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In this work, methods for in-line monitoring of the transesterification reactions of soybean oil with meth-
anol using NIR spectroscopy are developed. Gas chromatography was employed for determining the con-
tents of methyl ester (ME), monoglycerides (MG), diglycerides (DG) and triglycerides (DG) during the
transesterification reaction and used as reference to build partial least squares regression (PLS) and mul-
tiple linear regression (MLR) calibration models employing NIR spectra. Some pre-processing and vari-
able selection strategies of the spectral data were evaluated. Satisfactory RMSEP values were obtained
for the external prediction subset. In addition, a multivariate control chart based on latent variables to
monitor the progress of the reactions is also presented.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Biodiesel is a fuel consisting of long chain alkyl esters, generally
produced by the transesterification of triglycerides with short chain
alcohols (usually methanol or ethanol) in the presence of a catalyst
(KOH, NaOH, H2SO4, etc.). This transesterification is a sequence of
reversible reactions, which contain triglycerides, diglycerides and
monoglycerides (as intermediates), and methyl or ethyl esters
and glycerol (a by-product of reaction) as components.The reaction
is usually carried out in batch reactors and various factors affect the
process such as: variability of feedstocks, free fatty acid (FFA) con-
tent, type of alcohol, type and speed of stirring, concentration and
type of catalysts and temperature. To ensure the quality of the
biodiesel produced, fuel international standards (e.g. European
Standard – EN 14214) establish limits for glycerol, mono-, di- and
triglycerides, alcohol, moisture and free fatty acid. These residues
may be present due to partial conversion or insufficient purification
of the reaction mixture and can lead to engine deposits and fuel
deterioration during storage [1,2].

The conventional approach to assess biodiesel quality is by ana-
lyzing samples, collected at the end of each batch or after the puri-
fication step, using off-line and lengthy analytical methods. Then,
based on the obtained results, a decision about the acceptance,
rejection or reprocessing the batch is taken. This strategy results
in high production costs due to possible process-stops, time con-
suming analyses and batch reprocessing. In the literature, several
analytical methods for off-line monitoring of biodiesel production
and the quality of the final product have been reported, such as the
use of chromatography [3–6], Raman [7], laser [8], and infrared [9]
and near infrared (NIR) based methods [10–16].

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.fuel.2013.06.057&domain=pdf
http://dx.doi.org/10.1016/j.fuel.2013.06.057
mailto:mfp@ufpe.br
mailto:mfernanda.pimentel@gmail.com
http://dx.doi.org/10.1016/j.fuel.2013.06.057
http://www.sciencedirect.com/science/journal/00162361
http://www.elsevier.com/locate/fuel


S.M. de Lima et al. / Fuel 115 (2014) 46–53 47
Analytical methods which allow continuous real time quality
assurance, enable timely corrective actions as well as process
understanding have become a necessity, as stated by the Process
Analytical Technology (PAT) framework [17]. In general, spectro-
scopic techniques have been chosen for this goal, because they
are fast, nondestructive and can be adapted for in- or on-line mon-
itoring of the transesterification of vegetable oils. Nuclear Magnetic
Resonance (NMR) methods have been reported, which are robust,
rapid and allow the quantification of different chemical species
(triacylglycerol, diacylglycerol, fatty acid methy esters) [18–20].
On the other hand, Infrared (IR) and Near Infrared (NIR) spectros-
copies associated with multivariate calibration are being increas-
ingly used as described below.

On-line monitoring of transesterification of soybean oil with
ethanol using FTIR spectroscopy (3707–814 cm�1) has been de-
scribed by Trevisan et al., in 2008 [21]. Ethyl esters contents were
obtained by 1H NMR spectroscopy. Models based on PLS were
developed using several preprocessing strategies and evolving fac-
tor analysis (EFA) for the selection of the spectral variables. The use
of EFA produced relative errors under 3%.

In 2011, Killner et al. [22] developed a method based on a Partial
Least Squares (PLS) regression and NIR spectroscopy to monitor the
progress of the transesterification reactions of soybean oil with
methanol. A spectroscopic flow cell was used for on-line monitoring
the transesterification reaction.1H NMR was employed for estima-
tion of the conversion of glycerides to methyl esters during the
transesterification reaction, and used as reference to build a PLS cal-
ibration model employing data from NIR spectroscopy. Different NIR
spectral ranges were tested to build calibration models to determine
the conversion to methyl esters. The best calibration model was built
employing the spectral range between 5928 and 5959 cm�1

(RMSEC = 1.09% and RMSECV = 1.32% of conversion). This calibra-
tion model was used to predict the convertion of reactions carried
out with temperatures at 20 �C and 55 �C and the RMSEP values ob-
tained were 0.74% and 1.27% of conversion, respectively.

Richard et al. [23] in 2011 developed a fast analytical method
to monitor on-line the transesterification reaction between
triglycerides and ethanol using near infrared spectroscopy. Gas
chromatography was employed as the reference method. The
transesterification reactions were carried out in a one liter batch
reactor, monitored with a NIR probe. PLS regression models using
different data pre-processing methods were developed to deter-
mine the ethyl ester and monoglycerides contents using the spec-
tral range from 4500 to 9000 cm�1. The RMSEP obtained were
1.74% and 1.49% for ethyl ester and monoglycerides contents,
respectively. In 2013, Richard et al. [24] also described the use of
a continous microstrutured device to carry out the ethanolysis of
high oleic sunflower oil. The device they developed allows on-line
monitoring (using a NIR probe) of the transesterification reaction
with ethanol. Partial Least Square regression models were built
between NIR spectra data (spectral regions: 8649–8085 cm�1,
Table 1
Experimental conditions for each transesterification batch and the results obtained by the

T (�C) Catalyst, NaOH (wt%) Time range (min)a Number of batches N

20 1.0 2–200 3 2
20 0.75 2–30 1
20 0.5 2–30 1
45 0.75 2–90 4 1
55 1.0 2–80 4 2
55 0.75 30–90 6

a Time range used for sample acquisition for further chromatographic analysis.
b Only the results are shown which were within the adapted reference method conce
7097–5508 cm�1 and 5050–4476 cm�1) and reference analytical
data (gas chromatography with flame ionization detection,
CG-FID). The ethyl ester contents were predicted with RMSEP
values of 4.10% and 3.52% using reflection and transflectance
probes, respectively.

In the present work, NIR methods for in-line monitoring of the
transesterification reaction with methanol are described. For this
purpose, PLS and MLR models using different strategies of prepro-
cessing of spectra data were developed to determine methyl ester
(ME), monoglycerides (MG), diglycerides (DG) and triglycerides
(TG) content. In addition, multivariate control charts based on con-
tinuous NIR spectra recorded during the reactions were employed
as a multivariate statistical process control tool.

2. Material and methods

2.1. Samples and monitoring of the transesterification reactions

Commercial soybean oils (Liza, acidity 0.29 mg KOH/g, water
content 691.6 ppm, density at 20 �C 0.91882 g/cm3, kinematic vis-
cosity 31.60 mm2/s) were bought in local markets and used in all
transesterification reactions performed in this work. Analytical
grade methanol (Merck), sodium hydroxide (Merck), glacial acetic
acid (Dinâmica) and anhydrous sodium sulfate (Dinâmica) were
also employed. The transesterification reaction was carried out in
a 500 mL batch reactor with temperature controlled by a thermos-
tatized water bath. This reactor was equipped with a thermocouple
and a mechanical stirrer. In addition, an NIR fiber-optic transflec-
tance probe was immersed directly in the reaction mixture for
in-line monitoring of the transesterification reaction.

A 6:1 methanol to oil molar ratio was used with different
amounts of catalyst (NaOH 0.5; 0.75 and 1 w/w% compared to oil
mass). Nineteen batches with temperatures of 20, 45 and 55 �C
were produced. These different conditions, which were chosen
based on Killner et al. [22], allowed variability in the process,
resulting in samples with different conversions. Table 1 shows
the experimental conditions employed; the number of batches
produced under each experimental condition; the time range in
which the samples were taken for further chomatographic analy-
sis; and the number of samples collected.

For each batch, 400 g of soybean oil were transferred to the
reactor and the mechanical stirring was turned on until the desired
temperature was reached. A mixture of methanol and sodium
hydroxide was added to the oil. At the end of each batch, the reac-
tion medium obtained was allowed to stand in order to separate
the organic phase from glycerol. To evaluate the methyl ester
and glycerides contents, samples (20 mL) of the reaction mixture
were collected at different reaction times and the reaction was
immediately stopped by adding 2.0 mL of glacial acetic acid.
Sequentially, these samples were washed with distilled water
and centrifuged three times. At room temperature (20 ± 1 �C),
reference methods.

umber of samples Range of concentration values (wt%)

ME MGb DGb TGb

1 34.1–95.3 0.26–2.65 0.13–9.67 0.34–12.41
7 16.8–83.4 1.15–3.03 3.03–9.94 7.59–17.59
7 5.1–64.1 0.33–2.00 5.50–9.27 18.94
2 66.1–95.3 0.54–3.55 0.34–6.51 0.68–15.75
8 83.9–96.0 0.22–2.08 0.05–2.90 0.05–4.88
7 95.1–97.1 – – –

ntration range.



Fig. 1. In-line monitoring of transesterification reaction of biodiesel: (a) raw (b) derivative spectra.
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anhydrous sodium sulfate was added to the biodiesel and the mix-
ture was then filtered with qualitative filter paper (80 g Unifil,
diameter 12.5 cm, ash content max 0.1%). These samples were ana-
lyzed by off-line gas chromatography using a Shimadzu 17-A
instrument with automatic injection. The methyl ester content
was quantified according to method EN14103. An adapted ASTM
D6584-10a method was used to quantify the MG, DG and TG con-
tents. The concentration range was extended because some sam-
ples had presented high amounts of these compounds at the
beginning of the reactions. The last four columns of Table 1 show
the concentration range of ME, MG, DG and TG (using the adapted
reference methods) obtained for the samples collected under each
experimental condition. It is important to notice that only the re-
sults which were within the concentration range allowed by the
adapted methods are shown. For example, in the batch produced
at 20 �C and 0.5 wt% of catalyst, all the samples (except the one,
collected at 30 min) showed TG concentration values outside the
linear dynamic range of the adapted reference method.

Eight batches ‘‘under control’’ conditions (500 rpm, 55 �C,
0.75 w/w% of catalyst) were employed to build a multivariate con-
trol chart based on latent variables. One additional ‘‘under control
batch’’ and one batch ‘‘out of control’’ (the temperature control
failed for a few minutes) were used to test the generated multivar-
iate control chart.

2.2. NIR spectra acquisition

In-line NIR spectra (13,988–3799 cm�1) of the transesterifica-
tion reaction mixture were acquired using a fiber-optic transflec-
tance probe (Solvias) with a 5.0 mm optical path length
(resolution of 16 cm�1), connected to the FTLA 2000-160 FTIR spec-
trometer (ABB Bomem). One spectrum every 20 s (as an average of
64 scans) was obtained during the reaction using the equipment
kinetic mode. The background spectra were obtained using an
empty transflectance probe. For multivariate regression models
of the ME, MG, DG and TG contents, spectral data were registered
at the moment of the samples collection from the reaction mixture
for chromatograph analysis.
2.3. Chemometric procedure and software

All spectral data were mean-centered before modeling proce-
dures. Some pre-processing strategies of the spectral data were
evaluated for the determination of ME content, such as: baseline
correction plus smoothing, first derivative with Savitzky–Golay
smoothing (second order polynomial using different window
points), Multiplicative Scatter Correction (MSC and EMSC) and
Standard Normal Variate (SNV). The best strategies obtained for
the determination of methyl ester content were also tested for
MG, DG and TG determination.

The sample set was divided into calibration and prediction sub-
sets using the SPXY (sample set partitioning based on joint x–y dis-
tances) algorithm [25]. The SPXY is a Kennard-Stone algorithm
modification. In the SPXY algorithm the sample distances are based
on the independent variable (X) and on the dependent variable (y)
space for the parameter under consideration. These distances are
divided by their maximum values in the data set, in order to assign
equal importance to the distribution of the samples in the X and y-
spaces. Detection and elimination of outliers were carried out
using score, residual (X and y) and leverage plots. All spectral data
were mean-centered before modeling procedures.

Four different strategies of multivariate calibration were evalu-
ated: (1) PLS models using all spectral data (PLS full spectrum); (2)
PLS models performed by using the variables which correspond to
the significant regression coefficients selected by the Jack-Knife
algorithm (PLS/JK); (3) iPLS algorithm applied by dividing the
derivative spectra into 10 non-overlapping interval of equal size,
allowing the construction of PLS models for each interval and the
best range (or combination of ranges) selected on the basis of the
lowest value of the root-mean square error of cross validation
(RMSECV); (4) multiple linear regression using the successive pro-
jections algorithm for variable selection (MLR/SPA) [26].

Full cross-validation (CV) was carried out to select the number
of PLS factors or variables for MLR models. The predictive ability of
the models was evaluated according to the root-mean-square error
of prediction (RMSEP) obtained for the external validation set. An
F-test at a confidence level of 95% was used to assess the statistical



Fig. 2. (a) Scores on PC1 versus scores on PC2 for PCA analysis of the spectral data
collected in-line during the soybean transesterification reaction (55 �C. oil/methol
ration = 1/6, 0.75 wt% catalyst).t0 = initial time, tf = final time and (b) loadings of PC1
and PC2.
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significance of differences between RMSEP values. The F-values
were calculated as the ratio of the squares of the largest and small-
est RMSEP values. This ratio was compared with the critical F(n, n,
0.95) value. In our case n equaled the numbers of samples in the
prediction set, which were 23, 14, 19 and 16 for ME, MG, DG and
TG, respectively. Therefore, F values were 2.05, 2.58, 2.22 and
2.40 for ME, MG, DG and TG, respectively.
Table 2
Best results for the calibration and validation steps for the PLS models developed to predi

Modelling strategy Calibration step (N =

RMSECV

PLS full spectrum baseline/smothing 2.98
PLS/JK baseline/smothing 2.88
PLS full spectrum (first deriv.11 window points) 2.39
PLS/JK (first deriv.11 window points) 2.22
PLS full spectrum SNV/smoothing 2.44
PLS/JK SNV/smoothing 2.13
PLS full spectrum MSC 2.94
PLS/JK MSC 2.51
PLS full spectrum EMSC 2.12
PLS/JK EMSC 1.78
A multivariate control chart based on latent variables of (Princi-
pal Component Analysis, PCA) was built using the spectra collected
from the eight batches produced ‘‘under control’’ conditions.

All computations were performed using the Unscrambler� X.1
(Camo), Matlab�R2010a 1997.10.0.499 (Mathworks) and SIMCA-
P + 12.0.1 software platforms.
3. Results and discussion

During the transesterification of vegetable oils using methanol,
complex mixtures with two immiscible phases are obtained. The
conversion of vegetable oil to its fat acid methyl ester results in
changes in the characteristics of the mixture, such as viscosity
reduction. Because of this complex two phase mixture, a large scat-
tering of radiation with baseline shifts are observed in the spectra
(Fig. 1a). This scattering is reduced along the reaction as a conse-
quence of various effects, for example, changes in viscosity, solubil-
ity, and refrative index. Thus, this physical effect could be used to
monitor the reaction evolution. In this work, however, baseline
shifts were corrected using pre-processing procedures. Fig. 1b
shows derivative spectra of one batch taken as an example. The
spectral regions below 4480 cm�1 and above 9003 cm�1 showed
saturated and poor absorption signals (results not shown), respec-
tively, and so they have been excluded in the present work.

Spectra presented in Fig. 1a show absorption bands assigned to
combination (I: 4540–5060 cm�1), first overtone combination (II:
6700–7500 cm�1), first overtone (III: 5300–6150 cm�1) and second
overtone (IV: 8000–8900 cm�1) regions of C–H stretching. In
addition, bands assigned to second, third and fourth overtones of
the C = O appear at about 5170 cm�1 (V), 7000 cm�1 (VI) and
8621 cm�1 (VII), respectively [27].

Principal component analysis (PCA) of derivative NIR spectra for
transesterification reactions, carried out at 55 �C with 0.75 w/w% of
catalyst, is shown in Fig. 2a. Spectra were acquired from 80 s (t0) to
5433s (tf). As can be seen, PC1 and PC2 are sufficient to predict 98%
of the total variance and PC1 scores allow monitoring the progress
of transesterification reactions with the time indicated. In addition,
adequate reproducibility of the transesterification reactions for
three different batches, taken as examples, can be observed. In
Fig. 2b, the loadings of PC1 and PC2 are shown. For PC1 the main
loadings are assigned to first overtone of C–H stretching and sec-
ond overtone of the C = O bonds. PC2 also show important loadings
assigned to the first, third and fourth overtones of C = O.

As described before, detection and elimination of outliers were
carried out using score, residual (X and y) and leverage plots. In
general, most of the outliers were samples collected at the begin-
ning of the reactions. This fact can be attributed to: (a) the system
might not have been sufficiently homogenized owing to the
complexity of the reaction mixture, with two immiscible phases,
(b) as the reaction is very fast, the sample analyzed by the
ct content of methyl ester (ME).

50) Validation step (N = 23)

RCal LVs RMSEP Rpred

0.92 3 1.99 0.97
0.93 3 1.99 0.97
0.95 6 1.51 0.98
0.96 4 1.60 0.98
0.95 9 1.91 0.98
0.96 8 2.81 0.94
0.93 8 2.25 0.97
0.97 6 2.68 0.99
0.96 9 2.31 0.98
0.97 5 2.60 0.99



Table 3
Best results for the calibration and validation steps for the PLS models developed to predict monoglycerides (MG), diglycerides (DG) and triglycerides (TG) contents.

Parameter Modeling strategy Calibration step Prediction step

NCal RMSECV RCal LVs Npred RMSEP Rpred

MG (wt%)a PLS/JK (Deriv. 9 window points) 50 0.23 0.95 4 14 0.24 0.96
DG (wt%)b PLS/JK (Deriv. 9 window points) 50 0.58 0.98 3 19 0.35 0.99
TG (wt%)c PLS/JK (Deriv. 9 window points) 45 1.18 0.97 2 16 0.68 0.98

Concentration range.
a 0.22–3.03 wt%.
b 0.05–9.94 wt%.
c 0.05–18.94 wt%.

Fig. 3. Normalized significant PLS regression coefficients selected by the JK
algorithm for ME, MG, DG and TG determination.
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reference method might not have been representative of the spec-
trum obtained. As already mentioned, samples with concentration
values outside the adapted reference method concentration range
have also been excluded.

Table 2 summarizes the best results obtained for ME content
using PLS regression with different pre-processing strategies.
RMSEP values varied between 1.51 and 2.81 %w/w. As can be seen,
the better predictive ability was obtained using first derivative
with Savitzky–Golay filter (second-order polynomial and 11 win-
dow points). It is worth noting that when this pre-processing strat-
egy is used with Jack-Knife algorithm, a statistically similar result
is obtained using fewer latent variables, according to the F-test at
95% confidence level. Models using baseline correction also present
results similar to those obtained with derivative spectra using few-
er latent variables. However, analyzing the spectra after this pre-
processing, it could be seen that this strategy did not effectively
correct the effect of radiation scattering (results not shown). There-
fore, this was not considered for the present purpose. All other
strategies, SNV, MSC and EMSC show worse results, which are sta-
tistically different from those obtained with derivative and base-
line strategies according to the F-test at 95% confidence level.

Comparing the results obtained using PLS/JK derivative spectra
with those described by Richard et al. [23,24] for on-line NIR mon-
itoring of ethanolic transesterification using batch reactors or
microreators, the present results are better. It is important to men-
tion that the reaction with methanol gives a more complex two
phase mixture than that with ethanol. On the other hand, the pres-
ent results are slightly worse than those described by Killner et al.
[22] for on-line monitoring of the transesterification reactions of
soybean oil with methanol, whose RMSEP values were 0.74% and
1.27% of conversion for two different batches. The results of the
present work were obtained, however, using samples collected
from different reaction times and batches, which introduced more
variability to the external validation data set. The present results
for ME content is better than that described by Pinzi et al. [14]
for off-line NIR monitoring of transesterification using multiple
feedstocks (sunflower, maize and olive–pomace oils).

The best results obtained for monoglycerides (MG), diglycerides
(DG) and triglycerides (TG) are presented in Table 3. In general, all
the evaluated modeling strategies show similar prediction abilities
among themselves at 95% confidence level (results not shown).
However, it was observed that the PLS/JK models using Savitzky–
Golay derivative spectra required a fewer number of latent vari-
ables, which show similar results independent of the number of
window points. Therefore, these models are more parsimonious.
For this reason, only the results obtained by PLS/JK models using
derivative spectra with 9 window points are presented.

The RMSEP (0.24 wt%) obtained for MG content is better than
that described in the literature, when the reaction was monitored
on-line using ethanol [23] or off-line using methanol [14]. Up to
now, no works have been found in literature, which use NIR in-line
monitoring of the DG and TG contents. The present results for both,
DG and TG contents are better than those obtained off-line by Pinzi
et al. [14] who worked with three different feedstocks.

The significant PLS regression coefficients selected by the JK
algorithm are shown in Fig. 3 for PLS ME, MG, DG and TG models.
As can be seen, different significant regression coefficients and
consequently different spectral information are used for ME, MG,
DG and TG models. In general, the most significant regression coef-
ficients for the ME content correspond to variables in the first over-
tone region (5920–6190 cm�1) and first overtone combination
(6790–7097 cm�1) of C–H stretching (Fig. 3a). It is worth noting



Fig. 4. Predicted versus reference plots obtained with the best modeling strategy for: (a) methyl ester (ME), (b) monoglycerides (MG), (c) diglycerides (DG) and (d)
triglycerides (TG).

Table 4
Best results for the calibration and validation steps for the PLS models (using iPLS) and MLR models (using SPA algorithm) to predict methyl ester (ME), monoglycerides (MG),
diglycerides (DG) and triglycerides (TG) contents.

Parameter iPLS SPA/MLR

Spectral range (cm�1) RMSECV RCal LVs RMSEP Rpred Na RMSECV RCal RMSEP Rpred

ME (wt%) 5847–6302 2.66 0.94 4 3.43 0.91 9 2.11 0.96 1.98 0.97
MG (wt%) 4937–5392 0.28 0.93 3 0.26 0.97 14 0.24 0.95 0.29 0.95
DG (wt%) 5847–9003 0.69 0.97 2 0.41 0.99 7 0.51 0.99 0.40 0.99
TG (wt%) 5847–6302 1.13 0.97 3 0.72 0.99 3 0.85 0.98 0.54 0.99

a Number of selected variables by SPA.

Fig. 5. Multivariate control chart. B out = batch ‘‘out of control’’, B under = batch ‘‘under control’’.
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that the spectral range between 5920 and 6190 cm�1 includes that
described in the literature (5928.7–5959.6 cm�1) for ME determi-
nation [13,22]. For MG, DG and TG modeling, the most significant
regression coefficients correspond to variables also included in
the second overtone (8000–8800 cm�1) regions of C–H stretching.
It is worth noting that the regression coefficients to MG, DG and TG
are quite different among themselves.

Fig. 4 shows the predicted versus reference plots obtained from
the best modeling strategies for predicting ME, MG, DG and TG
contents. As can be seen, the points are randomly distributed
around the bisectrix line along the entire range of y-values and
no systematic error is present in the predictions.

Table 4 shows the best results obtained for ME, MG, DG and TG
contents using iPLS and SPA/MLR strategies. As can be seen, for
ME content the result obtained with iPLS strategy is worse and
statistically different from the results obtained with PLS/JK
(Table 2). On the other hand, SPA/MLR shows similar prediction
ability (according to the F-test at 95% confidence level) to PLS/JK
using only nine spectral variables, which are mainly assigned to
first overtone (5300–6150 cm�1) region of C–H stretching. This
spectral region has been described for the determination of ME
[22–23].

In general, for MG, DG and TG content (Table 4), both iPLS
and SPA/MLR strategies show prediction abilities according to the
F-test at 95% confidence level, similar to those obtained with the
PLS/JK model (Table 3). It is worth noting that the SPA/MLR model
for TG content shows the optimum RMSEP, using only three spec-
tral variables, which are assigned to first overtone (5894 cm�1) and
first overtone combination (7152 and 7476 cm�1) regions of C–H
stretching. In addition, the fourth overtones of the C = O appear
at about 7000 cm�1.

Finally, for the multivariate control chart [28], statistical limits
were estimated (at 3 standard deviations) using the scores of PC1
and the eight batches produced ‘‘under control’’ conditions
(Fig. 5). The additional batch produced ‘‘under control’’ conditions
shows scores within the control limits. It is also possible to identify
the batch ‘‘out of control’’, which changed its profile between 13
and 33 min due to a temperature perturbation produced during
the reaction.
4. Conclusion

The NIR methods developed were successfully applied to in-line
monitoring of the transesterification reaction of soybean oil, using
methanol and NaOH. The composition (methyl ester, monoglyce-
rides, diglycerides and triglycerides) of the reaction mixture during
transesterification were predicted using PLS and MLR regression
models, with satisfatory RMSEP, which were statistically similiar
among themselves. SPA/MLR can be considered as a simpler mod-
eling strategy because it uses a smaller subset of wavenumbers
(e.g. three to fourteen spectral variables). In addition, control
charts built using NIR spectra during the transesterification reac-
tion proved to be a useful multivariate statistical process control
tool, allowing real time identification of small changes in the pro-
cess behavior.

These NIR multivariate models allow a more effective control of
the transesterification reactions, which can reduce the time and
cost of reactions and improve the quality of the final products.
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