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A B S T R A C T

Increasing demand for flexible operation has posed significant challenges to the control system design of solvent-
based post-combustion CO2 capture (PCC) process: 1) the capture system itself has very slow dynamics; 2) in the
case of wide range of operation, dynamic behavior of the PCC process will change significantly at different
operating points; and 3) the frequent variation of upstream flue gas flowrate will bring in strong disturbances to
the capture system. For these reasons, this paper provides a comprehensive study on the dynamic characteristics
of the PCC process. The system dynamics under different CO2 capture rates, re-boiler temperatures, and flue gas
flow rates are analyzed and compared through step-response tests. Based on the in-depth understanding of the
system behavior, a disturbance rejection predictive controller (DRPC) is proposed for the PCC process. The
predictive controller can track the desired CO2 capture rate quickly and smoothly in a wide operating range
while tightly maintaining the re-boiler temperature around the optimal value. Active disturbance rejection
approach is used in the predictive control design to improve the control property in the presence of dynamic
variations or disturbances. The measured disturbances, such as the flue gas flow rate, is considered as an ad-
ditional input in the predictive model development, so that accurate model prediction and timely control ad-
justment can be made once the disturbance is detected. For unmeasured disturbances, including model
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mismatches, plant behavior variations, etc., a disturbance observer is designed to estimate the value of dis-
turbances. The estimated signal is then used as a compensation to the predictive control signal to remove the
influence of disturbances. Simulations on a monoethanolamine (MEA) based PCC system developed on gCCS
demonstrates the excellent effect of the proposed controller.

1. Introduction

Massive anthropogenic emissions of carbon dioxide is viewed as the
main cause of global warming [1]. More than 30% of these emissions
has the origin from fossil-fuel fired power plants, especially coal-fired
power plants, which are the dominant devices in the power industry
[2]. Therefore, CO2 capture of coal-fired power plants is of great im-
portance for mitigating global warming, greenhouse effect and related
issues [3].

Many in-depth studies have been conducted for the carbon capture
technology. Among them, chemical absorption based post-combustion
CO2 capture (PCC) is mature in technology and the installation of PCC
devices requires only little modification to the existing power units. For
these reasons, the PCC technology has been regarded as the most pro-
mising approach for the CO2 removal of coal-fired power plants [3].
However, the high energy consumption required for solvent regenera-
tion becomes barrier to its large-scale commercial deployment. To de-
velop an efficient process for CO2 separation from power plant flue gas,
many studies on solvent selection [4–7], process configuration [8–10],
parameter settings [6,7] have been undertaken. These studies only fo-
cused on the steady-state optimization at a full operating condition.

In recent years, there has been an increasing demand on the flexible
operation of PCC processes [11–20]. From external perspectives, with
the extensive penetration of renewable energy in the power grid, the
coal-fired power plants have to change their loading rapidly over a wide
range to alleviate the impact of unstable renewable power supplies and
varying load demand [21]. As a result, the flue gas flow rate will have
significant variations. In this regard, the PCC plants are forced to op-
erate in a flexible manner and follow these changes [12]. On the other
hand, from internal perspectives, flexible operation is also a require-
ment for the PCC process itself, because flexible adjustment of CO2

capture rate is the foundation for the entire power generation-carbon
capture system to achieve a better scheduling considering the demands
of power generation, energy consumption, system efficiency and carbon
emission [12].

In this context, thorough understanding of the dynamic character-
istics of the PCC system over the entire operating range and design of
appropriate control system for the process have become emerging and
concerned topics.

Establishing accurate dynamic PCC models and conducting experi-
ments with the models is the most important step to understand system
characteristics. Lawal et al. [22] investigated the dynamics of the
standalone absorber based on dynamic modeling of the process. Their
studies indicated that maintaining the ratio between lean solvent flow
rate and flue gas flow rate is vital for partial load operation of the ab-
sorber. Their findings also showed that the CO2 loading of lean solvent
had significant impact on the performance of the absorber. Ziaii et al.
[23] developed a rate-based dynamic model for the CO2 stripper
system. Besides carrying out steady-state optimizations, the dynamic
variation of steam rate and rich solvent rate, and their influence on the
stripper performance were also investigated. In order to understand the
dynamic behavior of the entire capture system, detailed analytical
models composed by a series of mathematical equations are established
based on a variety of simulation platforms, such as gPROMS [11,12],
Aspen Dynamics [15,16], Modelica [24,25], Matlab [26] and gCCS
[27,28]. The dynamic effects of solvent circulation rate, flue gas flow
rate/composition and re-boiler heat duty on the key variables of the
capture system were then studied through simulation on these models.
In [29–31], data-driven identification models such as bootstrap

aggregated neural network model [29], nonlinear auto-
regressive exogenous (NLARX) model [30] and neural fuzzy model [31]
were developed for the solvent-based PCC system. Compared with the
conventional first principle modeling approach, which needs a thor-
ough understanding of the capture process and equipment design spe-
cifications, dynamic operation data is the only requirement for these
models.

In [32] and [19], open-loop step response tests were carried out
respectively at Esbjerg pilot plant and AGL Loy Yang power station to
gain practical experience for the dynamic behavior of the PCC process.
The parameters studied include flue gas flow rate, solvent flow rate and
re-boiler duty. The experimental results showed the slow dynamics of
the entire capture system and the strong couplings among multi-vari-
ables.

In Montañés et al. [25], dynamic model of a 600 MWe combined-
cycle power plant with post-combustion CO2 capture was developed
using Modelica. The step response tests of the PCC system were then
conducted at 100%, 80% and 60% gas turbine load. The results showed
that at lower gas turbine loading condition, the dynamics of PCC system
was slower. In addition, they found that the plant responses corre-
sponding to the increase or decrease of a certain variable were different.

The researches on the dynamic characteristics effectively provide
directions for the control system design of the PCC process. Based on
the results, a general control structure was proposed and used in
[12,15,16,33–37], which involved four key variables: the CO2 capture
rate, the re-boiler temperature, the lean solvent flow rate and the re-
boiler heat duty. In most of these studies, 2-input 2-output decen-
tralized proportional-integral (PI) control systems were designed,
which used the lean solvent flow rate to adjust the CO2 capture rate,
and the re-boiler heat duty to adjust the re-boiler temperature. The
simulations demonstrated that such a design could achieve a prompt
control for the CO2 capture rate and effectively alleviate the dis-
turbances of the inlet flue gas flow rate and concentration variations. To
maintain a better hydraulic stability of the absorber and stripper
column, in Lin et al. [16], the lean solvent flow rate was fixed at a given
value, and the re-boiler steam flow rate, which can change the lean
solvent loading was selected to control the CO2 capture rate.

Nittaya et al. [36] presented three decentralized PI control struc-
tures for the PCC process: 1) using the relative gain array (RGA) to pair
the control loop; 2) heuristic approach using lean solvent flow rate to
control the capture rate, and re-boiler heat duty to control the re-boiler
temperature; and 3) heuristic approach using rich solvent flow rate to
control the re-boiler temperature, and re-boiler heat duty to control the
capture rate. Simulation results under different cases such as flue gas
flow rate variation and set-point tracking showed that under normal
working condition, the second control structure had the best perfor-
mance. Authors then extended the pilot-scale PCC model to a com-
mercial-scale model that matched a 750MWe coal-fired power plant
using gPROMS [37]. The dynamic performance under the second con-
trol structure was evaluated through simulations. The results revealed
that, the PCC plant was able to reject various disturbances and switch
promptly between different operating points.

Panahi and Skogestad [33,34] divided the operation range of PCC
system into three regions according to the flue gas flow rate of upstream
power plant while considering the limitation of re-boiler heat duty.
Steady-state optimizations were conducted for each region considering
the energy consumption and penalty of CO2 emission. The variables
that were most closely related to the optimization performance were
selected as controlled variables. Five control alternatives (four
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decentralized PI control structures and one multi-variable model pre-
dictive control structure) were then presented and the simulation re-
sults showed that the most advantageous PI control system was com-
parable to the predictive controller in the presence of large flue gas flow
rate variation.

In order to better respond to the changes of flue gas flow rate, in
[22] and [38], the idea of feed-forward control was applied to the PCC
process control design. The solvent flow rate was required to vary
synchronously with the flue gas flow rate (i.e., maintaining the L/G
ratio) and the simulations demonstrated that such a design was more
beneficial for attaining a designed CO2 capture rate control.

Besides conventional PI controls, in recent years, a number of re-
searchers have used the approach of model predictive control (MPC) for
the capture process [13,14,17,18,35,39–46]. The basic idea of MPC is
to use an explicit process model to predict the future response of the
plant and calculate the control inputs through the minimization of a
dynamic objective function within the prediction horizon. Because of
the MPC's natural advantages in handling multi-variable, slow dynamic,
constrained system, better performance has been reported in the PCC
controller design, compared to the PI control structures.

Due to the strong nonlinearity of the PCC system, [41] and [42]
directly used the simplified nonlinear analytical model as the predictive
model and designed nonlinear MPCs for the flexible operation of the
PCC plant. The monoethanolamine (MEA) recirculation rate and re-
boiler heat flow were considered as the manipulated variables. The
simulation results on Modelica platform showed that the target CO2

removal efficiency could be quickly tracked by the proposed nonlinear
MPC in a wide operation range. Zhang et al. [43] identified a nonlinear
additive autoregressive model with exogenous variables (NAARX
model) as the predictive model, and developed a nonlinear MPC for the
PCC process. Fast tracking performance can be achieved by the non-
linear MPC under wide changes in power load and CO2 capture rate.
However, the use of nonlinear MPC requires solving large-scale non-
linear dynamic optimization problems, which is time consuming and
lacks computational robustness. To this end, linear MPCs have received
more attention in the PCC controller design.

In Bedelbayev et al. [39], a linear MPC was developed for the ab-
sorber column control. The nonlinear first principle model of the ab-
sorber was linearized at given operating point and used as the pre-
dictive model. The lean solvent flow rate was selected as the
manipulated variable to control the CO2 capture rate. The inlet flue gas
flow rate, temperature and CO2 content were regarded as measured
disturbances and used as a feed-forward signal to the MPC. Simulation
results show that the linear MPC could attain a smooth capture rate
tracking and quick response to the flue gas variation. Arce et al. [13]
presented linear MPCs in a two-layer control structure for the in-
dependent solvent regeneration system. Steady-state economic optimi-
zation was performed in the high layer to provide optimal set-points.
Two linear MPCs were developed in the low layer to track the desired
re-boiler level, CO2 capture molar flow and re-boiler pressure set-
points. Zhang et al. [35] developed a linear MPC controller to adjust the
CO2 capture rate and re-boiler temperature for the integrated PCC
process via MATLAB MPC toolbox. The lean solvent flow rate and re-
boiler steam flow rate were selected as manipulated variables, and the
flue gas flow rate, CO2 composition, rich flow solvent flow rate were
considered in the model development as disturbances. Different from
the ordinary MPC which use a dynamic control objective function, in
[18] and [44], the energy consumptions and CO2 emissions were taken
into account in the MPC's objective function. An optimal scheduling
sequence was calculated for the PCC plant. In [40,45,17] different
multi-variable linear MPCs were devised to regulate the core variables
within the PCC process. Their results all indicated that using the MPC
can achieve more superior performance for the flexible operation of the
PCC system compared with the conventional PI controllers.

Despite the advantages of the MPC, the performance of MPC greatly
relies on the quality of the predictive model. For the aforementioned

linear MPCs, the predictive models were all developed through linear-
ization of the mathematical model or through identification at a given
operating point. Nevertheless, under the growing demand for flexible
operation, the PCC system is required to face the varying flue gas and
adjust its capture rate over a wide range. Meanwhile, the re-boiler
temperature may also change during the unit load demand change. As
these key variables deviate from the model design point, the dynamic
behavior of the system will change greatly, and the resulting modeling
mismatches will reduce the quality of predictive control and, in severe
cases, may destabilize the closed-loop control system.

Owning to this difficulty, the existing linear MPCs only demon-
strated their performance around the design point. Understanding the
dynamic changes of the system and overcoming their impact on the
control system is an important issue for the application of linear MPCs
over a wide range of flexible operation of the PCC process.

To attain a wide range load change of the PCC process using the
mature linear control technologies, in Wu et al. [46], three linear MPCs
were preconfigured at 50%, 80% and 95% capture rate points. During
operation, these three controllers were combined together based on the
current capture rate to obtain the final global control output. Wu et al.
[47] analyzed the dynamic behavior variation and nonlinearity dis-
tribution of the PCC process. Based on the results, a suitable operating
region was selected, in which a simple linear MPC can achieve a sa-
tisfactory capture rate change control. However, the dynamic effect of
flue gas flow rate on the PCC system and its variation under different
operating conditions has not been analyzed. Moreover, how to effec-
tively overcome the influence of dynamic variations or unknown dis-
turbances was not studied in these works.

Given these observation, the first objective of this paper is to give
new insight to the changes of PCC system dynamics under the variation
of some key variables, such as flue gas flow rate, CO2 capture rate and
re-boiler temperature. Step response tests under different operating
conditions are carried out to observe the changes of dynamics in-
tuitively, and the corresponding response time constants and steady
state gains are then analyzed. This investigation will provide useful
guidance on the controller design, indicating how to avoid strong
changes of PCC process dynamics during the control and provide pos-
sible applicable range of the linear MPC.

Then based on the investigation results, a disturbance rejection
predictive controller (DRPC) is proposed for the flexible operation of
the PCC process. A quasi-infinite horizon function is used as the ob-
jective function to improve the performance of conventional MPC and
guarantee the stability of the closed-loop system. To overcome the
dynamic behavior variations due to changes in operating point and the
unknown disturbances due to equipment wear, a disturbance observer
is devised to estimate and compensate for their impact on the set-point
tracking. In order to enable the predictive controller to promptly adapt
to the flue gas flow rate variation, the flue gas flow rate is considered as
an additional input in the model development. Thus in the presence of
flue gas flow rate change, correct prediction and control action can be
provided on time. The simulation studies on an MEA-based post-com-
bustion CO2 plant developed on the gCCS platform validate the ad-
vantages and effectiveness of the proposed DRPC.

2. Process description

The solvent based post-combustion CO2 capture system considered
in this paper is matched with a small scale coal-fired power plant. 30 wt
% MEA solvent, which is most commonly used in PCC process is se-
lected as the CO2 sorbent. At full load condition, the power plant can
generate 0.13 kg/s flue gas (CO2 concentration: 25.2 wt%) using the
designated coal. After going through desulfurization, denitrification,
dust removal and cooling processes, the flue gas is fed into the bottom
of the packed-bed absorber column and contacts with the lean MEA
solvent counter currently. The CO2 in flue gas is absorbed chemically by
the MEA solvent, yielding CO2-enriched solvent and the exited gas is
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vented into the atmosphere. Next, the rich solvent is pumped into the
stripper column across a lean/rich heat exchanger, where it is heated by
the steam drawn-off from the intermediate/low-pressure turbine
crossover of power plant to release the CO2. The resulting lean solvent
is then resent to the absorber and starts the next cycle. During heating,
part of the water and MEA vapor is mixed with the removed CO2, thus a
condenser is used to recollect the fugitive steam and MEA, the sepa-
rated high purity CO2 is then compressed and transported to storage.

The dynamic model of this PCC process is established using gCCS
toolkit [27,28], which can provide high-fidelity simulation for the CO2
capture, transportation and storage. The specification and parameter
selection for the major devices are based on the model developed in
[12], which has been verified through field data. The process topology
and nominal operation condition of the PCC model are displayed in
Fig. 1 and Table 1.

Within the PCC system, there are two variables that are of most
concern in the controller design, the CO2 capture rate and the re-boiler
temperature. The CO2 capture rate is defined as:

=
−in the flue gas in the clean gas

in the flue gas
CO Capture Rate

CO CO
CO

,2
2 2

2 (1)

which reflects how well the capture plant completes the carbon re-
duction task. The re-boiler temperature determines the degree of sol-
vent regeneration, which will affect the ability of lean solvent in CO2

absorption. On the other hand, an excessively high temperature should
be strictly avoided, because it will cause a severe MEA solvent de-
gradation. Considering these issues, these two variables are selected as
controlled variables in this study. The lean solvent and re-boiler steam
flow rates are selected as the manipulated variables
[12,15,16,33–37,41–43,46].

The flexible operation requires the PCC plant to change its capture
rate rapidly and follow the flue gas flow rate variation in a wide range.
During the dynamic adjustment, the quick change of lean solvent and
re-boiler steam flow rates may also cause significant variation of the re-
boiler temperature. The change in operating condition of these key
variables will cause the process dynamics change and bring in strong
impact on the control system. Therefore, this paper investigates the
dynamic behavior change of the PCC system under the variation of CO2

capture rate, flue gas flow rate and re-boiler temperature, providing
guidance for the flexible operation of the PCC process and controller
development. A disturbance rejection predictive controller is then

designed to track the desired CO2 capture rate in a wide range and
maintain the re-boiler temperature at optimal point.

Besides the CO2 capture rate and re-boiler temperature, there are
many other variables need to be maintained to guarantee a safe op-
eration of the PCC process. These variables are not strongly coupled or
are easily controlled, therefore, PI controllers are designed to maintain
them at given levels, which are shown in Fig. 1. Developing a cen-
tralized MPC control involving so many variables is a challenging task.
Accurate predictive model is difficult to be identified and the receding-
horizon calculation of the optimal control sequence is time consuming.
Moreover, it is difficult to determine the sampling time of the cen-
tralized MPC, because the responses of the variables may be on different
time scales.

3. Investigation of the dynamic behavior variation for the PCC
process

In this section, step response tests under different working condi-
tions are performed to give an intuitive analysis for the dynamic be-
havior variation of the solvent-based post-combustion CO2 capture
process. Different from the conventional 2×2 system analysis that
only considers the dynamics between MVs (lean solvent and steam flow

Fig. 1. Schematic diagram of solvent-based PCC process developed on the gCCS platform.

Table 1
Nominal Operating Condition of Some Variables for the PCC Model Developed
in gCCS.

Variable Unit Value

Flue gas flow rate [kg/s] 0.13
Flue gas CO2 concentration [wt%] 25.2
Flue gas absorber inlet temperature [K] 313.15
Solvent flow rate [kg/s] 0.5023
Lean solvent absorber inlet temperature [K] 313.15
MEA concentration [wt%] 30
Re-boiler pressure [bar] 1.79
Re-boiler temperature [K] 386
Re-boiler liquid level [m] 0.25
Re-boiler steam flow rate [kg/s] 0.0366
Condenser Pressure [bar] 1.69
Condenser temperature [K] 313.15
Absorber sump liquid level [m] 1.25
Stripper sump liquid level [m] 1.25
CO2 capture rate [%] 70
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rates) and CVs (capture rate and re-boiler temperature), the influence of
main disturbance: the flue gas flue flow rate has also been studied.
Three groups of step response tests are conducted to analyze the dy-
namic behavior of PCC process under: i) different CO2 capture rates; ii)
different flue gas flow rates; and iii) different re-boiler temperatures.

In all the step response tests, the CO2 capture rate and re-boiler
temperature controllers are placed in an open-loop state, while other
variables are kept controlled to ensure a normal operating of the CO2

capture process. Step signals in magnitude of+5% of the respective
steady-state values are added to the lean solvent, re-boiler steam and
flue gas flow rate channels respectively at different operating points.
The relative variation of capture rate and re-boiler temperature based
on their initial steady-state values are then calculated and shown in
Figs. 2–4.

3.1. CO2 capture rate change

To investigate the dynamic behavior variation of the PCC process
under different CO2 capture rates, step response tests are carried out at
50%, 60%, 70%, 80%, 90% and 95% capture rates. For all simulation
tests in this group, the flue gas flow rate is maintained at 0.13 kg/s and
the re-boiler temperature is set as 386 K initially to avoid their influ-
ence.

At t=1000 s, step signals in magnitude of+5% of the steady-state
values are added to the lean solvent flow rate, re-boiler steam flow rate
and flue gas flow rate channels respectively at different CO2 capture
rates. The left column of Fig. 2 shows the step responses of the PCC
system corresponding to the step inputs of lean solvent flow rate. At the
beginning of the step test, since more lean solvent is fed into the ab-
sorber column, more CO2 in the flue gas can be absorbed, resulting in a
prompt rise of CO2 capture rate. However, as the re-boiler steam flow
rate remains at the same level while the rich solvent enters the re-boiler
is increased, the re-boiler temperature gradually drops. As a result, less

CO2 can be removed from the solvent and the loading of the lean sol-
vent fed back to the absorber will rise. Therefore, the CO2 capture rate
will drop back to the previous level after a while and its response speed
is slower than that of the re-boiler temperature. It takes more than
10,000 s for the PCC process to enter the new steady state, which fully
illustrates the system’s characteristics of large inertia. However, at the
beginning of the step, the rapid impact of lean solvent flow rate on the
CO2 capture rate provides a useful way to achieve a flexible operation
of the PCC system, even though it is temporary. On the other hand, the
non-minimum phase behavior of the lean solvent flow rate-CO2 capture
rate loop will also bring in difficulties for the conventional feedback
controller design.

The dynamic behavior change of the capture system under different
capture rates can also be viewed in this column. Regarding the CO2

capture rate channel, the overall trends of the responses are similar.
However, as the capture rate increases, it becomes more difficult to
capture the remaining CO2 in the flue gas, the peak value of the step
response drops, especially within 90%-95% capture rate region. On the
other hand, the steady-state gains of the step responses slightly decrease
and the response speed rises as the capture rate increases. Regarding
the re-boiler temperature channel, the dynamic variation of the process
is not strong, mainly reflected in the response speed, which has a slight
increase as the capture rates rises.

The middle column of Fig. 2 shows the responses of the PCC process
at different CO2 capture rates corresponding to 5% steam flow rate step.
The increase of re-boiler steam flow rate will increase the re-boiler
temperature directly, as a result, more CO2 will be released from the
rich solvent. The decrease of CO2 loading will then enhance the CO2

absorption ability of the lean solvent, thus the CO2 capture rate will be
increased eventually. The response of re-boiler temperature is faster
than the response of CO2 capture rate, but overall very slow. The whole
dynamic process will last for more than 10000 s until the capture rate
and re-boiler temperature enter the new steady-state. This slow

Fig. 2. Responses of the PCC process at six different CO2 capture rates corresponding to 5% lean solvent flow rate step input (left column), 5% steam flow rate step
input (middle column) and 5% flue gas flow rate step input (right column).
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Fig. 3. Responses of the PCC process at four different flue gas flow rates corresponding to 5% lean solvent flow rate step input (left column), 5% steam flow rate step
input (middle column) and 5% flue gas flow rate step input (right column).

Fig. 4. Responses of the PCC process at six different re-boiler temperature corresponding to lean solvent flow rate step input.
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dynamic brings challenges for the flexible operation of the PCC system.
The dynamic behavior change of the capture system under different

capture rates is illustrated clearly in this column. Regarding the CO2

capture rate channel, in the range of 50% to 80%, as the capture rate
increases, the steady-state gains of the step responses are similar but the
response speed slightly increases. When the capture rate rises to 90%,
as most of the CO2 in the flue gas has been gradually captured, the
difficulty for the solvent to absorb the remaining CO2 begins to in-
crease. As a result, the steady state gain at 90% capture rate has
dropped compared with the conditions of lower capture rates.
Similarly, when the capture rate rises to 95%, it becomes much difficult
to absorb the remaining CO2 from the flue gas. A huge decrease in
steady state gain can thus be found from the middle figure of this
column. In terms of the re-boiler temperature, in the range of 50% to
95%, the steady-state gains of the step responses are similar and the
response speed slightly increases as the capture rate increases.

We than show the responses of the PCC process corresponding to 5%
flue gas flow rate step in the right column of Fig. 2. Because the lean
solvent and steam flow rates within the PCC process are not changed,
when the inlet flue gas flow rate increases, only a small part of the
increased CO2 can be captured in the absorber. Therefore, according to
the calculation formula of capture rate (1), a significant decrease of CO2

capture rate can be viewed within 100 s of the step test. On the other
hand, since more CO2 is absorbed, the rich solvent loading is increased,
which will slightly decrease the re-boiler temperature and then con-
tinue decrease the CO2 capture rate. However, these influence is very
limited and can thus be ignored.

It can also be found that under different capture rates, the decrease
level of capture rate is different: at high capture rate, capture the CO2 in
the increased flue gas is much easier than capture the remaining CO2 in
the original flue gas. Thus, under 95% and 90% capture rates, there are
only 3.3% and 3.9% of capture rates drop corresponding to a 5% flue
gas flow rate increase, while around 4.3% of the capture rate drops
have occurred under other cases.

The step response tests show that, within 50%-90% capture rate
range, the dynamics of the PCC system are similar, nevertheless, its
dynamic behavior at 95% capture rate is much different, which is
prominently reflected in the re-boiler steam- capture rate channel.
Some typical features of the lean solvent flow rate and re-boiler steam
flow rate step responses are shown in Tables 2 and 3. For the flue gas
flow rate step, since its dynamic response is relatively simple, the main
parameters are not listed in the table.

3.2. Flue gas flow rate change

To investigate the dynamic behavior variation of the PCC process
under different flue gas flow rates, step response tests are carried out
under 0.07 kg/s, 0.10 kg/s, 0.13 kg/s and 0.15 kg/s flue gas flow rates.
For all simulation tests in this group, the CO2 capture rate and the re-
boiler temperature are set at 80%, 386 K point initially to avoid their
influence. The step responses of the PCC system corresponding to the

lean solvent flow rate, re-boiler steam flow rate and flue gas flow rate
step inputs are shown in Fig. 3.

As shown in Fig. 3, there are also some differences for the PCC
system dynamics under different flue gas flow rates. Regarding the lean
solvent flow rate step (left column), for both the capture rate and re-
boiler temperature channels, as the flue gas flow rate rises, the steady-
state gain of the step response decreases and the rate of the response
increases. Similarly, in case of re-boiler steam flow rate step (middle
column), for both the capture rate and re-boiler temperature channels,
the steady-state gain and rate of the response increase as the flue gas
flow rate rises. However, these dynamic variations are quite limited.
There are no major differences for the main trends of the step responses
under different flue gas flow rates. In addition, the investigation results
also reflect that the PCC system is easily controlled at higher loads,
because the manipulated variables can regulate the controlled variables
more quickly. For the flue gas flow rate step (right column), the dy-
namic variation of the PCC system under different flue gas flow rate is
very small and can be ignored. Some typical features of the lean solvent
flow rate and re-boiler steam flow rate step responses are shown in
Tables 4 and 5.

3.3. Re-boiler temperature change

To investigate the dynamic behavior variation of the PCC process
under different re-boiler temperatures, step response tests are carried
out under 383 K, 384 K, 385 K, 386 K, 387 K and 388 K re-boiler tem-
peratures. For all simulation tests in this group, the flue gas flow rate is
maintained at 0.13 kg/s and the CO2 capture rate is set as 80% initially
to avoid their influence. The step responses of the PCC system corre-
sponding to the lean solvent flow rate step input are shown in Fig. 4. It
can be seen clearly that, under different re-boiler temperatures, the
steady state gains, response speeds and even the variation trends of the
step responses are quite different.

In the low temperature range of 383 K to 385 K, the re-boiler heat
duty is relatively insufficient, part of the CO2 cannot be stripped from
the rich solvent. Under this condition, the increase of lean solvent flow

Table 2
Typical features for the responses of the PCC process at different CO2 capture rates corresponding to 5% lean solvent flow rate step input.

CO2 Capture Rate Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady State Gain Peak Time Transient Time Steady State Gain Maximum Speed Time* Transient Time*

50% 0.305% 1169 s 19800 s −0.073% 1680 s 15962 s
60% 0.003% 1173 s 17898 s −0.075% 1680 s 13592 s
70% −0.265% 1195 s 15268 s −0.076% 1620 s 11878 s
80% −0.362% 1197 s 13633 s −0.071% 1560 s 10754 s
90% −0.459% 1234 s 12267 s −0.076% 1380 s 9868 s
95% −0.226% 1330 s 9104 s −0.075% 1380 s 8075 s

*Maximum speed refers to the maximum average rate of change within 60 s of the step response.
Transient time refers to the time it takes for the step response curve to enter the last 5% of the total change (and no longer goes out).

Table 3
Typical features for the responses of the PCC process at different CO2 capture
rates corresponding to 5% steam flow rate step input.

CO2

Capture
Rate

Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady
State
Gain

Maximum
Speed
Time

Transient
Time

Steady
State
Gain

Maximum
Speed
Time

Transient
Time

50% 3.178% 3600 s 21113 s 0.051% 1680 s 13673 s
60% 3.294% 3140 s 17349 s 0.052% 1620 s 10824 s
70% 3.358% 2640 s 15700 s 0.052% 1560 s 9514 s
80% 3.317% 2580 s 11821 s 0.053% 1440 s 7565 s
90% 2.864% 2160 s 9346 s 0.054% 1440 s 7218 s
95% 1.982% 2400 s 9233 s 0.056% 1440 s 7565 s
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rate (left column) will make the re-boiler temperature drop more and
increase the CO2 loading of the lean solvent. As a result, the CO2 cap-
ture rate will decline to a lower level eventually. In the high tem-
perature range of 387 K to 388 K, surplus of re-boiler heat duty has
occurred. In this case, the increase of lean solvent flow rate will only
cause a slight drop of the re-boiler temperature and increase the CO2

loading of the lean solvent a little bit. Therefore, the CO2 capture rate
will stay at a higher level eventually. Between these two situations,
386 K is the optimal re-boiler temperature, and under this temperature,
the increase of lean solvent flow rate and the resulting increase of lean
solvent loading will make the CO2 capture rate finally go back to the
previous level.

As shown in the middle column, under lower re-boiler temperature,
the increase of steam flow rate will cause more increase in the capture
rate and re-boiler temperature. The reason is that, under lower re-boiler
temperature, the heat duty is relatively insufficient, thus the increase of
steam flow rate is easier to make the re-boiler temperature rise more,
which will achieve a better reduction in lean solvent loading and en-
hance the CO2 capture rate. A significant difference of steady-state
gains can be viewed within 385 K-387 K region for both the CO2 capture
rate and re-boiler temperature channels.

Similarly, for the flue gas flow rate steps (right column), in case of
excess re-boiler heat duty (387 K-388 K), the flue gas flow rate increase
has little effect on the re-boiler temperature. However, when the re-
boiler heat duty is insufficient (383 K-386 K), the flue gas flow rate
increase will make the re-boiler temperature drop more and further
cause more drops in CO2 capture rate.

The investigation results show that the dynamic behavior of the PCC
systems changes significantly as the re-boiler temperature change,
especially around 386 K, which is the optimal re-boiler temperature for
the system operation. This finding also reminds us, it is of great im-
portance to maintain the re-boiler temperature closely around the given
optimal set-point, so that the adverse effects of strong dynamic beha-
vior variation on the operation control of PCC process can be alleviated.

Some typical features of the lean solvent flow rate and re-boiler
steam flow rate step responses are shown in Tables 6 and 7.

According to the investigation results, the following conclusions can
be made for the PCC system dynamics:

(1) In general, the dynamic response of PCC system is very slow, for
both the lean solvent and re-boiler steam flow rate steps, more than
2 h is needed for the system to reach the new steady-state.
Meanwhile, there are strong couplings among multiple manipulated
and controlled variables. These features bring in difficulties for

achieving the flexible operation of PCC system;
(2) The lean solvent flow rate can change the CO2 capture rate in

2–3min at the beginning stage. Although this quick impact is only
temporary, it will provide great help for improving the flexibility of
the PCC system. This is the reason why good results can be achieved
by using the lean solvent flow rate to control the CO2 capture rate;

(3) The change of flue gas flow rate will influence the capture rate in a
very quick manner, its influence on the re-boiler temperature is
trivial;

(4) Under higher flue gas flow rate and capture rates (less than 90%)
the PCC system responds more quickly and thus is easy to control;

(5) The dynamic behavior variation of PCC system is small for a CO2

capture rate change within 50–90% range, however, when the
capture rate rises to 95%, the dynamic behavior becomes quite
different;

(6) The change of flue gas flow rate will not cause too much dynamic
variation for the PCC system; and

(7) Regarding the re-boiler temperature change, the dynamic behavior
variation of PCC system is limited within 383–385 K and 387–388 K
operating regions. However, for a temperature change within
385–387 K, which is the optimal range for the efficient operation of
PCC system, the dynamic behavior variation is very strong.

Remark 3.1:. The 5% step change of input variable is considered in this
paper to ensure that the dynamic behavior obtained is the behavior of PCC
system closely around the initial operating point. If a big step change is added
to the input variable, the system will transit to a point far away from the
initial point. It thus will not become clear, which point the dynamic response
obtained belongs to and the comparison of dynamic characteristics under
different working conditions will become difficult to carry out.

4. Disturbance rejection predictive controller design for the
flexible operation of the solvent-based PCC process

The slow dynamics and multi-variable coupling effect of the capture
process motivate us to use MPC to enhance the flexible operation ability
of the PCC system. However, in the case of wide range load change, the
variation of operating conditions will change the dynamic behavior of
the PCC system. The resulting modelling mismatches will degrade the
performance of the linear predictive control designed for a given op-
erating point or even cause the control system unstable.

The dynamics investigation results in Section 3 show that, under a
wide range of operation, the capture system do have very strong dy-
namic variations. However, if the control system can maintain the re-
boiler temperature tightly around 386 K, which is the optimal

Table 4
Typical features for the responses of the PCC process at different flue gas flow rates corresponding to 5% lean solvent flow rate step input.

Flue Gas Flow Rate Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady State Gain Peak Time Transient Time Steady State Gain Maximum Speed Time Transient Time

0.07 kg/s 0.471% 2003 s 21106 s −0.063% 1860 s 16786 s
0.10 kg/s 0.009% 1202 s 17252 s −0.069% 1620 s 12683 s
0.13 kg/s −0.362% 1197 s 13633 s −0.071% 1560 s 10754 s
0.15 kg/s −0.745% 1184 s 12,270 −0.081% 1500 s 9467 s

Table 5
Typical features for the responses of the PCC process at different flue gas flow rates corresponding to 5% steam flow rate step input.

Flue Gas Flow Rate Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady State Gain Maximum Speed Time Transient Time Steady State Gain Maximum Speed Time Transient Time

0.07 kg/s 2.928% 4920 s 19047 s 0.049% 1680 s 14255 s
0.10 kg/s 3.131% 2700 s 15602 s 0.051% 1680 s 10223 s
0.13 kg/s 3.317% 2580 s 11821 s 0.053% 1440 s 7515 s
0.15 kg/s 3.404% 2220 s 10149 s 0.053% 1440 s 6097 s
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temperature point, the dynamic variation of the PCC system will be-
come much weaker between 50% and 90% CO2 capture rates. There-
fore, without the need for nonlinear controller, it is possible to design a
linear predictive controller to achieve a flexible operation of the PCC
system within this range.

In order to further enhance the adaptation ability of the MPC to the
flue gas flow rate variation and alleviate the effect of dynamic behavior
variation and unknown disturbances, a disturbance rejection predictive
controller (DRPC) is proposed in this section for the PCC system op-
eration. The DRPC is composed by an extended state observer, a steady
state target calculator and a quasi-infinite horizon MPC. The schematic
diagram of the proposed DRPC is illustrated in Fig. 5.

4.1. Predictive model considering the flue gas flow rate disturbance

Considering the operating range of 50% to 90% capture rate, a
linear model is identified around 70% capture rate, 386 K re-boiler
temperature operating point, which is the middle point within this
range. To ensure the MPC can be flexibly adapted to the flue gas flow
rate change, the flue gas flow rate f, which is a measured variable in
power plant is taken into account as an additional input in the modeling
step, resulting in the following state space model:

⎧
⎨⎩

= + +
= + +

+x Ax Bu Ef
y Cx Du Ff

,k k k k

k k k k

1

(2)

where =y y y[ ]k k k T1 2 is the output vector composed by the CO2 cap-
ture rate and re-boiler temperature, =u u u[ ]k k k T1 2 is the input vector
composed by the lean solvent flow rate u1 and re-boiler steam flow rate
u2, fk is the flue gas flow rate, xk is the state vector, which do not have
physical meanings; and A, B, C, D, E, F are the system matrices.

Because the flue gas flow rate is regarded as an additional input,
model can be rewritten into an augmented form:

⎧
⎨⎩

= + ∼∼

= + ∼∼
+x Ax B u

y Cx Du
,k k k
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1

(3)

in which ∼ =u u f[ ]k k
T

k
T T is the augmented input, and ∼ =B B E[ ],

∼ =D D F[ ] are the augmented system matrices. Since model is a
standard 3-input, 2-output state space model, using the collected dy-
namic input, output data sequence, conventional identification ap-
proach can be directly employed to identify the system matrices.

4.2. Extended state observer design

To improve the disturbance rejection property of the MPC, i.e., to
overcome the issues such as plant behavior variation and unknown
disturbances, a disturbance term dk∈ R2 is introduced to the state-space
model:
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where dk is a lumped disturbance term representing all the effect of
plant behavior variation, modeling mismatches or other unknown dis-
turbances. Because the state vector xk and the disturbance term dk are
immeasurable, an extended state observer (ESO) is designed to estimate
their values:
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where the symbol “^” indicates the estimation. The observer gain L can
be calculated by solving the following Linear matrix inequality (LMI):
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in which MO and NO are matrices, X is a symmetric positive definite

matrix and the extended matrices = ⎡
⎣

⎤
⎦

A A G
I0

ext , =C C[ 0]ext . The

ESO gain can be determined by: = −L M NO O
1 [48].

4.3. Steady-state target calculator design

After the lumped disturbance signal is estimated, it will be sent to
the following steady-state target calculator (SSTC) - to modify the target
value and control input, so that the influence of disturbances on control
can be eliminated in time [49].
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Table 6
Typical features for the responses of the PCC process at different re-boiler temperatures corresponding to 5% lean solvent flow rate step input.

Re-boiler Temperature Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady State Gain Peak Time Transient Time Steady State Gain Maximum Speed Time Transient Time

383 K −6.421% 1153 s 12781 s −0.329% 1440 s 11483 s
384 K −5.025% 1319 s 11749 s −0.241% 1440 s 10035 s
385 K −3.733% 1088 s 9807 s −0.162% 1560 s 8306 s
386 K −0.362% 1197 s 13633 s −0.071% 1560 s 10754 s
387 K 1.973% 1313 s 15470 s −0.028% 1380 s 12271 s
388 K 3.265% 1633 s 15277 s −0.012% 1260 s 9570 s

Table 7
Typical features for the responses of the PCC process at different re-boiler temperatures corresponding to 5% steam flow rate step input.

Re-boiler Temperature Response of CO2 Capture Rate Response of Re-boiler Temperature

Steady State Gain Maximum Speed Time Transient Time Steady State Gain Maximum Speed Time Transient Time

383 K 8.838% 2060 s 10359 s 0.232% 1340 s 9171 s
384 K 7.704% 2300 s 9313 s 0.174% 1400 s 7993 s
385 K 6.021% 2480 s 12068 s 1.142% 1520 s 8812 s
386 K 3.317% 2580 s 11821 s 0.053% 1440 s 7515 s
387 K 1.757% 3080 s 14425 s 0.022% 1040 s 8939 s
388 K 1.200% 17300 s 16270 s 0.007% 1040 s 3712 s
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⩽ ⩽u u umin k
s

max (9)

Within the SSTC -, yref and uref are the desired output set-points and
the corresponding input values under nominal condition; umin and umax

are the constraints for the input variables. At every sampling time k, by
using the static disturbance model (8), the SSTC will adjust the steady
state target of the state and input variables x u,k

s
k
s according to the

current flue gas flow rate fk and the estimated lumped disturbance ̂dk. In
this way, the adverse effects of various disturbances can be quickly
removed and an offset-free tracking of the desired set-points yref can be
achieved.

Considering the stability of the ESO, subtract from, we can have:

⎧
⎨⎩

= +
= +

+x Ax Bu
y Cx Du

¯ ¯ ¯
¯ ¯ ¯ ,k k k

k k k

1

(10)

in which = − = − = −x x x u u u y y y¯ , ¯ , ¯k k k
s

k k k
s

k k ref . The system can be
used as the predictive model of the MPC, and the goal of the control is
to find the optimal constrained control sequence to drive ȳk to the zero.

4.4. Quasi-infinite horizon MPC design

Considering the control objective function:
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where +ȳk N k| , (N: 0 – Np) is the prediction of future output and +ū ,k N k|
(N: 0 – Np) is the future control input sequence; Q0 and R0 are the
weighting matrices for the output and input, respectively. A regular
MPCs with enhanced disturbance rejection property can be designed for
the PCC process. At every sampling time k, through minimization of
subject to corresponding input magnitude and rate constraints, the
optimal future control sequence +ū ,k N k| (N: 0 – Np) can be calculated.
The first control input = +u u u¯k k k k k

s
| | can be selected as the current

control action and implemented on the PCC plant.
Note that the selection of this objective function requires the con-

troller to track the desired CO2 capture rate set-point rapidly and
smoothly while maintaining the re-boiler temperature closely around
its optimal value to avoid the huge dynamics change of the system. On
the other hand, during the operation, the lean solvent flow rate and re-
boiler steam flow rate are expected to be as small as possible, so that
better economic performance can be attained.

One issue for applying the regular MPCs on the PCC process is that,
a large predictive horizon is usually needed to ensure a satisfactory
control quality and system stability, because the PCC process has very

slow dynamics. Such a method will increase the computational cost of
the controller. To overcome this issue, a quasi-infinite horizon MPC
[50] is selected in this section for the PCC system control.

Consider an infinite horizon control objective function
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divide the future control sequence +ūk N k| , (N: 0 – ∞) into two part: free
control sequence = ⋯+ + −[ ]U u u u¯ ¯ ¯ ¯k k k k k k N k| 1| 1|f like conventional
MPC for 0≤N < Nf and feedback control sequence

=+
−

+u YG x¯ ¯k N k k N k|
1

| for N≥Nf , in which Y and G are matrices. By
finding γ, the upper bound of the infinite horizon function, and mini-
mizing it, the optimal control sequence can be determined from solving
the following LMIs:

−

∼ γ

s t

min

. . (14) (17)
γ U Y G S, ¯ , , ,k

(13)

̂
̂

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

∗ ∗ ∗ ∗
+

+

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⩾

∼

∼

l x l U

Q L x L U

R U γI

l w

1
¯ ¯ 0 0 0

( ¯ ¯ ) 0 0 0

¯ 0 0 0

0 0 0

0

x k u k
S

x k u k
γI

k

x
S

2
1/2

2
1/2

2 (14)

⎡

⎣

⎢
⎢
⎢
⎢

+ − ∼ ∗ ∗ ∗
+ ∼

+

⎤

⎦

⎥
⎥
⎥
⎥

>

G G S
AG BY S

Q CG DY γI
R Y γI

( ) 0 0
( ) 0 0

0 0

0

T

0
1/2

0
1/2

(15)

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

− ⩽ ⩽
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

−

I
I

I

u u U

I
I

I

u u( ) ¯ ( )min k
s

k max k
s

2

2

2

2

2

2 (16)

⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

⩽

⎡

⎣

⎢
⎢
⎢
⎢
⎢

+
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⩽
⎡

⎣

⎢
⎢
⎢

⋮

⎤

⎦

⎥
⎥
⎥

−
I
I

I

u ζ

u

U

I
I

I

u

I
I

I

uΔ ¯ Δmin

k

k k
s

2

2

2

1

2

2

2

2

2

2

max

(17)

where = ⊗Q I QN 0f , = ⊗R I R ,N 0f w is the upper bound of the state

Fig. 5. Schematic diagram of the proposed DRPC for the solvent-based post combustion CO2 capture system.
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The LMI guarantees that, γ is the upper bound of the infinite ob-
jective function, gives the Lyapunov stability constraint of the closed
loop control system, and are the magnitude and rate constraints of the
free input variables. At each sampling time, the first element in the
solved control sequence ūk k| is added to the target input u ,k

s the resulting
= +u u u¯k k k k k

s
| | is selected as the current control action and im-

plemented on the PCC plant.
The proposed DRPC has the following advantages for the flexible

operation of the PCC process:

(1) Flue gas flow rate variation of upstream power plant is a major
disturbance to the PCC process. To overcome this issue, the flue gas
flow rate is used as an additional input in the model development
based on the idea of feed-forward control. Then by using the ESO
and SSTC, the proposed DRPC can change the target input uk

s im-
mediately according to the current flue gas flow rate, thus the
control action = +u u u¯k k k k k

s
| | can be promptly adjusted, making

the capture system flexibly adapt to the flue gas flow rate change;
(2) Plant dynamic variations due to wide range of operation and other

unknown disturbances will bring in many adverse effects to the
control of PCC process. For this reason, the ESO and SSTC are de-
signed in the DRPC structure to estimate the disturbances and
eliminate their impact, enhance the disturbance rejection property
of the MPC; and

(3) A quasi-infinite horizon MPC is applied for the PCC process. By
including the infinite future control moves into a feedback control
law, only a fewer prediction steps are required to achieve a sa-
tisfactory control of the slow PCC process.

Remark 4.1:. For the initialization of the MPC, we assume that the PCC

system is in steady state at the initial moment and there are no lumped
disturbances ( ̂dk=0). Then according to the current input uk, output yk
(yk= yref, uk= uref) and flue gas flow rate fk, xk

scan be calculated by
equation (7)-(9), which is set as the initial state ̂xk.

5. Simulation results

This section verifies the control effect of DRPC for the flexible op-
eration of the PCC process under wide range CO2 capture rate change,
flue gas flow rate change and unknown disturbances. Linear state space
model identified around 70% capture rate, 386 K operating point for re-
boiler temperature is selected as the predictive model, since it is a
middle point within the considered operating range (50%-90% capture
rates). The parameters of the proposed DRPC are set as follows: sam-
pling time Ts=30 s, free control input number Nf=2, disturbance
matrix G= diag(0.1, 0.08), upper bound of the state estimation error

=w [1 1]T . A too small w will limit the feasibility of the DRPC; and a
too large w will influence the initial status of the predictive control
system. Considering the objectives of the PCC system control:1) quickly
track the CO2 capture rate set-point; 2) maintain the re-boiler tem-
perature at optimal point to avoid plant behavior variation; and 3)
reduce the lean solvent and re-boiler steam flow rate as much as pos-
sible to lower the energy consumption, the weighting matrices are set as
Q0= diag(10, 1), R0= diag(1, 1). Input magnitude and rate constraints
are taken into account: =u [0.2 0.005] ,T

min
= = − − =u u u[1 0.08] , Δ [ 0.007 0.001] , Δ [0.007 0.001]T T T

max min max
due to the physical limitations of the valves and pumps.

Two other MPCs are designed for the purpose of comparison: a) the
conventional MPC with integral action (MPC_I); b) conventional MPC
without using the integral action (MPC). The predictive model, sam-
pling time and weighting matrices of these two MPCs are set the same
as the DRPC. The prediction horizon Np is set as 6 steps (180 s) because
too small Np is very easy to cause system instability.

The three predictive controllers are developed in MATLAB platform
and run with a sample period of 30 s. At each sampling time during the
simulation, the controllers and the gCCS plant model communicated
with each other through the gO:MATLAB interface.

Case 1: Wide range CO2 capture rate change is considered in the first
simulation since it is a basic requirement for the flexible operation of
the PCC process. We suppose that the PCC system is operating at 70%
capture rate point initially, then according to the instruction of sche-
duling level, at t=10min and t=160min, the set-point changes to
50% and 90% at the ramping rate of 0.4%/min respectively. During the
CO2 capture rate variation, the set-point of re-boiler temperature con-
troller is fixed at 386 K.

The results in Figs. 6 and 7 indicate that all the three linear pre-
dictive controllers can attain a satisfactory control performance for the
CO2 capture rate change within 50%-90% operating region. When the
capture rate set-point varies, the predictive controllers adjust the lean
solvent and re-boiler steam flow rates coordinately, the CO2 capture
rate can thus follow the changed set-point closely and smoothly. At the
same time, the re-boiler temperature can also be kept tightly around the
desired point, ensuring an economical running of the PCC process and
avoiding the adverse impact of strong dynamic changes on the control
system.

By using the ESO and SSTC to estimate and quickly compensate the
effect of dynamic variation during the capture rate change, the pro-
posed DRPC has the best performance among the three linear predictive
controllers. The deviation of the re-boiler temperature is less than 0.1 K
and the steam flow rate fluctuation during the transition of regulation is
quite small. Note that with the use of quasi-infinite horizon MPC in the
DRPC framework, the free control input number is set quite small as
Nf=2, which means that the computational effort for the DRPC could
be very small. With the integral action being included in the MPC de-
sign, an offset free tracking performance can also be achieved by the

Fig. 6. Performance of the PCC system for a 70%-50%-90% CO2 capture rate
change: output variables (solid in red: DRPC; dashed in blue: MPC_I; dotted in
black: MPC; dot-dashed in green: reference). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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MPC_I, however, in the case of small predictive horizon, the perfor-
mance of MPC_I is worse than the DRPC, which is mainly reflected in
the re-boiler temperature control. For the conventional MPC, since no
means are used to compensate for the effects of dynamic change, it has
the worst performance. Control offset is occurred for both the CO2

capture rate and re-boiler temperature.
Case 2: Flue gas flow rate change is then considered in the second

simulation to test the performance of the linear MPCs. We assume that
at t=10min and t=125min, due to the power load variation of up-
stream power plant, the flue gas flow rate changes from 0.13 kg/s to
0.07 kg/s and 0.15 kg/s respectively. During the simulation, the set-
points for CO2 capture rate and re-boiler temperature are fixed at 70%
and 386 K. The results are illustrated in Figs. 8 and 9.

The simulation results demonstrate that the proposed DRPC can
effectively handle the variation of flue gas flow rate. As shown in
Figs. 2–4, the dramatic change of the flue gas flow rate will cause large
changes in CO2 capture rate rapidly and make it deviate far away from
the desired set-point under open loop situation. However, because the
flue gas flow rate f has already been considered in the predictive model
development, through the calculation of SSTC, the DRPC can regulate
the lean solvent and re-boiler steam flow rate in time, according to the
current flue gas flow rate. As a result, it can be seen in Fig. 8 that, the
capture rate can be quickly controlled back to the set-point and the
fluctuation of re-boiler temperature during the regulation is greatly
reduced.

For the other two MPCs, their performance is much worse than the
proposed DRPC. In the presence of flue gas flow rate variation, their
prediction and control performance is greatly degraded since the flue
gas is not considered in the model development. Regarding the con-
ventional MPC, large control offset is occurred for the CO2 capture rate,
and the re-boiler temperature has continued to swing around the given
set-point. Meanwhile, the lean solvent and steam flow rates also exhibit
a greater degree of oscillation compared with the performance of DRPC.
Regarding the MPC_I, the use of integral action reduces the stability of
the control system. Severe fluctuation can be viewed for both the
capture rate and re-boiler temperature in Fig. 8 and for steam flow rate
in Fig. 9. The PCC system is not able to run smoothly under the strong
variation of flue gas flow rate.

Case 3: We then devise the last simulation to test the performance of
the linear predictive controllers in the presence of unknown dis-
turbances. Similarly, we suppose that the PCC plant is operating at 70%

capture rate operating point initially, due to some unknown equipment
failures, at t=50min, the lean solvent flow rate is reduced by 0.1 kg/s,
then at t=150min, the re-boiler steam flow rate is increased by
0.0074 kg/s. The set-points for CO2 capture rate and re-boiler tem-
perature are fixed at 70% and 386 K during the simulation.

The simulation results shown in Figs. 10 and 11 illustrate the ef-
fectiveness of the proposed DRPC in handling the impact of unknown
disturbances. At t=50min, the unknown decrease of lean solvent flow
rate makes the CO2 capture rate and re-boiler temperature increase
rapidly. The DRPC estimates the value of disturbance ̂dk from the
control action and actual plant output via the ESO, then quickly
modifies the lean solvent and steam flow rates according to the value of

̂dk through the SSTC. Following this, the impact of unknown dis-
turbances can be rapidly rejected by the DRPC system. The same si-
tuation also occurs at t=150min, when unknown increase of steam
flow rate make the CO2 capture rate and re-boiler temperature rise. The
DRPC can drive them back to the set-points with minimal fluctuations
and time. On the other hand, by including the integral action, the MPC_I
can also alleviate the influence of unknown disturbances, however, its
performance is worse than the DRPC, stronger fluctuation can be
viewed from the re-boiler temperature control. For the conventional
MPC, the influence of unknown disturbances cannot be eliminated,
large control offset is thus occurred, especially for the CO2 capture rate.

The three simulations demonstrate the advantages of the proposed
DRPC in the operation of the PCC process. The DRPC can quickly
change the CO2 capture rate in a wide range, respond flexibly to the flue
gas flow rate variation and effectively overcome the impact of unknown
disturbances.

6. Conclusion

This paper investigated the dynamic behavior and its variation of
the PCC system to provide guidance for the controller design. The
variation of three key variables during the PCC flexible operation are

Fig. 7. Performance of the PCC system for a 70%-50%-90% CO2 capture rate
change: manipulated variables (solid in red: DRPC; dashed in blue: MPC_I;
dotted in black: MPC). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. Performance of the PCC system in the presence of power plant flue gas
variation: output variables (solid in red: DRPC; dashed in blue: MPC_I; dotted in
black: MPC; dot-dashed in green: reference). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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taken into account: the CO2 capture rate, the power plant flue gas flow
rate and the re-boiler temperature. Step response tests at different op-
erating points are performed to display the dynamic characteristics of
the PCC system intuitively.

The investigation results fully illustrate the slow dynamics of the
PCC system and the strong couplings among the key variables. The
dynamic behavior variation of the PCC system is also exhibited, that: 1)
under higher capture rate and flue gas flow rate, the responses of PCC
system is quicker compared with lower conditions 2) there are two
regions within which the dynamic variation of the PCC system is quite
strong: around 90%-95% capture rate range and around 386 K, the
optimal re-boiler temperature point.

To overcome the control difficulties of the PCC system and enhance
the performance of conventional MPC in the presence of dynamic
variations, a disturbance rejection predictive controller (DRPC) is de-
veloped for the PCC process. By considering the effects of flue gas flow
rate in the predictive model development and coordinated using the
extended state observer (ESO), steady state target calculator (SSTC) and

a quasi-infinite horizon MPC. The DRPC can quickly adapt to the flue
gas flow rate change, eliminate the effect of plant behavior variation
and unknown disturbances and achieve a wide range of capture rate
change using very small prediction steps. Simulation results on an MEA
based PCC plant verify the advantages and effectiveness of the proposed
DRPC.
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