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In this work, the reflectance spectroscopy of 212 coal samples of different origins was investigated across the Vis-
NIR-SWIR range (wavelength: 350-2500 nm) to estimate their ash, moisture, volatile matter, fixed carbon
content and gross calorific value (GCV). Several mathematical pre-treatments were applied to each spectrum for
improving the signal-to-noise ratio. Partial-least-square (PLS), random forest (RF), and extreme gradient
boosting (XGBoost) based regression methods were used to capture the relationships between coal quality
parameters with corresponding spectral responses. The predictive models were generated by taking a combi-
nation of a set of differently pre-processed spectra with the above-mentioned regression methods to obtain the
optimal prediction performance. The results show that spectral pre-processing improves the prediction accuracy
of a model. Excessive pre-processing, however, could reduce the model accuracy due to the loss of information.
RF regression model works best for estimating moisture and fixed carbon content, while XGBoost shows the best
result for ash content and GCV, and PLS models provide the most accurate prediction for volatile matter content.

1. Introduction

Coal is a heterogeneous aggregate of organic and inorganic mate-
rials. It mainly contains carbon, hydrogen, oxygen, and little amount of
sulphur and nitrogen. Characterization of coal involves several standard
methods that can generate very accurate results. However, one of the
major drawbacks associated with these techniques is they are laborious
and time-consuming processes [1]. Therefore, there is a requirement for
alternative techniques for the characterization of coal, which can pro-
vide reliable results in a relatively easy and swift manner. A variety of
optical spectroscopic techniques have gained attention in recent times
because these techniques can provide information on the physico-
chemical composition of the target from only a single measurement
[2,3].

Application of infrared transmission and absorption spectroscopy
has its long history in coal characterization (e.g., study of functional
group, maceral composition, oxidation, rank) [4-8]. However, this
method involves the preparation of KBr-coal pellets, which is time-
consuming. Further, it involves light scattering at the KBr-coal inter-
face, which leads to a shift in the spectral baseline in high-frequency
region [9]. In last few decades, diffuse reflectance spectroscopy (DRS)
has gained interest for quantitative analysis of coal, primarily because
of the fact that the data acquisition process is simpler, and no sample
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pre-treatment is required. The Beer-Lambert law states that the absor-
bance is linearly related to the concentrations of chemical components
present in the target material [10]. Researchers have done chemometric
modelling using this law to estimate the quality parameters of coal
[1,11-15]. It should be mentioned that most of these analyses were
performed by taking the spectral responses in short-wave infrared range
(SWIR), where the wavelength ranges from 1000 to 2500 nm. There is,
therefore the further scope of utilizing spectral characteristics from
visible to near-infrared (VNIR) range (wavelength: 350-1000 nm) to
obtain additional information related to the coal characterization. In
this context, hyperspectral remote sensing-based spectral reflectance
covering a wavelength of 350-2500 nm can be examined to improve
the prediction accuracy of the coal properties.

Compositionally coal is very complex and heterogeneous in nature,
and a specific spectral band cannot be assigned to quantify a particular
coal property. For that, the entire spectrum should be considered in the
chemometric analysis [16], which involves a huge number of variables.
Thus, multivariate statistical methods are used for the prediction of
quality parameters of coal. In most of the related research work, linear
regression models such as PLS regression, principal component analysis
(PCA), and multiple linear regression (MLR) have been used to estimate
coal properties [1,6,12-18].

In the present work, attempts have been made to estimate some
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PCA Principle component analysis

important quality parameters (viz. ash, moisture, volatile matter, fixed
carbon content, and GCV) of Indian coal which is known for its high ash
content using diffuse reflectance spectroscopy in Vis-NIR-SWIR
(350-2500 nm) range. The coal properties predicted from reflectance
spectra have been compared with the measured data obtained from
laboratory experiments to check its accuracy. In DRS, the detector
captures the reflectance (R) value at each wavelength interval, and the
absorbance value is computed from the logarithmic of 1/R [i.e., Log(1/
R)]. This calculated absorbance value is not always the true re-
presentation of the Beer-Lambert absorbance since the path length of
the electromagnetic wave through the sample is influenced by both the
absorbance and scattering phenomenon [19]. This gives rise to non-
linearity in absorbance-concentration relationship due to the additive
and multiplicative effect. To overcome such physical effects, various
mathematical pre-treatments have been carried out to the spectra be-
fore applying different multivariate statistical methods. However,
spectral pre-processing is not always capable of removing all the non-
linearities because it considers almost constant scattering across the
wavelength interval, and it may also cause the removal of some im-
portant chemical information [20]. Therefore, different mathematical
pre-treatments and their combinations were applied to the spectra to
reduce the nonlinearity before performing the chemometric analysis.
An effort has also been made to optimize the application of different
spectral pre-processing methods. A schematic representation of the
process flow chart of the present investigation is shown in Fig. 1. The
PLS, RF, and XGBoost based regression models are used in order to
capture both the linear and non-linear relationships of coal quality
parameters with its spectral properties. At the best of our knowledge,
for the first time, RF and XGBoost have been used for chemometric
modelling of coal quality estimation.

2. Methodology
2.1. Sample description

A total of 212 coal samples (Table 1) were collected from geo-
graphically widely distributed Indian coal basins (Fig. 2) of different
geological ages and coal ranks. Majority (~90%) of the samples were
collected from open cast mines (both active and abundant) and fewer
(~10%) from underground mines. The samples were collected from
coal seams in such a way that they become representative of the seam
as much as possible. Effort was made to assess both vertical and hor-
izontal variations in the seam by collecting the samples through
channel sampling method. The coal samples were collected from the
states of Assam, West Bengal, Jharkhand, Gujarat and Jammu &
Kashmir. A chronologically widely distributed coal basins ranging from
Permian to Oligocene age were selected for this study to understand the
spectral behaviour of coal of different rank, grade, and geochemistry.
The rank of coal ranges from lignite to semi-anthracite as listed in
Table 1.

2.2. Experimental details

All coal samples were pulverized to carry out different coal quality
analyses and recording of reflectance spectra. Proximate analysis of the
samples was carried out following ASTM D3172 standard [22] to de-
termine the ash, moisture, volatile matter, and fixed carbon contents.
The gross calorific value (GCV) was determined using Bomb calorimeter
(Model: Parr 660) following ASTM D5865 standard [25].

Reflectance spectra of coal samples were recorded using ASD
FieldSpec® spectroradiometer. The spectra were recorded in a dark
room with room temperature ranging from 26 — 29 degreesC and a
humidity level of 65 — 70%. The spectral reflectance was recorded

Collected VNIR spectra of 212 coal samples

Absorbance (Log(1/R)) spectra without any
preprocessing (Type-1)

‘ Applied Savitzky-Golay smoothing (Type-2) ‘
)

v v ) v
Normalization Baseline correction Multiplicative scatter Normalization + Baseline correction
(Type-3) (Type-4) correction (Type-5) + Multiplicative scatter correction
(Type-6)
J l ¢
v v v
PLSR ‘ ‘ Random forest (RF) ‘ ’ XGBoost ‘

» | Estimationofcoal | .
quality parameters

Fig. 1. Schematic representation of the process flow chart for estimation of coal properties from VNIR spectral data used in the present investigation.
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within the range of 350-2500 nm at a spectral resolution of 3 nm up to
700 nm and 10 nm in farer wavelength (up to 2500 nm) [23]. In DRS,
the quantitative information of a sample is mostly affected by the
sensor-source geometry and sample particle size [24]. Therefore, we
have performed the spectral measurement taking a uniform grain size
(less than 74 um) [17] and a fixed sensor-source geometry. It is also
reported that the coal quality parameters (e.g. volatile matter, fixed
carbon and ash content) can vary with the variation in particle size
[38]. The lower limit of particle size was therefore limited to 63 pum in
the present study in order to maintain a relatively uniform particle size
distribution. The sensor was positioned at nadir (42 cm above the
sample), providing a field of view (FOV) of 27.07 cm?. The pulverized
coal samples were taken into a flat container and placed within the FOV
of the sensor. Every spectrum is an average of 30 scans. After capturing
each spectrum, the sample container was rotated by 90 degrees re-
sulting in four spectra for one sample. Average of the four spectra were
taken as the representative spectra for each sample.

High volatile B bituminous to medium volatile bituminous coal.
High volatile A bituminous to Low volatile bituminous coal.

Mainly high volatile A bituminous coal.

Lignite A to sub-bituminous C coal.
Mainly low volatile bituminous to semi-anthracite coal.

Rank of coal

2.3. Data processing methods

2.3.1. Spectral pre-processing

The spectral data were captured in the reflectance (R) mode and
transformed into absorbance [Log(1/R)] spectra for this analysis. The
initial reflectance values from 350 to 399 nm were removed because of
the instrumental noise. This was followed by application of several
mathematical pre-treatments to minimize the extraneous effect on the
spectra, which can subsequently improve the predictive models or
quantitative analysis [20]. The pre-processing technique is broadly di-
vided into two categories: a) correction of particle scattering effect and

No. of coal samples collected

14
123
28
23
24

é b) spectral derivatives (which involves smoothing of the spectra in
E order to reduce the signal to noise ratio). However, the use of several
g pre-processing techniques may lead to the loss of some valuable in-
“5_ formation [20]. Thus, it is imperative to optimize the numbers of pre-
Zlodm« ~ processing techniques. This could be achieved by comparing the pre-
diction performance of the models after applying different pre-proces-
o & sing techniques. In this study, we have considered one spectral deri-
g ; vative process viz. Savitzy-Golay smoothing and three different scatter
@ § correction methods viz. normalization, baseline correction, and multi-
B s 5 plicative scatter correction (MSC). These are the most efficient and
Q —
| = E - 3 commonly used spectral pre-processing methods to remove non-
2| 255 = linearities [14,16]. As shown above, in Fig. 1, the spectra have been
S|Eagg o N o & P
Blagggeye divided into the following six types:
Sl ez Hoy 8
§| 3566834 . .
a) Type-1: No pre-treatments were applied, and raw absorption spectra
- had been used for the prediction modelling.
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2 g SEEEE spectra taking a window of nine points and second-order poly-
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§ £ [2 S 2 § S é § c) Type-3: Range normalization was applied to Type-2 spectra.
E _§ a_@ § g El Sy d) Type-4: Baseline correction was applied to Type-2 spectra.
§ | 55E % E 2 g e) Type-5: MSC algorithms were applied to Type-2 spectra.
g O maREMS f) Type-6: All three scatter correction methods were applied to Type-2
g spectra (normalisation followed by baseline correction and finally
9 % MSC).
8 5 el
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2 é"’) g g 2.3.2. Data modelling
L @ .
= _64‘:: < ’é a) Data description: The dataset consists of 212 coal reflectance
; 2 g’é g spectra in VNIR (400-2500 nm) range. Each row consists of spectro-
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o
3 = § 2 - § column has corresponding 2101 sets of absorbance [Log (1/R)] values
I . . .
¥ g | & g E g; g of coal samples followed by the properties (ash, moisture, volatile
ol €| &% 53 S matter, fixed carbon and GCV) of coal samples. The descriptive statis-
f tics of these properties obtained from laboratory measurements fol-
- ol s lowing ASTM standards are described in Table 2. The box-plots of each
_% k! ; oo - of the coal properties are shown in Fig. 3. In the following sections,
—
EAa attempts have been made to compare the measured coal properties with
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Fig. 2. Map of India [21] showing areas where coal samples were collected. It comprises of the maps (taken from Google Earth) of coal mines in (a) Assam, (b) West

Bengal, (c) Jharkhand, (d) Gujarat and (e) Jammu & Kashmir.

Table 2
Statistical results of coal properties obtained from standard laboratory methods,
as discussed above.

Coal properties  Proximate analysis (as-received basis) GCV
(MJ/kg)
Ash Moisture Volatile Fixed
wt.%)  (wt.%) matter (wt. carbon (wt.
%) %)
Count 212 212 212 212 212
Mean 19.50 3.30 21.15 56.07 25.90
St. Deviation 11.94 6.00 9.74 11.02 5.00
Minimum 0.90 0.02 0.54 15.86 12.20
Maximum 54.77 33.07 47.86 78.21 35.60
801
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Fig. 3. Data distribution of ash (A), moisture (M), volatile matter (VM), fixed
carbon (FC) and gross calorific value (GCV) of the coal samples investigated in
the present study.

that predicted from the reflectance spectroscopy using different statis-
tical methods.

b) Outlier treatment and data normalization: Outlier removal was
done on the dataset based on the Z-score of each of the coal properties.
The Z-score is the signed number of standard deviations by which the
value of a data point deviates from the mean value of the respective
property, and it is calculated from:

ZScore(n) = (Yn - };)/U (1)

where Y, is then’data point, Y is the mean and ¢ is the standard de-
viation. The coal properties having Z-score greater than + 3 or lower
than — 3 were removed as outliers to improve the model accuracy [26].
Post outlier treatment, the entire dataset was normalized to ensure the
values of all the columns across the 212 data points have a range be-
tween 0 and 1. The formula for normalizing the dataset for i column is
given below:

al:i] — min(a[:,i])

= @l — min(alo) >

After outlier removal and normalization, 205 coal sample data were
split (80:20 ratio) into training (164) and test set (41) for further
analysis. Each of the regression models (PLS, RF and XGBoost) was run
30 times on the training set for each property to remove randomisation
bias. The predictions were made on the test set of 41 samples each time.
Among these 30 predictions per model of each property, the best result
is considered. Details of each statistical model are discussed below.

2.3.3. Model selection

2.3.3.1. Partial least square (PLS) regression. Theory: Given a set of
independent variables (X) and a set of dependent variables (Y), the goal
of the regression is to predict Y fromX. However, when the number of
predictors (X) are large compared to the number of training samples,
linear regression fails due to multi-collinearity. To work-around this
issue, PCA technique projects X to a lower-dimensional space U, which
captures the variance of X using Singular Value Decomposition. Then,
the U vectors are used for predictingY .
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In contrast, PLS regression projects both X and Y to lower dimen-
sional spaces(T&U) by finding the latent features of X which are re-
levant to findingY. In PLS, X and Y are simultaneously decomposed so
that the resultant latent variables can explain the variance of X and Y
as much as possible. Hence, PLS can be conceptualised as a general-
ization of PCA. The algorithm of PLS can be mathematically described
as:

X = TP"&Y = UQ" 3

After the decomposition of X and Y to latent space T and U, re-
gression is performed between T&U [27].

The variation of root mean square error of a test set (RMSET) with
number of latent variables is shown in Fig. 4 for different coal prop-
erties. It could be seen that as we vary the latent variable numbers, the
RMSE of the properties changes. In this study, we experimented with
several values of latent variables like (2, 5, 10, 15, 20, 30, and 40). We
ran a grid search over the latent variable numbers, by running the PLS
models with different latent variables and chose the one where the
RMSE of the 5-fold cross-validation set was lowest. We use that ‘best
model’ to predict the test set.

2.3.3.2. Random forest regression. Theory: The concept of random forest
regression comes from a well-known ensemble learning algorithm
called bagging or bootstrap aggregation. In bagging, n machine
learning models are trained on n splits of a datasetD. Given that the
splits are randomised and independent to each other, the n models
capture different components of the variance of dataset splits. When
these n models are combined in a greedy way, the resultant aggregated
model (i.e., the random forest regressor) becomes powerful enough to
minimize the variance of the prediction, thereby producing an
improved prediction.

A random forest regression model consists of a set of randomized
regression trees {m(x, 6,,, D,), m > 1} where D, is the n numbers of
training datasets and 6,, are the respective parameters of the regression
trees trained on D,. The n numbers of random regression trees are
trained on n independent splits of the datasetD. Then, the output of the
random forest regressor r,(X) is estimated by combining the prediction
of each of the regression trees using the Monte-Carlo method [28]:

Fuel 280 (2020) 118676

The randomized variable is used for determining the splits of each of
the regression trees in random forest regressions. More randomized
splits of individual regression trees ensure more versatile random forest
regressor at predicting a dependent variable. Conceptually, the random
forest regression works in the following way:

a) Creating n (say 100) random sub-samples of the dataset with re-
placement.

b) Training uncorrelated decision trees (parameterised by) on each of
then samples.

¢) During prediction, the test data is predicted using each of then de-
cision trees. The random forest prediction for the dataset becomes
the average value of the predictions of each of then decision tree
regressors.

As the dataset contained 2101 sets of independent variables for
predicting coal properties, the independent variables were transformed
into a latent space using PCA. 20 principle components obtained from
PCA were taken for predicting the coal properties.

The optimal set of hyperparameters was selected using grid-search
on a 5 fold cross-validation setup in the training samples. The para-
meters used for grid-search are shown below. The model best per-
forming on the 5-fold cross-validation setup was used for predicting the
coal properties in the test set.

Param grid = {'n estimators": (1000, 3000), 'max_depth": (10, 50, 200,
500),'min_samples_split: (2, 5),'max_features" (0.1, 0.3, 0.7, 0.99)}

2.3.3.3. Xgboost regression. Theory: While random forest uses bagging
to capture the variance of the dataset, XGBoost is based on another
popular machine learning technique for data modelling, known as
gradient boosting. As described earlier, in random forest, the decision
trees are built parallely on different splits of the dataset. However, in
boosting-based algorithms like XGBoost, the decision trees are built
sequentially to minimize the residual error modelled by the previous
tree.

Accodrding to Chen et al. [29], if yi(’) is the prediction of i instance

Yrr = rn(X) =Ep [rn(Xa 67 Dn)] “4) R K X . i
at t'" iteration of a XGBoost regression model f(x) the objective func-
WhereD, = {(X;, Y1), (X3, ¥o), -+ X, Ya)} tion of XGBoost regressor becomes:
a ] c on ]
0.20 Ash b 0.161 Moisture 0.16 Volatile matter
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Fig. 4. Variation of RMSET with number of latent variables for different coal properties—(a) ash, (b) moisture, (c) volatile matter, (d) fixed carbon and (e) GCV.
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Fig. 5. Vis-NIR-SWIR diffuse reflectance spectra of coal of different rank. At the
top a. lignite, followed by b. subbituminous, c. bituminos and d. semi-anthracite
at the bottom.

LO =10, 3 +£0a) + Q ®)

where f; (x;) is the t* iteration decision tree, Q is a regularization term
which prevents individual decision tree from over-complicating by
avoiding over fitting and I(y, 3) is defined as:

L, P)=0 —9)* (6)
The XGBoost regression works in the following manner [30]:

a) An initial model f;(x) is defined to predict the target variabley. The
residual of this model is defined by{y — f; (x)}.

b) A new model f (x) is modelled to fit the residuals from previous
step.

c) After repeating the steps a and b for convergence, the model f (x) is
selected as a linear combination of f,(x) whente T, T being the
number of iterations of steps aandb.

This ‘boosted model’ f (x) is the resultant XGBoost regressor which
minimizes the error of the predictions sequentially, resulting in a model
better equipped to capture the variance of the dataset. In the present
study, after splitting the dataset into training and test sets, the dataset
containing 2101 features were transformed into a latent space using

Table 3
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PCA and 20 PC were taken for predicting coal properties. The XGBoost
algorithm was optimised using grid-search on a 5-fold cross-validation
setup of training dataset; the hyperparameters of the model are shown
below.

param_grid = {'max_depth" (2, 5), 'n_estimators" (2000, 3500)}

To prevent over fitting, weak learners were used for building the
individual decision trees with max depth value being 2-5. The weak
learners ensure that XGBoost does not over-fit the training dataset, as
the learners are individually not capable of learning very complex
features. The model best performing on 5-fold cross-validation setup
was used for prediction of coal properties from the test data.

2.3.4. Data modelling metrics

2.3.4.1. Model optimisation. All the models (PLS, RF, and XGB)
mentioned above were trained on the dataset to learn the
relationships between spectral [Log (1/R)] data and coal properties.
In each model, the training set was split into 5 parts; four of them were
used to train the models and one was used to validate the same. Grid
search was used for selecting the hyperparameters using 5-fold cross-
validation. The model which performed best on validation split was
considered for estimation of coal properties.

2.3.4.2. Loss function and evaluation metrics. The models were trained
using RMSE (Eqn-7) loss function and the test-set error was measured
using RMSET (Eqn-8). Performance of the models were measured based
on RMSET and percentage error [1,12-14]. Since a data set with lower
mean value always gives smaller RMSE and vice versa, biasness may
arise in the model output. The percentage error (Eqn-9) was therefore
used here to remove the biasness.

RMSE = \/zietralningset (y - j)\)z
Ny @)

e
RMSET = \/M
Ne N

where, N,, is number of training samples and N,is number of test data
and y, § are respectively the measured and predicted values.

RMSET

PercentageError = 100 ¥ ——
8 Meanvalue 9

RMSET and percentage of error for estimation of coal properties using different statistical models.

Predictive Ash% Moisture% Volatile matter% Fixed carbon GCV (MJ/kg)
model
RMSET Percentage of RMSET Percentage of RMSET Percentage of RMSET Percentage of RMSET  Percentage of
error error error error error
Type-1 PLS 0.1282 36.76 0.0477 39.88 0.0788 18.61 0.0986 23.29 0.0811 13.58
RF 0.1194 34.23 0.0372 31.1 0.0667 15.75 0.0931 21.99 0.1066 17.86
XGBoost 0.1171 33.58 0.0452 37.79 0.0748 17.67 0.1080 25.51 0.1121 18.78
Type-2 PLS 0.1168 33.49 0.0500 41.8 0.0508 12 0.1287 22.13 0.1122 18.79
RF 0.1079  30.94 0.0352 29.43 0.0573 13.53 0.1136 19.53 0.1018 17.05
XGBoost 0.0925 26.52 0.0506 42.3 0.0622 14.69 0.0955 16.42 0.0890 14.91
Type-3 PLS 0.1024 29.36 0.0537 44.89 0.0505 11.93 0.1014 17.43 0.0901 15.09
RF 0.0976  27.98 0.0163 13.66 0.0508 12.01 0.0850 14.61 0.1065 17.84
XGBoost 0.0898 25.75 0.0429 35.86 0.0599 14.15 0.0969 16.66 0.0733 12.28
Type-4 PLS 0.1175 33.69 0.0378 31.6 0.0665 15.71 0.0982 16.88 0.1040 17.42
RF 0.1105 31.68 0.0237 19.81 0.0586 13.84 0.0983 16.9 0.0992 16.62
XGBoost 0.0940 26.95 0.0216 18.06 0.0563 13.3 0.0972 16.71 0.0947 15.86
Type-5 PLS 0.0907 26.01 0.0286 23.91 0.0541 12.78 0.1292 22.21 0.0930 15.58
RF 0.1031 29.56 0.0290 24.24 0.0621 14.67 0.0936 16.09 0.0951 15.93
XGBoost 0.0912 26.15 0.0377 31.52 0.0511 12.07 0.0981 16.87 0.0871 14.59
Type-6 PLS 0.1080 30.97 0.0362 30.26 0.0565 13.34 0.1127 19.38 0.0903 15.13
RF 0.0997 28.59 0.0515 43.01 0.0609 14.39 0.1086 18.67 0.1027 17.21
XGBoost 0.0946 27.12 0.0325 27.17 0.0579 13.67 0.0960 16.51 0.0918 15.38
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3. Results and discussion
3.1. Spectral properties of coal

Fig. 5 shows the reflectance spectra of coal of four broad ranks viz.,
lignite, subbituminous, bituminous and semi anthracite. The absorption
of coal in Vis-NIR-SWIR range is due to absorbance and or overtones of
several functional groups (C-H, O-H, N-H mainly) [16]. The lower
rank coal shows a board absorption in the visible range and then a
relatively sharp increase in the reflectance value in the NIR range. In
SWIR range, lower rank coal shows a very high reflectance value. On
the other hand, the bituminous and semi anthracite coal exhibits rela-
tively lower reflectance in the NIR-SWIR range. Coal (lignite and sub-
bituminous) shows absorption band near 1400 and 1900 nm which is
mainly attributed to the free, bonded and/or absorbed water [31-33].
Weaker absorption band near 1700 and 2300 nm is observed. First
order overtones and combination of aliphatic C-H stretching causes
weak absorption near 1700 nm [34]. While, absorption near 2300 nm is
attributed to the presence of organic combination and overtone bands
and/or clay-OH absorption band [35]. Overall, the reflectance value of
coal and the intensity of absorption band decreases with increase in
coal rank. The reflectance spectra of higher rank coal are more flatter
and absorption featureless than the lower rank coal. This is due to the
fact that with increase in coal rank the degree of aromatization in-
creases which results in shift in absorption edge of aromatic molecule to
the higher wavelength [36].

3.2. Comparison of prediction performance of different types of spectral pre-
processing methods

Table 3 summarizes the RMSET and percentage of error for esti-
mation of coal properties using different models and Fig. 6 shows the
RMSET of each model from best to worst. It is evident that the pre-
processed spectra (Type-2 to Type-6) exhibit better prediction perfor-
mance than the raw absorption spectra (Type-1) by reducing the effect
of non-linearities. It signifies that spectral pre-processing can improve
the prediction ability of the model. Type-2 however shows second
lowest prediction ability, possibly due to the adverse effect of particle
scattering, as no particle scattering pre-treatments were applied to it. In
all other spectral types (Type-3 to Type-6) different particle scatter
correction were applied to Type-2 instead of Type-1 because of the
better performance of Type-2 over Type-1. Savitzsky-Golay/normal-
ization (Type-3) provides best result over Savitzsky-Golay/baseline
correction (Type-4), Savitzsky-Golay/MSC (Type-5) and Savitzsky-
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possibly because normalization of the spectra makes it independent of
sample weight and thereby improves the correlation between the
spectra and coal properties [14]. However, error values of Type-6 in-
dicate that overdo of pre-processing could reduce the model accuracy as
it causes loss of some valuable chemical information from the spectra
[20].

3.3. Comparison of prediction performance of different regression models

Ash: XGBoost regression performs best for estimation of ash content
of coal with RMSET of 0.09 and percentage of error 25.57. Ash content
shows higher error percentage as compared to the other four coal
properties. This might be because ash represents the mineral matter in
coal and in general, minerals show lower sensitivity in infrared region
[371.

Moisture: RF regression predicts the moisture content of the coal
samples better than other models. All types of coal shows an absorption
band near 1900 nm and coal of lower rank shows an additional ab-
sorption band near 1400 nm. Absorption near 1400 and 1900 nm are
attributed to the presence of water molecule [31-33]. VNIR spectra can
readily detect OH molecule. Thus, the moisture content of coal is esti-
mated well with RMSET 0.0163 and percentage error 13.66.

VM: Volatile matter represent the organic matter in coal, mainly
composed of different types of hydro-carbons and this could absorb
more infrared wave [12]. Thus, it could be estimated well from the
spectral responses and PLS regression algorithm performs best for
predicting volatile matter with RMSET 0.0505 and percentage of error
of 11.93.

FC: Fixed carbon is the ash free non-volatile matter in coal and it can
be estimated well from the reflectance spectroscopy. RF regression
gives lowest error value for fixed carbon content in coal with a RMSET
of 0.08 and percentage of error of 14.61 respectively.

GCV: GCV is largely dependent on the fixed carbon content of the
coal. Therefore, it could also be estimated well from spectral data and
XGBoost gives lowest error compared to the other regression models.
The lowest RMSET and percentage error for GCV are 0.07 and 12.28
respectively.

The measured versus predicted values for each coal properties ob-
tained from the best performing model is shown in Fig. 7(a-e) with
their respective residuals plots. The random patters of the residuals
indicate a good fit of the models to the dataset. In case of moisture
content (Fig. 7b) it can be seen that both the measured vs. predicted
plot and the residual plot is clustered in lower value. This is because the
higher rank coal (i.e., high volatile A bituminous to semi-anthracite)

Golay/normalisation/baseline correction/MSC (Type-6). This is which comprises 89% of the data, has < 2% moisture content whereas
0.50
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Fig. 6. Root-mean-square error of different models for different type of absorption spectra and different coal properties.
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the lower rank coal (lignite B to subbituminous C) contains 8.33 to
33.07% moisture. Thus, the data itself is not uniformly distributed and

resulted in unbalanced X axis residual plot.

4. Conclusion

Rapid determination of some essential coal properties (ash,
moisture, volatile matter, fixed carbon, and GCV) based on its Vis-NIR-
SWIR spectrum can be done with a satisfactory accuracy level. This
spectral analysis of coal properties is advantageous over the standard
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Fig. 7. (continued)

analytical methods, because the former can provide the physicochem-
ical information of coal almost 20 times faster at a cost roughly 1/10th
of the latter. It is evident that the application of different spectral pre-
treatments improves the model accuracy. However, it is imperative to
optimize the spectral pre-processing methods since over application can
increase the model complexity and decrease the prediction accuracy.
Savitzky-Golay smoothing followed by normalization (Type-3) has been
found to provide the best result. PLS, RF, and XGboost based regression
models were used to estimate the coal properties. While the PLS model
gives higher accuracy for estimation of volatile matter, RF provides the
lowest error value for moisture and fixed carbon contents; XGBoost
based model gives the best result for ash content and GCV of coal. In the
present investigation, DRS has been found to predict the volatile matter
and GCV with high accuracy followed by moisture, fixed carbon and
ash content. In future, we will consider a homogenous cluster of coal to
improve the performance accuracy of the predictive models.

It should however, be mentioned that the present study has been
carried out in laboratory conditions. Practical service conditions are
more severe, and some additional factors such as, bulk quantity of coal,
variation in coal grades and sizes, environmental conditions, etc. could
influence the prediction accuracy of the method. Therefore, all these
parameters should be considered before implementation of this method
into a larger scale. In future, the authors intend to carry out an in-line
investigation of coal quality parameters by placing the sensor over a
conveyor belt to assess the applicability of the method.
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