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� Raman and IR spectroscopy have
comparable measurement
uncertainty.

� Using principal component regression
the evaluation of IR spectra is very
stable even at high level of noise.

� Vibrational spectroscopic methods
are fast and straightforward tools for
compositional analysis of fuel blends.
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Ethanol is commonly admixed to petrochemical gasoline, and its amount in the fuel blend can influence
the performance of an engine. The ethanol content in a commercial fuel can vary. To ensure reliable
engine operation, control strategies based on a measurement of the composition need to be developed.
Two possible methods to determine the ethanol content in ethanol/gasoline blends are Raman and IR
spectroscopy. We compare both techniques for quantitative measurements in systematically varied
blends of ethanol and a gasoline surrogate. For each method, two different approaches for data evaluation
are tested and compared: Firstly, the calibration of the intensity ratio of characteristic peaks as function
of composition; secondly, a principal component regression (PCR). Both methods are found to have com-
parable uncertainty. For the evaluation of the Raman spectra, the PCR method yielded better accuracy
than the intensity ratio approach. In addition, a detailed investigation of the influence of noise in the sig-
nal is presented. When the full IR spectra were evaluated by PCR, even high noise levels did not reduce
the measurement accuracy significantly.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The recent interest in bioethanol as fuel is due to strategies to
reduce the impact of greenhouse gas emissions from the transport
sector and to reduce dependency on fossil fuels. Bioethanol is
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Fig. 1. Schematic of the experimental Raman setup. L = lens; BD = beam dump;
AC = achromatic lens; F = filter; OF = optical fiber; CCD = charge-coupled device
camera.
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mainly produced by fermentation of agriculture feedstocks (e.g.
sugar cane, sugar beet and corn) but the future trend is the produc-
tion of ethanol from non-food biomass [1]. The world’s largest pro-
ducers of bioethanol are the United States and the largest exporter
is Brazil [2]. The main bioethanol producing European countries
are Germany, France, Italy, and Spain [3].

Bioethanol is probably the most widely used alternative auto-
motive fuel in the world. It possesses interesting properties for
spark ignition engine operation, for example it reduces the net
CO2 emissions and has a high antiknock power [4]. However, its
high latent heat of vaporization alters the volatility of the mixture
and hence its evaporation behavior [5], especially if the fuel is used
in geographical areas that are particularly cold. For use as an auto-
motive fuel, it is often blended with gasoline in percentages from
5% to 85% by volume. Mixtures with an ethanol content up to
7.5% by volume can be used without making any changes to the
engine (complete interchangeability). If the purity of anhydrous
ethanol is high enough to avoid the presence of water causing
the phase separation of ethanol and gasoline, mixtures containing
up to 16.5% can be used in spark ignition (SI) engines without any
modifications [6].

The amount of ethanol in a fuel blend is a crucial parameter, as
it influences the engine performance directly [7,8]. Therefore, its
accurate and fast determination is an important task. Gas and liq-
uid chromatography are commonly used for this purpose [9–11].
However, chromatographic methods normally share the disadvan-
tage that they are relatively slow and thus do not allow real-time
monitoring of the fuel quality. This disadvantage can be overcome
by spectroscopic techniques such as Raman and infrared (IR) spec-
troscopy. Their use for fuel characterization has recently been
reviewed [12]. Due to different underlying physical phenomena,
Raman and IR spectroscopy represent complementary techniques
commonly employed to analyze molecular structure. For composi-
tional analysis of hydrocarbon fuels, either method is normally suf-
ficient. However, the best method for a given measurement task
has to be chosen carefully.

Vibrational spectroscopic methods were used to analyze blends
of ethanol and gasoline (surrogates) qualitatively and quantita-
tively in a number of studies. Van Ness et al. [13] applied IR spec-
troscopy to binary solutions of ethanol with heptane or toluene.
They derived information about the thermodynamics and the
molecular structure of the mixtures by putting the spectra into
context with heats of mixing. Infrared and excess infrared spec-
troscopy was used by Corsetti et al. [14] to examine molecular
interactions and microscopic mixing effects in blends of ethanol
and a gasoline surrogate comprising heptane and iso-octane. Mea-
suring the ethanol content in blends was briefly touched in [14] as
well using approaches based on the Beer–Lambert law. Such quan-
titative measurements, however, are more common when mix-
tures containing real gasoline are investigated spectroscopically.
For this purpose, Raman [15], IR [16–18], and NIR [19] spectra were
exploited. All these methods have been found suitable in these
studies. However, a systematic comparison of the techniques has
not been performed to date, to the best of the authors’ knowledge.

This work compares Raman and IR spectroscopy for the deter-
mination of the ethanol content in fuel blends. Samples with sys-
tematically varied ratios of ethanol and a gasoline surrogate (i.e.
a mixture of n-heptane and iso-octane) have been prepared. A
set of spectra from each sample has been recorded with both
methods. In a previous article [14], the IR and excess IR spectra
were analyzed to understand the mixing effects at the molecular
level and compositional analysis was looked at only briefly. In
particular, chemometric methods were not used or discussed.
The quantitative analysis of the vibrational spectra is the focus of
the present work. Different approaches for evaluation of the spec-
troscopic data are compared: (1) the calibration of the intensity
ratio of characteristic peaks as a function of composition, and (2)
chemometrics in terms of principal component analysis (PCA)
and inverse least squares regression (ILSR). The intensity ratio
approach has the advantage of being very simple and easy to
implement, but it may suffer when peaks are overlapping. Chemo-
metric methods are computationally more demanding, but may
provide universal applicability.
2. Experimental

2.1. Fuel blends

A surrogate of gasoline was made by mixing, with a mass ratio
of 1:1, iso-octane (2,2,4-Trimethylpentane, Fisher Scientific, >99%)
and n-heptane (Fisher Scientific, >95%). Different ratio ethanol–
gasoline blends were prepared by increasing the percentage of
ethanol (VWR, >99%) in gasoline in steps of 10% by weight. The
sample preparation and all measurements were carried out at
atmospheric pressure and a temperature of 294 K. We note that
the same samples were studied by IR and excess IR spectroscopy
in a previous article [14].
2.2. Raman spectroscopy

Raman spectra of the blends were recorded using a 90-degree
Raman set up, as shown in Fig. 1. The samples were in a sealed
glass cuvette, in which the light from a HeNe laser (10 mW,
632 nm) was focused. The scattered light was collected in a direc-
tion perpendicular to the incident laser beam using an achromatic
lens. A dielectric long-pass filter (cut-off wavelength 635 nm)
blocked elastically scattered laser light. The Raman signal was
focused by another achromatic lens onto an optical fiber, which
guided the light to an imaging spectrograph (Andor Shamrock,
entrance slit 200 lm, focal length 163 mm, grating
1200 lines mm�1). An EM-CCD camera (Andor Newton) eventually
detected the dispersed signal. The spectral range from 500 to
4000 cm�1 was recorded with a resolution of approximately
6 cm�1.
2.3. IR spectroscopy

IR spectra of the biofuel blends were collected with a Bruker
Vertex v70 spectrometer. The spectral range from 500 to
4000 cm�1 was recorded with a nominal resolution of 1 cm�1.
For every sample 32 scans were averaged. The instrument was
equipped with an attenuated total reflection (ATR) module (dia-
mond, one reflection, 45�). During the measurements, the samples
on the ATR crystal were covered with a small glass cap to avoid
sample evaporation.
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3. Results and discussion

In this section the Raman and IR spectra obtained are briefly
presented, discussed and compared. Thereafter, two different
methods to extract quantitative information from both Raman
and IR spectra were used. The ethanol concentration in the mix-
tures was determined by using (1) the intensity ratio approach
and (2) principal components regression (PCR).
Fig. 3. CH stretching region in the IR and Raman spectra of the pure ethanol, pure
gasoline, and the blends. The highlighted areas indicate those spectral ranges,
which are referred to as ‘limited CH range’ in the text. The dashed vertical lines
indicate the positions of the isosbestic points.
3.1. Infrared and Raman spectra

The IR and Raman spectra of the gasoline surrogate, the pure
ethanol, and the blends are shown in Fig. 2. The different selection
rules for IR and Raman are evident in the spectra of the pure sub-
stances. In general, a vibrational mode is IR-active when the dipole
moment changes during the vibrational motion, and it is Raman-
active when the polarizability changes during the vibrational
motion [20,21]. Some peaks are strong in one spectrum and weak
in the other, and vice versa. Furthermore, some features appear in
the IR spectra, but not in the Raman ones and vice versa.

A detailed analysis and assignment of the individual peaks can
be found in previous articles [14,22] and the references therein,
and hence only a brief overview is given here. The characteristic
and broad OH stretching band of ethanol can be found in the region
between 3000 and 3600 cm�1. The CH stretching modes of ethanol
and the hydrocarbons are located between 2800 and 3100 cm�1.
The OH is strong in the IR while the CH dominates the Raman spec-
trum. The range below 1600 cm�1 is commonly referred to as the
fingerprint region. Between 1200 and 1600 cm�1, the CH bending
modes can be found. The peak doublet between 1000 and
1100 cm�1 can be attributed to the symmetric and asymmetric
CO stretches of ethanol with contributions from CH rocking modes.
Below 1000 cm�1, the CC stretching modes can be identified as
well as a broad OH deformation band from ethanol.

The CH stretching region was employed for the quantitative
measurements in various ways in this work. Therefore, Fig. 3
Fig. 2. IR and Raman spectra of the pure ethanol (red), pure gasoline (dashed blue),
and the blends (black). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
shows this region of both the IR and the Raman spectra. Both sets
of spectra exhibit four isosbestic points in the CH stretching region.
These points represent the wavelengths at which both substances
have the same IR absorbance or Raman intensity and their mix-
tures behave as ideal solution.

The IR peaks from ethanol at 2973, 2928, and 2881 cm�1 are
usually assigned to the CH3 antisymmetric stretching, the CH3

symmetric stretching and the CH2 symmetric stretching, respec-
tively. However, from a Raman study of a series of alcohols, Atamas
et al. [23] suggested that the peaks, which they observed at 2974
and 2873 cm�1 can be a result of the Fermi resonance between
the fundamental vibration �2930 cm�1 and the overtones of two
vibrations at �1450 and 1470 cm�1. In our case, this means that
the peaks at 2973 and 2881 cm�1 may be due to Fermi resonances
between the fundamental vibration at 2928 cm�1 and the CH
bending overtones at 1455 and 1479 cm�1. Later, Yu at al. [24] car-
ried out a more detailed analysis by comparing the Raman spec-
trum of gaseous and liquid ethanol. They concluded that the two
spectra present very similar features, except for an enhancement
of the CH3 antisymmetric band and the red shifted band positions
in the liquid phase. They assigned the band at �2881 cm�1 to the
overlapping symmetric stretching vibrational modes of both CH2

and CH3. The band at �2938 cm�1 was assigned to two symmetric
CH3 Fermi resonances and the weak CH2 antisymmetric stretching
mode. The band at�2983 cm�1 was assigned to the symmetric CH2

Fermi resonance and the weak CH3 antisymmetric stretching
mode.

3.2. Intensity ratio approach

The intensity ratio approach is a straightforward method to get
quantitative information from a vibrational spectrum. It allows cal-
ibrating the intensity ratio of two characteristic peaks from differ-
ent species against the mixture composition. This method is often
used as it is very robust compared to calibrating a single peak as a
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function of composition [25]. The latter approach would require
highly stable radiation sources and detectors as any fluctuation
would immediately translate into a significant and systematic
measurement error.

The most commonly used bands for the intensity ratio method
in mixtures containing alcohols and hydrocarbons are the OH and
CH stretching bands. They provide strong signals and are spectrally
well separated from the excitation wavelength in a Raman exper-
iment. Hence, they are normally not influenced by interference
from elastically scattered light and laser-induced fluorescence.
The former can be an issue in field studies when the fluid under
investigation contains droplets or particles, which scatter large
amounts of photons elastically [26,27]. The latter may become a
problem when the fluid contains aromatic compounds or dyes
[28–30], both of which are typical in commercial fuels.

3.2.1. Spectral window selection
The first step towards reproducible and accurate composition

measurements using the intensity ratio method is the selection
of suitable spectral windows, over which the signal is integrated
before the ratio is calculated. This is done in order to maximize
the signal to noise ratio and thus to minimize the statistical uncer-
tainty. As a first attempt, the full CH stretching band is utilized and
secondly, the window is limited to the region between those isos-
bestic points, between which the gasoline signal dominates, in
order to maximize the sensitivity of the ratio. The regions are indi-
cated in Fig. 3. For the IR spectra, this approach has shown to be
beneficial in our previous work [14]. Whether or not it is advanta-
geous in the exploitation of the Raman spectra as well will be
examined in the following.

To determine the robustness of the calibration curves, a leave
one-out cross validation was carried out. For this purpose, one data
point is removed from the calibration data set. The calibration
function is then determined from the remaining data points. Even-
tually, the absorbance (IR) or intensity (Raman) value of the
removed data point is fed into the calibration function as a blind
value in order to determine the ethanol mass fraction. This proce-
dure was repeated with all individual data points. Plotting the dif-
ference between the actual mass fraction (gravimetric value) and
the calibrated value for every composition yields an estimate of
the measurement uncertainty and the robustness of the calibration
method.
Fig. 4. Calibration curves for the intensity ratio of the OH and CH stretching bands
in the Raman and IR spectra. The solid and the dashed lines represent best-fit
functions of the Raman and IR data, respectively. The Raman data are multiplied by
a factor of 20.
Fig. 4 compares the Raman and IR calibration curves. The trends
of the curves are very similar, but the OH band in the Raman spec-
tra is relatively weak so that the absolute numbers of the OH/CH
ratio are a factor of �20 lower than in IR. In both Raman and IR a
narrowing of the spectral window results in an increase in sensitiv-
ity. This can be deduced from the steepness of the slopes of the cal-
ibration curves. The steeper the slope, the higher the sensitivity.

The residuals from the leave-one-out cross-validation, i.e. the
deviation of the predicted values from the actual concentration
values, are plotted in Fig. 5. Generally, a comparable quality of
the results can be found for both methods. Larger deviations can
be observed at the low and high ethanol concentration ends of
the diagrams. This is reasonable, as the calibration functions in
these cases have to be extrapolated in order to find a concentration
value.
3.2.2. Influence of noise
In a practical application, the signal to noise level in the spectra

recorded can vary substantially depending on the environment in
which the measurement is carried out. In order to test the accuracy
of the intensity ratio method, different levels of noise were added
to the IR and Raman spectra. Fig. 6 shows the CH and OH region of
the ethanol IR and Raman spectra with 10% of added noise. The
noise represents a uniform random distribution with a maximum
value corresponding to the value of the maximum peak in the CH
stretching region. In the 10% noise case, for example, this means
that a uniformly distributed random noise with minimum value
zero and maximum value of 10% of the absorbance (IR) or intensity
(Raman) value of the strongest peak in the CH stretching region
was added to the spectrum.

For each level of noise, the IR and Raman calibration curves,
considering the full CH and the limited CH windows, were
obtained and a leave-one-out cross-validation was carried out
again. The same procedure was repeated 100 times, testing differ-
ent random noise matrices. The root mean square error (RMSE)
Fig. 5. Residuals from the leave-one-out cross validation. Difference between the
predicted ethanol concentration, and the actual ethanol concentration in the IR, and
Raman spectra.



Fig. 6. IR and Raman CH and OH regions of ethanol with 10% of noise added.
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normalized with respect to the mean of the predicted ethanol con-
centration values (coefficient of variation of the RMSE), determined
from each calibration from the gravimetrically set values, was cal-
culated. The RMSE is an indicator of the difference between the
predicted values and the actual values. The resulting coefficients
of variation of the RMSE vs. the noise level are shown in Fig. 7. Each
curve represents the average of 100 curves for the different ran-
dom noise matrices. Narrowing the CH window has different
effects on the measurement accuracy in IR and Raman when the
noise level is considered. In the IR plot, the values for the limited
CH range case are higher and, in Raman, the opposite behavior
can be observed. It must be noted that without addition of noise,
the values in all four cases considered are reasonable similar. The
coefficient of variation of the RMSE increases strongly for the
Raman data (the values are a factor of about three larger). This
can be attributed to the low intensity of the OH band in the Raman
spectra. When noise is added, this band becomes easily obscured
resulting in a reduced measurement accuracy. The strong OH band
in the IR spectra provides a robust basis for accurate concentration
determination. The IR based curves in Fig. 7 change only moder-
ately with increasing noise.
Fig. 7. IR and Raman coefficient of variation of the RMSE vs. noise level.
3.3. Chemometric approach

Differently from the intensity ratio approach, in which the con-
centration of the components is calculated from a direct regression
of the concentrations onto the intensity/absorbance, the PCR
regresses the concentration on the principal components analysis
(PCA) scores. Another important difference is that the chemometric
method can take the full spectrum into account rather than relying
on limited regions.

The PCA has a primary scope to decrease the number of corre-
lated variables representing the set of measured data. This is done
by a linear transformation of the variables, which can be visualized
as a set of coordinates (one axis per variable), projecting the orig-
inal ones in a new Cartesian system, in which the variables are
sorted in descending order of variance. Therefore, the variable with
higher variance is projected onto the first axis, the second on the
second axis and so on. The reduction of the number of variables
is achieved by considering just those with higher variance between
the new variables. Details can be found, e.g., in the text of Jolliffe
[31]. PCA can also be considered as a form of multidimensional
scaling. It is a linear transformation of the variables into a lower
dimensional space, which retain maximal amount of information
about the variables. The new variables, differently from the original
ones, are uncorrelated and are called principal components. The
PCA scores represent a summary of the relationship among the
observations, the loading a summary of the variables. A regression
method can then be used to correlate the principal components
with the quantity to be measured. In our case, PCR combines PCA
and an Inverse Least Squares regression (ILSR) to solve the calibra-
tion equation for the spectra [32,33]. More sophisticated
approaches such as support vector machines (SVM) [34] and artifi-
cial neuronal networks (ANN) [35] are not necessary for the rela-
tively simple system to be analyzed here, but they may be an
option when real multicomponent fuels are the subject of
investigation.
Fig. 8. Residuals from the PCR. Difference between the predicted ethanol mass
fraction, and the actual ethanol mass fraction determined from the IR and Raman
spectra.



Fig. 9. Residuals from the leave-one-out cross validation for the IR and Raman data.
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3.3.1. Spectral window selection
As mentioned above, the chemometric method can in principle

be applied to the full spectrum. For better comparability, we per-
formed additional PCR analyses using the same spectral regions
as for the intensity ratio method: the full CH stretching region
and the limited CH stretching region. The residuals from the PCR,
i.e. the deviation of the predicted mass fraction from the actual
mass fraction, were calculated and they are shown in Fig. 8. The
Fig. 10. Coefficient of determination R2 and coefficient of variation of
values of the residuals are slightly smaller than the ones obtained
by predicting the ethanol mass fraction using the intensity ratio
approach. This is reasonable as more spectral information is taken
into account.

To validate the model, again a leave-one-out cross-validation
was carried out. For this purpose, a vector of the intensity of a sin-
gle ratio blend is taken out from the matrix of all the blends. A PCA
is performed on the new matrix. Eventually, the ethanol mass frac-
tion value of the blend corresponding to the removed vector is fed
into the PCR curve as a blind value in order to determine the com-
position. This procedure was repeated with all individual vectors.
The residuals of the cross-validation, i.e. the differences between
the actual responses and the cross-validated fitted values, are
shown in Fig. 9. The residuals measure the predictive ability of
the model. Selecting different portions of the spectrum, the result-
ing residuals are similar. The values are comparable with the ones
obtained by using the intensity-ratio method.
3.3.2. Influence of noise
To test the accuracy of the method, different levels of noise have

been added to the Raman and IR spectra, as previously done for the
intensity ratio method. A PCR analysis of each spectrum, consider-
ing the full spectrum, the full CH stretching band, and the limited
CH stretching band, with different noise levels was done. A leave-
one-out cross-validation was carried out for each PCR curve to
determine the predicted ethanol concentration. As previously done
with the intensity ratio approach, 100 different random noise
matrices were used. The rootmean square error (RMSE) normalized
with respect to themean of the predicted values (coefficient of vari-
ation of the RMSE) and the coefficient of determination R2 vs. the
noise level are shown in Fig. 10. The R2 values indicate the goodness
of the linear fit of the predicted concentration vs. the actual concen-
tration curve. The closer R2 is to 1 the better is the correlation
between the data points. Each curve in the plots represents the
average of 100 curves (each one done by using a different random
noise matrix).
the RMSE vs. noise level calculated for both Raman and IR data.
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The change in the coefficient of variation of RMSE with the
noise level suggests that the PCR is more accurate if the entire
spectrum is considered. In contrast to the intensity ratio method,
narrowing the window selection leads to a loss in the accuracy in
predicting the mass fraction. When the full spectrum is considered,
there are more spectral data points making the model less suscep-
tible to spectral noise. The R2 values confirm for both Raman and IR
a better correlation between the predicted concentration and the
actual one if a larger portion of the spectrum is used. One reason
is that the strong features associated with the symmetric and
asymmetric CO stretches of ethanol at 1046 and 1088 cm�1 con-
tribute. Regarding the results obtained from the full IR spectra it
can be concluded that the noise level has almost no influence on
the accuracy. In other words, the method is very robust. The corre-
sponding Raman data show a moderate decrease in accuracy when
the level of noise exceeds �5%. The R2 value deceases monotoni-
cally from �0.997 at 5% to �0.986 at 20%, which is acceptable in
many applications.

The comparison of the chemometric results with the ones
obtained with the intensity ratio method reveals an improvement
when the PCR is used for both IR and Raman. This is particularly
true when the full spectral range is exploited in the analysis. How-
ever, it should be noted that the improvement is more significant
on the Raman side as the weak OH band of ethanol is no longer
the only characteristic feature taken into account.

4. Summary and conclusion

In this paper we have used Raman and IR spectroscopy to deter-
mine the ethanol content in ethanol/gasoline blends. For this pur-
pose, two different evaluation methods to extract quantitative
information from the spectra have been compared. The first
method was the commonly used approach of an intensity ratio cal-
ibration. Secondly, Principal Components Regression (PCR) has
been used.

Using the intensity ratio method, an enhancement of the sensi-
tivity and accuracy in predicting the blend composition has been
achieved by narrowing the spectral window in the CH stretching
region for both Raman and IR. On the contrary, using the PCR led
to a better accuracy when the full spectrum was considered. Over-
all, the uncertainty of the two methods has been found compara-
ble. The PCR method seemed to be more accurate in predicting
the blend composition than the intensity ratio method when
applied to the Raman spectra, but not when applied to the IR ones.
However, a higher accuracy can be obtained at the expense of a
loss of simplicity of the approach.

In order to find the method of choice for a given application, a
number of further points must be taken into account. IR spec-
troscopy has advantages in the analysis of opaque samples, as
ATR probes can record spectra in non-transparent samples. It
may also be more suitable when the samples contain a high
amount of fluorescing species. A problem, on the other hand,
may be high amounts of water as the water absorption is very
strong, virtually across the entire mid-infrared spectral range. Also,
the costs and dimensions for a high-quality IR instrument may be
an issue. Raman spectroscopy is well suited when the samples are
transparent in the spectral region under study. The arbitrary choice
of the excitation wavelength provides some flexibility here. This is
also an advantage when the use of fiber probes is necessary.
Employing visible lasers for excitation allows the use of very long
optical fibers, while the length of ATR probes in IR spectroscopy
is normally limited to a few meters due to the poor transmission.
Moreover, Raman instruments with dispersive elements can be
made very compact and are ideally suited for field measurements.
With the costs for sufficiently sensitive miniature spectrometers
decreasing, the implementation of Raman spectroscopy as versatile
and portable sensors seems very promising.
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