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� The permittivity of diesel fuel and blends with biodiesel was determined at 100 kHz.
� The measurement uncertainty was below 1%.
� Linear dependences with temperature and composition were found.
� Composition is estimated from permittivity and temperature measurements.
� The RMS uncertainty of biodiesel content estimation is below 2.5%.
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a b s t r a c t

The relative permittivity of diesel fossil fuel and blends with biodiesel from soybean, in the full range
from pure diesel to 100% biodiesel, was determined at temperatures between 298.0 K and 333.0 K (con-
trolled within ±0.1 K), using an airtight cell. Measurements were made in the frequency range from
1 kHz to 100 kHz; this frequency range is suitable for the use of low-cost, portable equipment and also
for the development of automotive sensors. The relative uncertainty of the measurements was below 1%.
Experimental values of permittivity were satisfactorily fitted to a simple model as a function of tem-

perature and composition. The RMS uncertainty of the fitting was 1.2%. The model parameters were
determined from experimental results and verified by multiple regression analysis, with very good
agreement.
In addition, a model was proposed to estimate the composition of diesel/biodiesel blends from permit-

tivity and temperature measurements. The parameters of the model were obtained by a multiple regres-
sion analysis; the RMS uncertainty of the composition estimation was below 2.5%.
The results presented in this work describe accurately the dependence of the permittivity of diesel fuel

with temperature and also validate and extend previously reported models for biodiesel-rich blends with
diesel fossil fuel, allowing the estimation in the full composition range with good accuracy.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Diesel fossil fuel (DF) has been widely used for many years in
automotive and stationary applications. Since the last decades,
the use of biodiesel (BD) as a renewable alternative [1–3], pure
or in blends with DF, has increased rapidly all around the world
due to environmental concerns, including the reduction of carbon
dioxide emissions. In consequence, there is renewed interest in
the development of low-cost, fast and accurate liquid fuel charac-
terization techniques that can be adapted to small-scale produc-
tion plants, distribution points and field measurements,
particularly in emerging markets. Dielectric [2,4] and ultrasonic
[5,6] techniques are promising alternatives in that direction. In
particular, dielectric spectroscopy has been successfully used for
the production and characterization of BD [2] and also to charac-
terize feedstocks from different origins [7,8]. They have also been
used to detect alcohol in the light phase after transesterification
[9], during the purification process and in the final product
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[10,11], for the characterization of fatty acid methyl esters (FAME)
[12,13] and to distinguish between vegetable oil and the biodiesel
produced from it [6].

The determination of the composition of DF/BD blends is very
important for legal, commercial and technical reasons. Legal and
commercial issues include the verification of the actual BD content
in DF/BD blends; for instance, legislation in many countries estab-
lishes that diesel fossil fuel (DF) must be blended with a certain
amount of BD (usually up to 20%). Moreover, the blend composi-
tion impacts engine performance and emissions [14]. The compo-
sition of a DF/BD blend is usually indicated as ‘‘Bx”, where ‘‘x”
represents the percentage of BD (V/V). For example, B0 means pure
DF and B100 means pure BD. The determination of Bx by standard
methods [15] is usually expensive, time-consuming, requires
trained personnel and it is not easily adaptable to real-time mea-
surement systems. Also, they cannot be used for in situ measure-
ments (for instance during fuel storage and transportation). On
the other side, dielectric measurements are a low-cost and fast
alternative, which does not require highly trained personnel.

It must be remarked that the development of dielectric charac-
terization techniques for DF/BD blends requires the accurate mea-
surement and modeling of the temperature dependence of the
permittivity in the full composition range. Interestingly, although
some works report DF permittivity values [4,11], the authors have
not found in the literature explicit models of the dependence of DF
permittivity on temperature.

An early work by Tat and Van Gerpen, [16], explored the use in
biodiesel blends (B0 to B100) of a commercial dielectric sensor
originally designed for methanol-gasoline blends; the device oper-
ated at room temperature (296 K). The uncertainty of the composi-
tion determination was ±10%; the permittivity values of the
samples were not reported. Munack at al. [4] described a sensor
specifically designed for the determination of the composition of
DF/BD blends (B0 to B100) in automotive applications. Graphs of
permittivity values were plotted for temperatures of 278 K, 303 K
and 323 K, at a frequency of 1 kHz. The sensor was successfully
tested in a passenger car covering more than 50,000 km of on-
the road use. The precision of blend detection was ±10%. In [17],
De Souza et al. reported permittivity and conductivity measure-
ments of DF/BD blends (B0 to B10) at frequencies between 0.1 Hz
and 100 kHz at room temperature. In a previous work [18] the
authors studied the dielectric properties of biodiesel-rich blends
with diesel fuel (B50 to B100) at temperatures between 303.0 K
and 343.0 K at frequencies between 20 Hz and 2 MHz. From these
results, a model for the estimation of the composition of BD rich
blends from permittivity and temperature measurements was pre-
sented. The RMS uncertainty of the estimation was below 1.5% in
the full temperature and composition ranges studied.

In this work, the permittivity of pure DF, BD and their blends
was measured in an airtight cell, for samples in the full composi-
tion range from 0% to 100% (V/V) of BD, at temperatures from
298.0 K to 333.0 K, between 1 kHz and 100 kHz. The range of mea-
surement frequencies in this work makes possible the use of low-
cost, portable equipment and it is also useful for the development
of sensors for automotive applications, using state-of-the-art elec-
tronics. From the experimental results, a model was proposed to
estimate the permittivity as a function of composition and temper-
ature with an RMS uncertainty below 1.2%. Furthermore, a simple
model is proposed for the estimation of blends composition from
permittivity and temperature measurements. The RMS uncertainty
of the composition estimation is below 2.5% in the full range of
temperatures and compositions.

The results and models presented in this work validate and
extend those presented in [18] to the full range of compositions.
They are relevant for the design and implementation of accurate,
economical and compact measurement systems.
2. Samples and methods

2.1. Samples

All the samples were prepared with commercial BD from soy-
bean oil provided by a local producer, certified to met standard
EN 14214 [19]. Certified pure DF samples were also provided by
a local producer and also complied with international standards
[20]. Since the BD and DF used for sample preparation were certi-
fied by their producers, no pre-processing procedures were carried
out.

2.2. Measurement system

The relative permittivity of the samples was determined from
isothermal dielectric measurements between 1 kHz and 100 kHz
with a LCR meter (Tonghui TH2822C). The measurement cell is air-
tight to prevent systematic errors due to evaporation of the sam-
ple. To minimize polarization effects, the electrodes are made of
platinized platinum. During the measurement, the cell is immersed
in a thermostatic bath (Lauda), allowing a very precise temperature
control (within ±0.1 K) and avoiding systematic error due to ther-
mal gradients. Fig. 1 shows the main characteristics of the experi-
mental setup, including the circuit configuration and the cell
diagram. The system was calibrated with an uncertainty below
1% using cyclohexane as a reference liquid. All the uncertainties
in this work are given as one standard deviation. The measurement
uncertainty of real part of permittivity, Der0, was below 1% in all
cases. In this work all the uncertainties were obtained from the sta-
tistical analysis of experimental data. Relative permittivity experi-
mental values at each frequency were obtained as the average of 3
sets of 30 repetitions each; it must be remarked that the difference
in the average values of each set was well below 1%. Besides, since
no statistically significant differences in the permittivity values
were observed between measurements at 1 kHz, 10 kHz and
100 kHz, the results reported in this work correspond to 100 kHz.
It is important to note that measurements at this frequency mini-
mize the influence of electrodes polarization that could occur in
deficiently purified FAME samples.

In all the cases presented in Section 4, the uncertainty of the lin-
ear fittings parameters (from Eqs. (1)–(3)) was from the least-
squares fitting to experimental data. The overall uncertainty of
the models from Eqs. (4)–(6) was estimated as the RMS error
between the experimental data and the estimated values.
3. Theory

3.1. Electrical properties

The dielectric properties of the samples are described by the rel-
ative permittivity as a function of temperature and composition
[2,21,22]. As it was to be expected from results in previous works
[6,18], given the high purity of the samples, it was experimentally
found that dielectric losses in the frequency range studied could be
neglected. Also, it was found that permittivity measurements at
each composition fit very satisfactorily to a linear dependence with
the absolute temperature of the sample, T:

e0rðBxo; TÞ ¼ e0rðBxo; ToÞ þ de0rðBxo; ToÞ
dT

ðT � ToÞ ð1Þ

In Eq. (1), er0(Bxo, T) is the relative permittivity of a sample with
composition Bxo at temperature T. The reference temperature is
To = 318.0 K. The temperature coefficient of the relative permittiv-

ity, de
0
rðBxo ;ToÞ

dT , is given in K�1 at the reference temperature, To, and at
the reference composition, B0.



Fig. 1. Experimental setup.
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Fig. 2. Experimental values of relative permittivity, er0 , of DF/BD blends as a
function of biodiesel content, Bx, and temperature, T.
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Similarly, in the full range of compositions, permittivity exper-
imental data are accurately modeled by a linear dependence on
composition:

e0rðBx; ToÞ ¼ e0rðB0; ToÞ þ de0r
dBx

Bx ð2Þ

where er0(B0, To) is the permittivity value of pure DF at the reference

temperature, To, and
de0r ðBxo ;ToÞ

dT is evaluated at the reference tempera-
ture To and at the reference composition B0.

From experimental results in the full range of temperatures and
compositions, it is found that de0r/dBx depends linearly on
temperature:

de0rðTÞ
dBx

¼ de0rðToÞ
dBx

þ d2e0r
dBxdT

ðT � ToÞ ð3Þ

In this work de0r(To)/dBx and d2e0r/dBxdT were determined by
means of a linear regression on T.

From Eqs. (1)–(3), the permittivity as a function of temperature
and composition may be estimated by

e0rðBx; TÞ ¼ e0rðB0; ToÞ þ de0rðB0; ToÞ
dT

ðT � ToÞ

þ de0rðToÞ
dBx

þ d2e0r
dBxdT

ðT � ToÞ
" #

Bx ð4Þ

The model of Eq. (4) had been proposed and validated for
biodiesel-rich blends (BxP 50%) in a previous work [18]. In this
paper the model was validated for the full composition range (B0
to B100) by experimental results from pure DF and DF-rich blends
with BD, using an improved, airtight cell, at a frequency of 100 kHz.
4. Results and discussion

4.1. Electrical properties of diesel blends with biodiesel

Fig. 2 shows a three dimensional plot of the real part of the per-
mittivity of the DF/BD samples as a function of temperature, T, and
composition, Bx. Uncertainty error bands are smaller than the
markers. The values corresponding to B10 (328 K), B20 (313 K)
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Fig. 3. Projection of the experimental values (symbols) of er0 onto the (er0 , T) plane.
The lines correspond to the fitting of er0(Bx, T) to Eq. (1).
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Fig. 4. Relative permittivity, er0 , as a function of temperature of B0 and B20 samples.
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Fig. 5. Relative permittivity, er0 , as a function biodiesel content, Bx. The lines
correspond to the fitting of er0(Bx, T) to Eq. (2), at measurement temperatures of
298.0 K, 313.0 K, 323.0 K and 333.0 K.
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and B50 (303 K) were discarded because of electrical noise effects
during measurements.

The surface er0(Bx, T) may be projected onto the (er0, T) and (er0,
Bx) planes in order to analyze the dependence of er0 on T, at each
composition, Bxo, and on Bx, at a fixed temperature To.

Fig. 3 shows experimental values of er0 as a function of temper-
ature for all the studied samples (projection onto the (er0, T) plane).
The symbols correspond to the different compositions. The contin-
uous lines represent the fitting of the linear model, Eq. (1), for each
sample.

As in the case of biodiesel-rich blends with DF [18], er0 decreases
linearly with temperature for all the compositions and, at a given
temperature, increases with Bx. Table 1 shows the fitting parame-
ters of Eq. (1) for all the samples studied in this work. The values of
e0r(To) and de0r/dT are given together with their uncertainties,
De0r(To) and Dde0r/dT. The RMS uncertainty of the fitting, De0r, and
the determination coefficient, R2, are also shown. The reference
temperature is To = 318.0 K.

From Table 1 it is easy to see that both e0r(To) and the magnitude
of the slope (de0r/dT) increase with Bx. This was to be expected since
BD is a more polar substance than DF [2,11]. As in the case of pure
BD [2,6,11], vegetable oils [2,8] and biodiesel-rich blends with die-
sel fossil [18], the permittivity of pure diesel fuel (B0) and diesel-
rich blends decrease linearly with temperature. The experimental
results in this work make possible to extend the validity of the
model of Eq. (1), previously proposed for blends from B50 to
B100 [18], to the full composition range. Diesel-rich blends (up
to B20) are of particular interest for automotive applications.
Fig. 4 shows in more detail the fitting of experimental values of
e0r (symbols) to the linear model (Eq. (1)) of B0 and B20 samples.
Table 1
Fitting parameters of Eq. (3): e0r(To) and de0r/dT, their uncertainties De0r(To) and Dde0r/dT, the
temperature is To = 318.0 K.

Sample e0r (To) De0r(To) de0r/dT � 10�3 [K]�

B0 2.082 0.001 �4.0
B5 2.108 0.001 �4.0
B10 2.155 0.003 �4.0
B20 2.237 0.003 �5.0
B30 2.402 0.003 �5.0
B40 2.443 0.003 �6.0
B50 2.621 0.001 �6.0
B60 2.664 0.002 �6.0
B80 2.875 0.002 �7.0
B100 3.116 0.002 �8.0
In Fig. 4, the continuous lines correspond to the estimations and
the limits of the uncertainty bands (one standard deviation) are
plotted with dashed-lines. As stated before, permittivity data of
DF as a function of temperature are scarce in literature.

It is worth mentioning that in the case of pure diesel fossil, B0,
the uncertainty band is so narrow that its limits cannot be distin-
guished from the continuous line in Fig. 4.

Fig. 5 shows the projection of er0(Bx, T) onto the (er0, Bx) plane.
The symbols correspond to the experimental values of permittivity
and the continuous lines correspond to the first order model of
Eq. (2).
RMS uncertainty of the fitting, De0r, and the determination coefficient R2. The reference

1 Dde0r/dT � 10�3 [K]�1 De0r R2

0.1 0.003 0.997
0.1 0.004 0.993
0.3 0.007 0.979
0.2 0.007 0.990
0.1 0.007 1.000
0.3 0.008 0.990
0.1 0.004 0.998
0.3 0.006 0.996
0.3 0.006 0.997
0.2 0.006 0.997
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Fig. 6. Relative permittivity, er0 , as a function of biodiesel content, Bx, at T = 308.0 K.
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Fig. 6 shows in more detail the fitting of experimental values of
e0r (symbols) to the linear model (Eq. (2)) at T = 308.0 K. The contin-
uous line indicates the fitting and the dashed-lines are the limits of
the uncertainty band (one standard deviation).

From Figs. 5 and 6 it can be seen that the linear model of Eq. (2)
fits very satisfactorily to the experimental data.

As explained in [18], the fittings presented in this work for bio-
diesel from soybean may also be applied, within the stated uncer-
tainties, to biodiesel from other vegetable feedstocks. This was
checked by recalculating the parameters of Table 4 using the val-
ues from Table II of [6]. The RMS value of the difference between
the estimated permittivity values for BD from each feedstock with
those presented here for BD from soybean is less than 1%. This was
to be expected since the permittivity values of fresh biodiesel from
feedstocks of Ref. [6] are very similar to those of fresh biodiesel
from soybean. Therefore, the fittings presented in this work for
fresh biodiesel from soybeanmay also be applied, within the stated
uncertainties, to fresh biodiesel from other vegetal feedstocks.

Moreover, they also apply to used vegetable oils, if adequately
treated [2,10,18].

The fitting parameters of Eq. (2), e0r(B0) and de0r(T)/dBx, are given
in Table 2 at each measurement temperature. Table 2 also presents
the uncertainties, De0r(B0) and Dde0r/dBx, the RMS uncertainty of
the fitting, De0r, and the determination coefficient, R2.

From Table 2 it can be noted that, in all cases, the linear model
of Eq. (2) fits the experimental data very well. In fact, the uncer-
tainty of the estimation of e0r is below 2% in all cases.

Fig. 7 shows the plot of de0r/dBx (symbols), obtained from
Table 2, as a function of the measurement temperature. The contin-
Table 2
Fitting parameters of Eq. (4): er0(B0, T) and de0r(T)/dBx, their uncertainties Der0(B0, T) and Dde
at each measurement temperature.

Temperature [K] e0r(B0) D(e0r(B0)) de0r/dBx � 10�

298 2.13 0.01 1.138
303 2.11 0.01 1.104
308 2.09 0.01 1.094
313 2.08 0.01 1.061
318 2.06 0.01 1.040
323 2.04 0.02 1.015
328 2.02 0.02 0.988
333 2.01 0.01 0.972
uous line corresponds to the model of Eq. (3) and the dashed-lines
indicate the limits of the uncertainty band (one standard
deviation).

Table 3 shows the results of the fitting of de0r/dBx to Eq. (3)
including the fitting parameters, de0r(To)/dBx and d2e0r(To)/dBxdT.
The uncertainties, Dde0r(To)/dBx and Dd2e0r(To)/dBxdT, the RMS

uncertainty of the fitting, D de0rðTÞ
dBx

� �
, and the determination coeffi-

cient, R2, are also shown in the table.
It can be seen that Eq. (3) fits very satisfactorily the dependence

of permittivity with composition, de0r(T)/dBx.
Eq. (4) can also be written as
e0rðBx; TÞ ¼ aþ bT þ cBxþ dTBx ð5Þ

Coefficients a, b, c and d of Eq. (5) were determined by means of
a multi-variate regression using all the experimental data. Table 4
shows the fitting values of the coefficients in Eq. (5), together with
the RMS fitting uncertainty of the permittivity, De0r.

The coefficients agree very well with those calculated from Eqs.
(1)–(3) using the parameters given in Tables 1–3.

Fig. 8 shows a plot of the experimental values of permittivity
(black spheres) and the estimation from Eq. (5) (empty spheres)
as a function of temperature, T, and composition, Bx. The agree-
ment between the experimental values of permittivity and the
estimation from Eq. (5) is very good. The very satisfactory fitting
suggests the possibility of estimating the composition of DF/BD
blends by means of permittivity measurements in the full compo-
sition range.
0
r(T)/dBx, the RMS uncertainty of the fitting, Der0 , and the determination coefficient R2,

2 [%]�1 D(de0r/dBx) � 10�2 [%]�1 De0r R2

0.003 0.03 0.995
0.002 0.02 0.997
0.003 0.03 0.995
0.002 0.02 0.996
0.003 0.03 0.994
0.003 0.03 0.993
0.003 0.03 0.992
0.003 0.03 0.993



Table 3
Fitting parameters of Eq. (5): de0r(To)/dBx and d2e0r/dBxdT, their uncertainties Dde0r(To)/dBx and Dd2e0r(To)/dBxdT, the RMS uncertainty of the fitting, D de0r ðTÞ

dBx

� �
, and the determination

coefficient R2. The reference temperature is To = 318.0 K.

de0r(To)/dBx � 10�2 [%]�1 D(de0r(To)/dBx) � 10�2 [%]�1 d2e0r/dBxdT � 10�5 [%K]�1 D(d2e0r/dBxdT) � 10�5 [%K]�1 D(de0r/dBx) � 10�2 [%]�1 R2

1.040 0.002 4.8 0.2 0.005 0.994
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Fig. 8. Permittivity experimental data (black spheres) and estimations from Eq. (5)
(empty spheres).

Table 4
Fitting parameters of Eq. (5) and RMS uncertainty of the permittivity estimation, Der0 .

a b � 10�3 [K]�1 c � 10�2 [%]�1 d � 10�5 [%K]�1 De0r

3.329 �4.0 2.5 �4.5 0.03

Table 5
Fitting parameters of Eq. (6) and RMS uncertainty of the composition estimation, DBx.

a0 [%] b0 � 10�3 [K]�1 c0 � 10�2 [%]�1 d0 � 10�5 [%K]�1 DBx [%]

3.328 �4.0 2.5 �4.7 2.5
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Fig. 9. Biodiesel content (black triangles) and estimations from Eq. (6) (empty
triangles).
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4.2. Estimation of the composition of diesel fossil fuel blends with
biodiesel

The estimation of the composition of DF/BD blends is of interest
in many technological applications. Since the model of Eq. (5) fits
experimental data very satisfactorily, this suggests the following
model to estimate the biodiesel content from permittivity and
temperature measurements,

Bxðe0r ; TÞ ¼
e0r � a0 � b0T

c0 þ d0T
ð6Þ

The parameters of Eq. (6) were determined by means of a mul-
tiple non-linear regression performed on this equation using all the
experimental data. Table 5 shows the fitting values of the coeffi-
cients and the RMS uncertainty of the fitting of the composition
estimation, DBx.

It must be remarked that the coefficients from Tables 4 and 5
agree very well. Fig. 9 shows the composition of the samples (black
triangles) and the estimation from Eq. (6) (empty triangles) as a
function of temperature and permittivity. It may be seen that
Eq. (6) estimates Bx very satisfactorily as a function of e0r and T.
The RMS uncertainty was below 2.5% in the full range of tempera-
tures and compositions.

This accurate results may be obtained in real-time from a sensor
placed after the fuel filtering system of a Diesel vehicle and used as
an input for an electronic management unit (EMU) for the opti-
mization of the combustion parameters in the engine. This is very
important in order to optimize fuel consumption and to comply
with emissions limits.
5. Conclusions

The relative permittivity of diesel fuel and blends with biodiesel
from soybean oil was determined with an airtight cell, for the full
composition range at temperatures between 298.0 K and 333.0 K
(controlled within ±0.1 K), at frequencies from 1 kHz to 100 kHz.
This frequency range is suitable for the use of low-cost, portable
equipment and also for the development of automotive sensors.
The measurement uncertainty of the permittivity data was below
1%. As it was to be expected from previous works, the permittivity
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did not depend on frequency; therefore, all the results presented in
this work correspond to a frequency of 100 kHz. Measurements at
this frequency minimize the influence of electrodes polarization,
that could alter the results in the case of conductive (deficiently
purified) samples.

At each composition, the relative permittivity decreases linearly
with temperature and, at constant temperature, increases linearly
with biodiesel content.

From these results, a simple model was proposed to estimate
the permittivity of the samples as a function of biodiesel content
and temperature in the full composition range. Experimental data
agreed very well with the model; the RMS uncertainty of the esti-
mation was below 1.2%. This extends previously reported results
for biodiesel-rich blends.

The very satisfactory fitting suggested that it was possible to
estimate the composition of blends from permittivity and temper-
ature measurements. The model parameters for the estimation
were independently determined by a multiple non-linear regres-
sion analysis using all the experimental data. The RMS uncertainty
of the composition estimation was below 2.5% in the full studied
range.

In conclusion, dielectric measurements at 100 kHz may be
applied to estimate accurately the composition of diesel/biodiesel
blends in the temperature range from 298 K to 333 K.
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