.

As one can see from Fig. 1, the evaporation time of a pure SME
(B100) droplet is 6% less than that of a pure Diesel (BO) droplet.
Thus, the evaporation characteristics of Diesel and SME droplets
are rather close. The predicted droplet surface temperature for
B100 is higher than that of BO during the initial heating period. This
might enhance the droplet break-up process due to decrease in
droplet surface tension [33].

The temporal evolutions of the liquid mass fractions at the dro-
plet surface for representative components of B50 are shown in
Fig. 2.

As follows from Fig. 2, the mass fractions of the light compo-
nents monotonically decrease with time while those of the heavy
components monotonically increase with time. The mass fractions
of the intermediate components initially increase but then decrease
with time. One can expect this complex behaviour of different com-
ponents to affect the distributions of mass fractions of components
inside the combustion chamber in realistic engine conditions,
where the ambient gas temperatures are not homogeneous.

It is not currently feasible to consider large numbers of compo-
nents in CFD simulations. As shown in our previous papers [23,24],
the application of the MDQD model would allow us to reduce the
CPU requirements substantially without significant reduction in
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Fig. 1. The plots of droplet surface temperatures T; (a), and radii Ry (b) versus time
for various Diesel/SME blends, using the DC model.
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Fig. 2. The plots of surface liquid mass fractions Y; of representative components
versus time for a B50 fuel droplet for the same conditions as in Fig. 1.

accuracy. In [23,24] this approach was applied to pure Diesel and
pure gasoline fuel droplets. In what follows it is applied to blended
biodiesel/Diesel fuel droplets.

The evolutions of droplet surface temperatures T; and radii
Ry over time for B50, predicted by the MDQD model for several
C/QCs, are shown in Fig. 3. The following numbers of C/QCs were
used: 105; 90, 63, 45, 25, 21, 19, 17, 12, and 10. The Diesel and

biodiesel fuel components used in our analysis are shown in Tables
1 and 2 (see Appendix A for further details).

As follows from Fig. 3, the approximations of the blended fuel
with 90, 63, 45, and 25 C/QCs lead to underestimation of the dro-
plet lifetime by less than 3%. This underestimation increases to
4-6% for 20, 17 and 15 QCs. It further increases to 9%, 16% and
17% for 14, 9 and 7 QCs, respectively. The errors in predicted dro-
plet surface temperatures for these C/QCs are negligible.

The evolutions of T; and Ry over time for a B5 fuel droplet are
shown in Fig. 4. Similarly to Fig. 3, in Fig. 4, the approximations
of the blended fuel with up to 25 C/QCs lead to underestimation
of the droplet lifetime by less than 3.2%. This underestimation
increases to 5% for 21 and 19 C/QCs. It further increases to 9% for 17
C/QCs,and up to 15% for 12 and 10 C/QCs. The errors in predicted dro-
plet surface temperatures for these approximations were up to 2%.

Swelling of the droplets can be clearly seen for all approxima-
tions of Diesel fuel due to changes in fuel density with tempera-
ture. Droplet surface temperature does not show plateau profiles.
This can be attributed to the multi-component composition of
droplets (see [23] for the details).

Note that the approximation of B50 fuel components
with 17 C/QCs (Fig. 3) yields better results than using the same
approximation for B5 fuel (Fig. 4). In the 17 C/QC approach, 4 C/QC
of SME fuel out of 17 C/QC are taken into account. This approxima-
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Fig. 3. The plots of the droplet surface temperatures Ts and radii Ry versus time for
10 approximations of B50: 105 components (ME); 90, 63, 45, 25, 21, 19, 17, 12, and
10 C/QCs (numbers near the curves); (b) zoomed parts of (a). The compositions of
these approximations are shown in Tables 1 and 2.
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Table 1
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The contributions of Diesel and biodiesel fuel components for several choices of C/QCs shown in Figs. 3 and 4. The contributions of Diesel fuel components are specified in Table 2.

Total C/QCs Diesel C/QC Biodiesel C/QC Biodiesel C/QC
105 98 7 C14:0 C16:0 C18:0 C20:0 C18:1 C18:2 C18:3
90 85 5 Cy7.53 (C14:0-C18:0) C20:0 C18:1 C18:2 C18:3
63 63 5 As above
45 40 5 As above
25 21 4 Ci7.613 (C14:0-C20:0) C18:1 C18:2 C18:3
21 17 4 As above
19 15 4 As above
17 14 3 Cq7.613 (C14:0-C20:0) C18:1 C18:2 Ignored
12 9 3 As above
10 7 3 As above

Table 2

The contributions of Diesel fuel C/QCs for the numbers of C/QCs shown in Figs. 3 and 4 and Table 1.

Total C/QCs  Diesel components

Diesel C/QCs (see Tables A1-A6 in Appendix A for further details)

Alkanes  Cycloakanes Bicycloalkanes Alkylbenzenes Indanes/tetralines Naphthalenes Tricycloalkane, diaromatic,
phenanthrene
105 98 20 18 16 17 13 11 3
90 85 19 17 8 16 12 10 3
63 58 19 9 8 8 6 5 3
45 40 10 9 5 8 3 2 3
25 21 5 4 3 3 3 2 Tricycloalkane
21 17 4 3 2 3 2 2 Tricycloalkane
19 15 4 3 1 3 2 1 Tricycloalkane
17 14 4 2 1 2 1 1 3
12 9 1 1 1 1 1 1 3
10 7 1 1 1 1 1 1 Tricycloalkane
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t__ (b) Fig. 5. The plot of CPU time required for calculations of droplet heating and
\ evaporation versus the number of C/QCs for B5 and B50 fuel droplets, using the
630+ same parameters as in Figs. 1-4.
3
T other components for B5 fuel near the end of evaporation time leads
= to over-estimation of the contribution of SME to B5.
6701 & To illustrate the computational efficiencies of these approxima-
2 tions, using the MDQD model, a diagram for CPU time required for
—_— these calculations versus the numbers of QC/Cs is shown in Fig. 5.
As can be seen from Fig. 5, approximating 105 components of
650 1 . the blended fuels with 17 C/QCs reduces the required CPU time
by more than 83% compared with the model taking into account
the contributions of all 105 components. Also, the results in Figs. 3
and 4 show that the evaporation time predicted for a 17 C/QC
630 T T T 0 droplet is about 4% for B50, and 9% for B5, less than that predicted

time [ms]

Fig. 4. The plots of the droplet surface temperatures Ts and radii Rq versus time for
the same 10 approximations of B5 fuel as those used in Fig. 3; (b) zoomed parts of
(a). The compositions of these approximations are shown in Tables 1 and 2.

tion leads to a good balance between components for the case of B50
fuel. However, an increase in heavy C/QCs of SME at the expense of

by the model taking into account the contributions of all 105 com-
ponents. The predicted error in droplet surface temperatures when
using 17 C/QCs is about 1%, for both B5 and B50 fuel droplets. Thus,
the choice of 17 C/QCs can ensure a good compromise between
CPU efficiency of the model and its accuracy when up to 9% and
4% errors in predicted droplet evaporation times can be tolerated
for B5 and B50, respectively.
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The specifications of the workstation used were: Z210, Intel
core, 64-bit, 3.10 GHz and 8 GB RAM. The number of terms in the
series in analytical solutions for temperature and species (see
Eqgs. (10), (11) and (19) in [23]) were taken equal to 44 and 33,
respectively. The time step was set as 1 ps.

4. Conclusions

A new approach to modelling the heating and evaporation of
blended biodiesel (soybean methyl ester, SME)/Diesel fuel droplets
in representative conditions for a direct injection internal combus-
tion engine is described. The full composition of fuel-blends with
Diesel and SME contains up to 105 components. As in the previ-
ously suggested multi-dimensional quasi-discrete (MDQD) model,
these 105 components are replaced with a smaller number of com-
ponents and quasi-components (C/QCs). Transient diffusion of
these C/QCs in the liquid phase, temperature gradient, and recircu-
lation inside droplets due to relative velocities between droplets
and ambient air are taken into account based on the Effective Ther-
mal Conductivity/Effective Diffusivity model.

It is shown that the approximation of the full composition of the
blended fuel (105 components) by 17 C/QCs of B50 (50% SME and
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50% Diesel) using the MDQD model leads to deviations in esti-
mated droplet surface temperatures and evaporation times of up
to 1% and 4%, respectively, which can be tolerated in many practi-
cal engineering applications. However, the choice of 17 C/QCs of B5
(5% SME and 95% Diesel) can lead to 9% error in predicted droplet
evaporation time.

It is shown that the application of the MDQD model to B50 with
17 C/QCs leads to over 83% reduction in CPU time compared to the
model which takes into account the contributions of all 105 com-
ponents; while the choice of 17 C/QCs of B5 leads to over 84%
reduction in CPU time. The error in estimated droplet lifetime in
this case is shown to be about 5%.
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Appendix A. C/QCs approximating Diesel fuel compositions

The detailed compositions of the groups of C/QCs shown in
Table 2 are presented in Tables A.1-A.6.

Table A.1
The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for
alkanes.
Alkanes (C,Hzpn+2)
20 19 10 5 4 1
8 8 8.91 (C8-C9
9 9 91 (C8-C9) 9.958 (C8-11)
10 10 |
b b 10.385 (C10-11) 10.335 (C8-C12)
12 12 12.493 (C12-13
13 13 493 (C12-13) 13.58 (C12-C15)
14 b 14.544 (C14-C15
15 15 544 (C14-C15) 15.046 (C13-C17)
16 16
17 17 16.518 (C16-C17)
18 18 17.622 (C16-C19) 14.763 (C8-C27)
19 19 18.521 (C18-19)
20 20 .
i ” 20.392 (C20-C21) 19.38 (C18-C22)
22 22 20.869 (C20-C23)
23 23 22.332 (C22-C23)
24 2 24.344 (C24-C25)
25 25 : B .
o 24763 (C24-C27) 23.842 (C23-C27)
27 26.421 (C26-C27) 26.421 (C26-C27)
Table A.2

The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for

cycloalkanes.

Cycloalkanes (C,Hzp)

18 17 9 4 3 2 1
10 10

1 1 10.745 (C10-C11)

12 12 _

13 13 12.427 (C12-C13) 12122 (C10-14) 12.562 (C10-C15)

14 14 13.88 (C10-C18)

15 15 14.475 (C14-C15)

16 16 16.493 (C16-C17

17 17 493 (C16-C17) 17.081 (C15-C19)

18 18

19 19 18.513 (C18-C19) 18.297 (C16-C21) 15.365 (C10-C27)
20 20

2 2 20.35 (C20-C21)

22 22 20.878 (C20-C24)

23 23 22.264 (C22-C23) 20254 (C19-C27)

24 24

%5 %5 24.37 (C24-C25) 22.977 (C22-C27)

26 25.644 (C25-C27)

26.42 (C26-C27) 26.42 (C6-C27)
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Table A.3
The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for
bicycloalkanes.

Bicycloalkanes (C,Hz,_)

16 8 5 3 2 1
10 10.603 (C10-C11
11 603 (€C10-C11) 11.104 (C10-C12)
12 _
12 12.404 (C12-C13) 11.835 (C10-C14)
13.065 (C10-C17)
14 _
15 14.434 (C14-C15) 13.861 (C13-C15)
16 16.57 (C16-C17)
17 ) B 17.091 (C16-C18 17.397 (C15-C19
18 ( ) ( ) 14.743 (C10-C25)
19 18.602 (C18-C19)

20 _
20.322 (C20-C21) 193 (C19-C21)

19.168 (C18-C25)
2 22.41 (C22-C23) 21.243 (C20-C25)

22.919 (C22-C25)
24.419 (C24-C25)

Table A.4
The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for
alkylbenzenes.

Alkylbenzenes (C,Hzn_g)

17 16 8 3 2 1
8 8
9 9 8.867 (C8-C9)
10 10
1 11 10.15 (C10-C11) 10.207 (C8-C13)
12 12 10.726 (C8-C16)
13 13 12.264 (C12-C13)
14 14
15 15 14.425 (C14-C15)
16 16 _
17 17 16.475 (C16-C17) 16.233 (C14-C19) 11.726 (€8-C24)
18 18
19 19 18.381 (C18-C19)
20 20
21 21 20.416 (C20-C21) 19.026 (C17-C24)
22 22 21.077 (C20-C24)
23 -
o 23.489 (C23-C24) 22.743 (C22-C24)
Table A.5

The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for
indanes/tetralines.

Indanes/tetralines (C,Hz,_g)

13 12 6 3 2 1
10 10
1 1 10.509 (C10-C11)

11.407 (C10-C13)

2 2 12.471 (C12-C13
13 13 A71(C12=C13) 12.495 (C10-16)
14 14
15 15 14.456 (C14-C15)
15.342 (C14-C17)
16 16 _
16.456 (C16-C17) 13.832 (C10-C22)
17 17
18 18
19 19 18.388 (C18-C19) s e oo
20 20 19.242 (C18-C22) 615 (C17-C22)
21 20.567 (C20-C22)

% 21.32 (C21-C22)
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Table A.6
The numbers of C/QCs (top numbers), and the corresponding compositions of C/QCs, described in terms of carbon atoms (columns of numbers), used in the MDQD model for
naphthalenes.
Naphthalenes (C,Hzn_12)
11 10 5 2 1
10 10
1 1 10.566 (C10-C11)
12 12
13 13 12.354 (C12-C13) 11.533 (C10-C15)
14 14 14.441 (C14-C15
15 15 ' (C14-C15) 12.392 (C10-C20)
16 16
17 17 16.421 (C16-C17)
18 18 17.904 (C16-C20)
19 _
% 19.51 (C19-C20) 18.985 (C18-C20)
References fuel and elevated pressures. Int ] Heat Mass Transf 2003;46:4403-12. http://
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