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A B S T R A C T

Solvent-based post-combustion CO2 capture plant has to be operated in a flexible manner because of its high
energy consumption and the frequent load variation of upstream power plants. Such a flexible operation brings
out two objectives for the control system: i) the system should be able to change the CO2 capture rate quickly and
smoothly in a wide operating range; ii) the system should effectively remove the disturbances from power plant
flue gas. To achieve these goals, this paper proposed a multi-model predictive control (MMPC) strategy for
solvent-based post-combustion CO2 capture plant. Firstly, local models of the CO2 capture plant at different
operating points are identified through subspace identification method. Nonlinearity analysis of the plant is then
performed and according to the results, suitable local models are selected, on which the multi-model predictive
controller is designed. To enhance the flue gas disturbance rejection property of the CO2 capture plant and attain
a better adaption to the power plant load variation, the flue gas flow rate is considered in the local model
identification as an additional measured disturbance, thus the predictive controller can calculate the optimal
control input even in the case of flue gas flow rate variation. Simulation results on an MEA-based CO2 capture
plant developed on gCCS show the effectiveness and advantages of the proposed MMPC controller over wide
range capture rate variation and power plant flue gas variation.
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1. Introduction

1.1. Background

With the increasing concern on global warming and its potential
effect on climate, ecology and environment, CO2 emission reduction has
been regarded as a key step in the international community to alleviate
these issues [1]. As the main power generation devices, coal-fired
power plants (CFPPs) are the largest stationary emission source of CO2

worldwide [2]. For this reason, while extensively promoting the re-
newable energy and making effort to improve the efficiency of con-
ventional CFPPs, CO2 capture from CFPPs has been recognized as the
most effective and direct way to achieve a large-scale CO2 emission
reduction in the future 30 years [3].

Among various CO2 capture technologies, solvent-based post-com-
bustion CO2 capture (PCC) using MEA solvent proves to be the most
promising technology for CO2 capture in power plants. Because it is
well suited for treating flue gas at low CO2 partial pressure of power
plants, and can be easily installed for existing power plants retrofitting.
In recent years, many PCC pilot plants have been developed and put
into use [4,5].

The biggest issue for the operation of solvent-based PCC plant is the
high heat consumption used for solvent regeneration. Such heat is
generally provided by the steam extracted from the intermediate/low
pressure turbine of the power plant, thus results in a significant power
reduction of the CFPPs. To this end, many steady-state optimization
studies such as equipment and solvent selection [6–9], system config-
uration [10–12], parameter settings [8,9] have been carried out, trying
to improve the efficiency of the capture system. However, in the face of
high energy consumption, more and more researchers realize that im-
plementing flexible dynamic operation for CO2 capture is of great im-
portance to make the technology be widely used in power engineering
practice [4,5,13–20]. During the electricity peak load, the capture
system should be able to reduce its capture rate rapidly to avoid the
high cost of energy. On the other hand, when there is tight restriction
on CO2 emissions or the carbon price is higher, the capture system
could increase its capture rate quickly [21].

Another big issue, which has critical impact on the operation of the
PCC system is from the integrated CFPPs. In the context of growing
electric power demand, the magnitude of the cyclic variation of the grid
load is increased, and the extensive use of renewable sources such as
solar, wind and hydro power are severely influenced by the season and
the weather condition, thus, CFPPs have to participate in the grid power
regulation frequently and quickly in a wide range nowadays [22]. As a
result, the flue gas flow rate of CFPPs will follow the load variation and
change rapidly, which brings in strong disturbances to the capture plant
[5]. Therefore, to achieve a wide range application, the PCC plants are
forced to have a flexible adaption to the flue gas flow rate variation of
upstream CFPPs.

1.2. Motivation

To overcome the aforementioned issues and to attain a flexible
operation of PCC system, a well-designed control system is required to
ensure the correct operation of the entire process, i.e. to follow the
capture rate demand rapidly and smoothly in a wide range and to al-
leviate the influences of flue gas variation effectively.

Currently, most of the control studies of the PCC system are still
stayed in the conventional PI/PID control stage [4,5,15,16,23–26] .
Such a design has been proved for its value for regulation and dis-
turbance rejection during normal operation around a given capture
rate, however, it may not meet the design specifications for a high level
flexible operation of PCC process, the reasons are: i) The CO2 capture
system is a multi-input multi-output (MIMO) system, while the PI/PID
control systems are designed based on separate single-input, single-
output (SISO) loops, thus the interactions among different variables and

properties cannot be taken into account; ii) Due to the slow dynamics of
chemical reaction and heat transfer, the PCC system has a typical large
inertial behavior [5], while the control action of PI/PID controllers can
only be made in the presence of deviation. This control manner may not
meet the quick regulation need of the PCC system; iii) in general, the
parameters of the PI/PID controllers are set at a given load condition.
Therefore, when the flue gas flow rate of the upstream CFPP varies or
the capture system changes its capture rate in a wide range, the op-
eration performance of the PCC system is degraded because the dy-
namics at other operating points may become different.

Recently, model predictive control (MPC) [27], which uses a process
model to predict the future response of the plant and calculate the
optimal future control sequence has been employed in the PCC system
control [13,14,17,18,28–34]. Since MPC is naturally suited for multi-
variable and large inertial system control, better performance has been
shown compared with the conventional PI/PID controls. For most of the
MPC designs in the CO2 capture system, a linear model developed
around a given operating point is used for the prediction
[13,17,18,29,30,33,34], such a design may not be suited for a wide
range capture rate variation because it is impossible for the linear
model to approximate the global nonlinear dynamics. The resulting
model mismatch will cause a severe control performance degradation
or even unstable of the closed-loop system. To this end, a few scholars
proposed to use nonlinear model predictive control (NMPC) [14,28,31,
32]. However, it is hard to develop a satisfactory nonlinear model with
high accuracy and good structure easy for advanced control design.
Moreover the nonlinear optimization during the implementation of the
NMPC is weak in robustness and time consuming.

On the other hand, the validations of the control systems in the case
of upstream flue gas flow rate variation have been made in some stu-
dies. To our best knowledge, it still has not been studied regarding how
to actively deal with its impact in the control design stage. Therefore, in
spite of the effectiveness of MPCs in tracking the desired capture rate, it
cannot remove or alleviate the flue gas disturbances rapidly.

These shortcomings motivate us to investigate the nonlinearity
distribution of the solvent-based PCC system and to design a multi-
model predictive control (MMPC) system using the combination of
several local linear models and predictive controllers. The flue gas flow
rate is considered as a measured disturbance in the developed model, so
that correct model prediction can be made even in the presence of flue
gas flow rate variation. The resulting MMPC system is expected to have
a satisfactory capture rate tracking performance and flue gas dis-
turbances rejection performance, and to provide a powerful method
towards the flexible operation of the PCC system.

1.3. Literature review

The earliest studies of solvent-based PCC process were focused on
the steady state optimization. A steady state plant model was first de-
veloped and simulated under various conditions such as different sol-
vent concentrations, operating parameters and configurations, better
choices which can provide a lower cost for the capture system can then
be found through comparisons [6–12].

The steady state model is impossible to represent the dynamics of
this process, thus cannot provide enough information for control de-
sign. For this reason, much attention has been paid to the dynamic
modeling of the solvent-based PCC system . In the first stage, models for
standalone absorber and stripper were developed, the behavior of these
columns was then tested through dynamic simulations. For example,
Lawal and et al. [35] built a dynamic absorber model using both the
equilibrium and rate-based approach, and the dynamic simulation
showed that the ratio between lean solvent flow rate and flue gas flow
rate is critical to maintain the performance of absorber. Ziaii and et al.
[36] developed a model for the amine regenerative system, dynamic
simulation found that lean solvent loading has key influence on the
reboiler temperature. Nevertheless, analysis of the stand-alone columns
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is insufficient to thoroughly understand the dynamics of the integrated
PCC process since there exists a strong coupling between two linked
columns. To this end, many efforts have been made to develop detailed
first principle models for the PCC system using various simulation
software such as gPROMS [4,5], Aspen Dynamics [15,16], Modelica
[37], Matlab [38] and gCCS [39,40]. Numerous simulations are then
performed and the transient influences of flue gas flow rate/composi-
tion, rich/lean solvent flow rate and reboiler heat duty on CO2 capture
rate and thermal energy consumption are fully investigated. These
studies clearly showed that the influence of lean solvent flow rate and
reboiler heat duty on the capture rate has big time constant, while the
variation of flue gas flow rate will change the capture rate very quickly,
moreover, there are strong couplings among key loops of the capture
system. In many of these studies, it was also pointed out that the cap-
ture system is highly nonlinear [41,42]. These investigations provided
good guidance for the controller design. As an alternative method to the
first-principle modeling, data-driven identification of PCC system has
also been studied. In [43], the technique of bootstrap aggregated neural
network is used to develop an 8×2 first order model for the PCC
system. In [44], NARX models are identified for the absorber, heat
exchanger and stripper respectively, these models are then combined
according to the physical process to form the integral PCC process
model. Although the data-driven model may not be as accurate as the
first principle model, it can be easily developed without much knowl-
edge of the process and design specifications. Moreover, the explicit
model structure is more convenient and direct for the control design
purpose.

Based on the dynamic modeling and process analysis, many studies
have been done in the control system development of PCC process. Most
of these studies focused on the PI/PID based control loop design. Lawal
et al. [4,5], Lin et al. [15] both proposed a PI based control structure,
which used the lean solvent flow rate to control the capture rate and the
extracted steam flow rate to control the reboiler temperature. Such a
design can attain a quick control of the capture rate even in the pre-
sence of flue gas flow rate and CO2 concentration change. To maintain
the hydraulic stability in the absorber and stripper, Lin et al. [16]
proposed another structure, which kept the lean solvent flow rate
constant and used the lean solvent loading to regulate the CO2 capture
rate. Nittaya et al.[23] investigated the interactions among multi-
variables within the PCC system through Relative Gain Array (RGA)
analysis. The input-output variables which have the strongest re-
lationship were paired in one control loop. A 6-input 6-output PI con-
trol system was then developed centering on manipulating extracted
steam flow rate to control the CO2 capture rate. In [24–26], variables
which have the closest relationships with the performance of PCC
system were selected as controlled variables according to the steady
state optimization results, SISO PI control loops were then designed for
these variables.

To overcome the SISO PID control's drawbacks in dealing with
strong coupling multi-variable system and large inertial behavior, MPCs
have been applied in the PCC process to achieve a better flexible control
performance. The first attempt was made by Bedelbayev et al. [28],
who directly used an first principle model based predictive controller
for the standalone absorber column. Simulation studies showed that the
proposed MPC has a satisfactory performance in case of capture rate
tracking and flue gas flow rate variation. In [13], a linear MPC was
devised in a double-layer optimal solvent regeneration control system
to achieve a fast track of the optimal set-points. In [17,29–32], multi-
variable MPCs were developed to control the key variables of the in-
tegrated PCC process. Owing to the outstanding advantages of MPC in
handling strong coupling, large inertial and constraint issues, their re-
sults all showed that superior performance can be attained by the MPC
compared with the PI/PID based control configurations. In [18,33],
energy consumptions and CO2 emissions were considered in the MPC's

objective function, and an optimal scheduling sequence of the PCC
plant was calculated.

Model is the fundamental and most important element in the MPC
design, its accuracy and expression determine the controllers' perfor-
mance and complexity to a large extent. In most of the mentioned MPC
works, a linear model of the PCC system is utilized
[13,17,18,28–30,33,34]. However, because the linear model is im-
possible to approximate the behavior of nonlinear plant, the designed
MPC is only suited for a small operating range change. In [14,31,32]
nonlinear identified or analytical models were directly used for MPC
design, however, the nonlinear optimization solving large number of
differentia equations lacks of robustness and is time consuming.

1.4. Novel contributions

To overcome the aforementioned issues, this paper proposes an
MMPC for flexible operation of the solvent-based PCC process, the main
contributions and novelties of the paper are given as follows:

1) a nonlinearity investigation is made for the solvent-based PCC
process using the method of gap-metric;

2) according to the nonlinearity investigation results, an MMPC is de-
signed for a wide range capture rate change of the CO2 capture
plant;

3) the flue gas flow rate is taken into account as a measured dis-
turbance in the MPC design, so that correct model prediction can be
made even in the presence of flue gas flow rate variation, and a
satisfactory flue gas flow rate disturbance rejection performance can
be attained by the proposed MMPC.

The schematic diagram of the proposed MMPC is shown in Fig. 1.
Set-point (for carbon capture rate) can be given by the user. Flue gas
flowrate changes according to power plants operating load, the signal is
utilized in the MMPC design framework to achieve an effective flue gas
flowrate disturbance rejection. According to the current CO2 capture
rate, at each sampling time, the local predictive controllers are com-
bined together through the membership function and the calculated
global control action is implemented on the capture plant. In essence,
this research proposes to use the combination of multiple MPCs de-
signed at different operating points to replace one NMPC for the whole
operating range.

1.5. Outline of the paper

Section I gives the background, motivation and novel contribution
of this paper. Section II briefly describes the developed simplified dy-
namic model for solvent-based carbon capture based on the gCCS (gCCS
was developed in gPROMS for power plants, carbon capture, transport
and storage by PSE Ltd based in London and is commercially available).
The nonlinearity investigation and the MMPC system design is pre-
sented in Section III and the validation of the controllers is described in
Section IV. Finally, conclusions are drawn in Section V.

2. System description

A dynamic model of the solvent-based carbon capture plant is de-
veloped and used as a simulation platform for control design and va-
lidation. The PCC plant under consideration is matched with an 1 MWe
coal-fired power plant, which can produce 0.13 kg/s flue gas (CO2

concentration: 25.2 wt%) at full load condition. 30 wt% MEA solvent is
used as the sorbent and the specifications of the equipment such as
absorber, stripper, reboiler, condenser and cross heat exchanger are
selected according to the model developed in [5], which has been va-
lidated through operating data of pilot capture plant. To provide a high-
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fidelity description of the PCC process, the model for these unit op-
erations were developed from the first-principles and then connected
based on the working process of CO2 capture using the gCCS toolkit
[39,40]. The process topology of the PCC model developed in gCCS is
presented in Fig. 2.

For the control system of the PCC process, many variables need to
be strictly controlled to guarantee a safe and efficient operation of the
plant. Among them, the CO2 capture rate y1,

=
−

y
CO in the flue gas CO in the clean gas

CO in the flue gas1
2 2

2 (1)

and the reboiler temperature y2 are two of the most critical variables
[4,5,15]. The capture rate indicates whether the capture system can
fulfill the carbon capture task according to the environmental protec-
tion requirements. Reboiler temperature is closely related to the lean
solvent loading, which determines the CO2 absorption ability of the
solvent, and an excessively high temperature will cause solvent de-
gradation. For this reason, this paper is focused on controlling these two
key variables, the lean solvent flow rate u1 and turbine extracted steam
flow rate u2 are selected as manipulated variables because they have big
influences on the capture rate and reboiler temperature [4,5,15]. For

Fig. 1. Schematic diagram of the proposed MMPC for the solvent-based post combustion CO2 capture process.

Fig. 2. Schematic diagram of the PCC process as presented in gCCS.
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other variables such as sump tank level, reboiler/condenser pressure
and so on, conventional PI controllers are designed to regulate them
within a given operating range.

Fig. 3 shows the step response test results around 90% capture rate
operating point for the considered variables, which can guide us in the
controller design:

1) As indicated in the left column of Fig. 3, an increase of lean solvent
flow rate can quickly increase the CO2 capture rate. However, since
the steam supplied to the reboiler does not change, the reboiler
temperature will drop and less CO2 will be stripped off the solvent
and the loading of the solvent to the absorber will rise. Therefore,
the capture level will drop after a while;

2) As indicated in the middle column of Fig. 3, turbine extracted steam
flow rate can change the CO2 capture rate ultimately. However, its
influences on the capture rate and reboiler temperature have large
time constants;

3) As indicated in the right column of Fig. 3, the flue gas flow rate will
change the CO2 capture rate immediately because “the capture rate
is defined as (CO2 in the flue gas− CO2 in the clean gas)/ CO2 in the
flue gas”, it will influence the reboiler temperature slowly and then
further change the CO2 capture rate.

These step response tests showed that the key variables within the
PCC process are strongly coupled and has a large inertial behavior, the
external flue gas flow rate has a significant impact on the system.
Moreover, the wide range flexible operation of the capture process
brings severe nonlinearity to the system and higher requirements for
the control. Therefore, we propose an MMPC system for the solvent-
based PCC process to overcome the weaknesses of the conventional
controllers.

3. Nonlinearity analysis and multimodel predictive control design

3.1. Nonlinearity analysis of CO2 capture system

Under the ordinary MPC design framework, modeling is the first and
foremost important step because both the control performance and
computational complexity heavily depend on the model's accuracy and
structure. For the multi-model control system development, it is im-
portant to know the level and distribution of the nonlinearity along the
whole operation range so that a minimum number of local linear
models can be selected and combined to approximate the nonlinear
behavior of the plant. To this end, the nonlinearity of the PCC process
along the considered operating range is analyzed first using the ap-
proach of gap-metric, which is a measure of the distance between linear
models around adjacent operating points [45–46].

Because flexible operation of the PCC process requires the control
system to be able to change the capture rate quickly in a wide range and
meanwhile have a good adaptation to the power plant flue gas flow rate
variation, the nonlinearity level along the capture rate side and flue gas
side both need to be analyzed.

To investigate the nonlinearity level along the capture rate side, we
keep the flue gas flow rate fixed at 0.13 kg/s to avoid its influences. The
method of subspace identification is then used to identify the local state
space linear models around 50%, 60%, 70%, 80%, 90% and 95% cap-
ture rate points (the reboiler temperature is kept around 383 K during
the identification experiment). The gap metric values between the ad-
jacent linear models are calculated and shown in Fig. 4. The gap value
is bounded between 0 and 1, and a large value represents a large dif-
ference between the two linear models, thus reflects a strong non-
linearity along this range [45–46].

For the flue gas side investigation, we keep the CO2 capture rate

Fig. 3. Responses to three individual step tests for the PCC model developed on gCCS (Left column: step response of lean solvent flow rate u1; Middle column: step response of turbine
extracted steam flow rate u2; Right column: step response of power plant flue gas flow rate d).
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within 70%-80% operating range, and identify the local state space
linear model at 0.07 kg/s, 0.10 kg/s, 0.13 kg/s and 0.15 kg/s operating
points (the reboiler temperature is kept around 383 K during the
identification experiment). The gap metric value are calculated as
shown in Fig. 5.

Figs. 4 and 5 show that along the CO2 capture rate side, the level of
nonlinearity increases as the capture rate increases, it is weak between
50% and 90% operating range, but strong around 95% operating point.
On the other hand, along the flue gas side, the level of the nonlinearity
is not strong within the range of 0.07–0.15 kg/s. Although increasing
the number of local model/controllers will enhance the performance of
the multi-model control system, it will also increase the complexity of
the system structure and the computational effort. Therefore, according
to the nonlinearity analysis results, we develop three local models and
predictive controllers around 50%, 80% and 95% CO2 capture rate
points to compose the integrated multi-model system, the flue gas flow
rate is taken into account in the local model/controller development as
an measured disturbance.

3.2. MMPC of PCC process

3.2.1. Local disturbance model with flue gas flow rate disturbance
Because the flue gas flow rate d can be considered as a measured

disturbance, the following state space disturbance model can be used as
a local prediction model:

⎧
⎨⎩

= + +
= + +

+x Ax Bu Ed
y Cx Du Fd

k k k k

k k k k

1

(2)

where =u u u[ ]k k k T1 2 is the input vector composed by the lean solvent
flow rate u1 and turbine extracted steam flow rate u2, =y y y[ ]k k k T1 2 is
the output vector composed by the CO2 capture rate and reboiler
temperature, dk is the flue gas flow rate, xk is the state vector; A, B, C, D,
E, F are the local model matrices.

Eq. (2) can be rewritten into an augmented form (3),

⎧
⎨⎩

= +
= +

∼
∼

∼
∼

+x Ax B u
y Cx D u

k k k

k k k

1

(3)

where =∼u u d[ ]k k
T

k
T T is the augmented input, and =∼B B E[ ],

=∼D D F[ ] are the augmented system matrices. Since Eq. (3) is a ty-
pical state space type model, with the input, output and disturbance
data being collected, conventional subspace identification approach can
be directly used to identify the local system matrices.

To ensure that the generated data are suited for the local model
identification, we keep all the control loops within the gCCS model
closed except the CO2 capture rate and reboiler temperature loops. The
excitation signals for flue gas flow rate, lean solvent flow rate and
turbine extracted steam flow rate are then designed and implemented
on the gCCS model to achieve a persistent excitation of the system
around the given CO2 capture rate and reboiler temperature set-points.
The corresponding data are then generated and collected for system
identification.

The method of subspace identification is selected for the local model
identification due to its following advantages:

a) it can identify the state-space model, which is suitable for advanced
multi-variable control design directly from the input-output data;

b) the subspace identification is based on the computational tools such
as orthogonal triangular decomposition and singular value decom-
position (SVD), thus is computational efficient, and can avoid the
problem of local minimum and convergence;

c) the system order can be easily selected during the identification
procedure.

d) The detailed algorithm can be found in [47] and is not repeated
here.

Remark 3.1 Different from the conventional MPC, the flue gas flow
rate is considered in the prediction model (2) in the proposed method.
Therefore, a more accurate prediction in the presence of flue gas flow
rate variation can be made, and a quick rejection of this disturbance
may be achieved by the developed MPC.

Remark 3.2 CO2 concentration in the flue gas can be another factor
which have significant impact on the PCC process. However, during the
load change of coal-fired power plants, CO2 concentration in flue gas
only varies within a very small range (According to the design speci-
fication of a 1000MWe supercritical coal-fired power plant, CO2 con-
centration in flue gas varies from 21.62 wt% to 22.86 wt% corre-
sponding to power plant load changes from 50% to 100%, the variation
is typically less than 1.5%). The reason is that the flue-gas oxygen
content is strictly controlled by the power plant combustion system
during the operation and meanwhile a suitable ratio between the
amount of fuel and supplied air is always maintained to guarantee the
efficiency of the combustion [48]. For this reason, CO2 concentration
variation is not considered in this study.

3.2.2. Local predictive control design
Since the identification method is used for the local state-space

model development, the derived state variables do not have physical
meanings and thus cannot be measured. For this reason, build the fol-
lowing observer (4) to estimate the state x is necessary for the model
prediction:

̂ ̂ ̂
̂ ̂

= + + −

= +

∼

∼
+x Ax B u K y y

y Cx D u

[ ]͠

͠
k k k k k

k k k

1

(4)
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Fig. 4. Gap metric values between adjacent linear models along the CO2 capture rate side.
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in which the symbol “^” indicates the estimate. Following the method in
Feng [49], the observer gain K can be calculated if there exist matrices
H and G, and a symmetric positive definite matrix X, such that the
following LMI problem is feasible:

⎡
⎣⎢

+ − +
+

⎤
⎦⎥

>H H X HA GC
HA GC X

( ) 0
T T

(5)

and the observer gain K=H−1G.
Then considering the following dynamic control objective function:

̂ ̂= − − +J y r Q y r u R u( ) ( ) Δ Δf f
T

f f f f
T

f f (6)

where ̂ ̂ ̂ ̂= ⎡⎣
⋯ ⎤⎦+ + +y y y yf k

T
k
T

k N
T T

1 2 y is the prediction of future output
within the predictive horizon Ny, it can be expressed by the future
augmented input sequence = ⋯∼ ∼ ∼ ∼

+ + +u u u u[ ]f k
T

k
T

k N
T T

1 2 u for a control
horizon Nu, by stacking up the predictive model (3) according to the
current augmented input ∼uk, output yk and estimated state ̂xk:

̂ ̂ ⎜ ⎟= + ⎛
⎝

⎞
⎠

+
∼
∼y ψ x ψ
u
u

ψ yf x k u
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y k

(7)
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Substitute Eqs. (7) and (8) into the objective function (6), and at

each sampling time, the optimal future control sequence uf can be
calculated by minimizing (6) subject to the input magnitude and rate
constraints (9) and (10),

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

⩽ ⩽
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

I
I

I

u u

I
I

I

uf

2

2

2

min

2

2

2

max

(11)

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

⩽ ⎡
⎣

⎤
⎦

⩽
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

I
I

I

u ψ
u
u

I
I

I

uΔ Δk
f

2

2

2

min

2

2

2

max

(12)

and the first element in uf, uk+1 can be obtained as the optimal local
control action.

Remark 3.3 Note that only the current flue gas flow rate value dk can
be measured at time instant k, and its future values dk+1, dk+2,…,dk+Nu

are unknown to the system. Therefore, we assumed that the future
values of flue gas flow rate are fixed as dk over the control horizon Nu in
this work, which brings the optimal control sequence into a suboptimal
one. If future flue gas flow rate can be estimated correctly by the power
plant, the information can be used to further improve the control per-
formance.

3.2.3. Integral action for offset free tracking
In spite of the effectiveness of advanced identification methods, the

model mismatch is unavoidable, therefore it is necessary to include the
integral action into the predictive controller so that an offset-free
tracking of the desired set-points can be attained.

To add the integral action, an incremental form of augmented model
(3) is used for model prediction [46]. Following the same procedure,
the future output can be predicted by:
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At each sampling time, substitute Eq. (11) into the objective func-
tion (6), the optimal future incremental control sequence Δuf can be
calculated by minimizing (6) subject to the input magnitude and rate
constraints (12) and (13). The value of = ++ +u u uΔk k k1 1 can then be
obtained as the optimal local control action.

3.2.4. Fuzzy membership function design
With the three local predictive controllers being developed, a three

rule fuzzy membership function ω y( )i k1 is designed as shown in Fig. 6 to
connect them smoothly together and build the integrated MMPC system
for the PCC process.
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CO2 capture rate is selected as the scheduling variable and ac-
cording to its current value y1k, the fuzzy membership function value
for the three local predictive controllers ω y( )i k1 , i=1, 2, 3 can be ob-
tained. The global optimal control action

∑=+
=

+u ω y u( )k
i

i k k
i

1
1

3

1 1
(16)

can be calculated at each sampling time and implemented on the
PCC system to achieve a wide range flexible control ( +uk

i
1 is the optimal

control action calculated by local predictive controller-i).
Remark 3.4 The objective of this paper is to design an MMPC for the

PCC process to improve its flexible operation performance. Therefore,
the main content of this paper is focused on the control layer (i.e. how
to track the CO2 capture rate set point quickly in a wide range and
effectively handle the influences of flue gas flowrate variation), not the
scheduling and optimization layer. The set-points are assumed to be
given already and dynamic tracking performance (6) is considered as
the objective function. How to develop an economic MPC which di-
rectly consider the operating cost in the objective function instead of
the dynamic control objectives will be our future interest.

4. Simulation results

This section demonstrates the MMPC controller design for the PCC
process. The proposed controller is tested and compared with conventional
PI controller and other types of predictive controllers. The sampling time
of all the controllers is set as Ts=30 s and for the MPCs, we set predictive
horizon Ny=1200 s, control horizon Nu=150 s; the weighting matrices
are set as Q0= diag(40, 2); R0=100× diag(1, 0.75) for a best CO2 cap-
ture rate tracking control. The following input constraints are considered:

= = = − − =u u u u[0 0] , [1 0.075] ;Δ [ 0.007 0.001] ,Δ [0.007 0.001]T T T Tmin max min max due to
the physical limitations of the valves and pumps. In all the simulations, the
controllers are implemented in MATLAB environment, it is communicated
with the gCCS model through gOMATLAB interface at each sampling time.

The first case is designed to show the performance of predictive
controllers over the PI controller. A small CO2 capture rate change is
considered: at t = 900 s the set-points of CO2 capture rate changes from
80% to 70% at the ramping rate of 0.1%/30 s and changes to 75% at
t = 6900 s at the same ramping rate. The reboiler temperature set point
is fixed at 383 K.

Three controllers are used for comparison:

(1) MMPC using the integral action (MMPC_I);
(2) MMPC without using the integral action (MMPC);
(3) PI controllers (the parameters are tuned using the MATLAB PID

Tuner toolbox at 80% capture rate operating point).

The simulation results in Figs. 7 and 8 show that the predictive
controllers have the best performance, which can track the desired CO2

capture rate quickly and closely during the simulation while main-
taining the reboiler temperature well around 383 K. The MPCs ad-
vantages in multi-variable, large inertial and constrained system control
are clearly shown through this simulation. For the PI controller, al-
though its parameters are already well tuned, due to its error based
regulating mechanism and SISO loop design approach, the tracking
speed is much slower compared with the MPCs, which cannot attain a
satisfactory control performance for the complex PCC process. We can
also find from Fig. 7 that, without using the integral action, there exists
small control offset for the MMPC because the modeling mismatches are
unavoidable.

Then we designed the second and third cases to test the effective-
ness for the multi-model predictive controllers for wide range operating
point change. In Case 2, we suppose that at t=900 s, the set-point of
CO2 capture rate decreases from 80% to 45% at the ramping rate of
0.14%/30 s and the reboiler temperature set point is fixed at 383 K.

Two predictive controllers without using the integral action are used for
comparison:

(1) Multi-model predictive controller without using the integral action
(MMPC);

(2) Linear model predictive controller without using the integral action
(linear-MPC), (predictive model is identified around 80% capture
rate operating point).

The simulation results are shown in Figs. 9 and 10.
The results show that, around 80% capture rate operating point

where the linear MPC is developed, both MPCs have almost the same
performance, which can control the PCC system satisfactory. However,
as the operating point deviates away from 80% point, the modeling
mismatch of linear-MPC becomes bigger and thus the control perfor-
mance is degraded. At 45% operating point, significant control offset
can be viewed from Fig. 9 for the linear-MPC. On the other hand for the
MMPC, because a combination of several linear MPCs is used, better
model prediction can be made during the whole operating range
change, therefore faster CO2 capture rate tracking and better reboiler
temperature regulating can be achieved by the MMPC, the control offset
at 45% operating point is also much smaller compared with the linear-
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MPC.
Then another wide range operating point variation is considered in

Case 3. We suppose that at t=900 s the set-point of capture rate
changes from 80% to 95% at the ramping rate of 0.15%/30 s and
changes to 50% at t=6900 s at the same ramping rate. The reboiler
temperature set point is fixed at 383 K. Two predictive controllers using
the integral action are used for comparison:

(1) Multi-model predictive controller using the integral action
(MMPC_I);

(2) Linear model predictive controller using the integral action (linear-
MPC_I), (predictive model is identified around 70% capture rate
operating point).

The simulation results are shown in Figs. 11 and 12.
The results show that, in order to better respond to the wide range

CO2 capture rate change, when the capture rate rise/drop demand is
given, the MMPC_I quickly increases/decreases the extracted flow rate.
Although a bigger reboiler temperature rise/drop can be viewed in
Fig. 11, this action can change the CO2 loading in lean flow more ef-
fectively and is helpful for achieving a rapid capture rate control per-
formance, which is the primary objective of the control system. The

results also show that a severe performance degradation and system
unstable is occurred for the linear-MPC_I around the 95% capture rate
operating point. The reason is that, the nonlinearity of the system is
extremely strong around 95% operating point, the resulting significant
modeling mismatch exceeds the preconfigured robustness bound of the
linear-MPC_I.

Cases 2 and 3 clearly demonstrate the proposed MMPC strategy in
the condition of wide range CO2 capture rate change. Then we devise
the last simulation to show the effectiveness of the proposed controller
in the presence of power plant flue gas flow rate change. We suppose
that, the system is operating at 80% capture rate point, and at
t=1500 s and t=4500 s, the power plant changes its loading condi-
tion, resulting in a flue gas flow rate change from 0.13 kg/s to
0.1235 kg/s and to 0.15 kg/s as shown in the upper figure of Fig. 13.
Three controllers are used for comparison:

(1) Multi-model predictive controller without using the integral action
(MMPC);

(2) Multi-model predictive controller without using the integral action
and without using the flue gas disturbance model (MMPC_2);
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(3) PI controllers (the parameters are tuned using the MATLAB PID
Tuner toolbox at 80% capture rate operating point).

The simulation results are shown in Figs. 13 and 14.
The results show that the proposed MMPC can effectively handle the

flue gas variation and keeps the PCC plant operating in an expected
condition. On the other hand, without using the flue gas disturbance
model, a big prediction error is produced by the MMPC_2 in the case of
flue gas variation, therefore, its control performance is degraded se-
verely and a huge control offset is occurred. The dynamic performance
of PI controller is also worse than the proposed MMPC, which needs a
much longer regulation time to bring the far deviated capture rate and
reboiler temperature back to their set points. However, by using the
integral action, an offset-free control can be attained by the PI finally.

It should be emphasized that, the use of multiple models instead of
one can be viewed as an approach to reduce the modeling mismatches
of the single linear model in the case of wide range CO2 capture rate

change. Besides this, two other techniques are used in the proposed
MMPC design to further alleviate the impact of uncertainty:

1) For measured uncertainty: the flue gas flow rate is considered in
the MMPC design stage, so that the model mismatches or uncertainties
caused by flue gas flow rate variation can be effectively dealt with; 2)
For unmeasured uncertainty: integral action is taken into account in the
MMPC design to guarantee an offset-free control performance.

Nevertheless, if the plant variations or other disturbances are too
strong and exceed the pre-configured robustness bound of the MMPC,
severe degradation of control performance will still be encountered. In
that case, online update of the model may be necessary for the MMPC
system.

5. Conclusion

To achieve a wide range flexible operation of the post combustion
CO2 capture process, a novel multi-model predictive control system is
developed in this paper using the combination of several local linear
predictive controllers. Nonlinearity of the solvent-based capture system
along the operating range is firstly investigated to provide a guidance
for the local model/controller selection and connection. Subspace
identification method is then used to build the state space local models
around the selected operating point, and predictive controllers are de-
signed based on these models. To improve the adaption ability of the
capture system to the power plant load variation, the flue gas flow rate
of power plant is considered as an additional measured disturbance in
the local model identification, so that an accurate prediction can be
made by the developed model in the presence of flue gas flow rate
variation. Combined together by a fuzzy membership function, the re-
sulting multi-model predictive control system can attain a rapid change
of the CO2 capture rate in a wide range and reject the power plant flue
gas disturbance effectively. The advantages of the proposed multi-
model predictive controller design are demonstrated through the si-
mulations on an MEA-based CO2 capture process developed on gCCS
platform.
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