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A B S T R A C T   

Assessing the drivers of population inter-annual variation in reproductive output (CVp) is key for conservation 
and management of forest resources, as these drivers determine variation in seed crops which are closely related 
to seedling recruitment (i.e. forest regeneration) and understanding the mechanisms by which they affect 
reproductive output sheds light into population-level resilience to changing abiotic conditions. Proximate drivers 
of CVp include weather conditions which act as cues for reproduction and resource-driven lagged negative au
tocorrelations between past and current reproduction. Increased temporal variability in weather cues and strong 
negative autocorrelations are both expected to increase CVp, but very few studies have robustly tested these 
predictions at the intra-specific level using long-term, multi-population datasets. Based on a published dataset, 
we used approximately 2,000 yearly observations spanning 130 years (1886–2015) and 61 populations to test for 
effects of temporal variability in weather cues and lagged autocorrelations on CVp in seed output for a masting 
conifer species (Picea abies). We found that lagged (lag –1) summer (June–July) mean temperature was the best 
predictor of population-level annual seed output. Contrary to expectations, however, we observed a significant 
negative (not positive) effect of the standard deviation of lag –1 summer mean temperature on CVp. In addition, 
we found a non-linear, hump-shaped relationship between lag –1 reproductive autocorrelation and CVp, sug
gesting a qualitative change in the effects of resource constraints on reproductive variability whereby expected 
positive effects change to negative when the strength of negative autocorrelations exceeds a certain level. These 
patterns point at unexpected mechanisms whereby temporal variability in weather cues dampens variability in 
reproductive output, whereas the non-linear association with the lagged autocorrelations suggest thresholds 
associated with resource availability leading to qualitative changes in temporal patterns of reproduction.   

1. Introduction 

Individual plants in a population show high inter-annual variation in 
reproductive output (CVi) and often reproduce synchronously leading to 
so-called masting events, i.e. large, highly synchronous seed output 
within a population (Kelly, 1994; Kelly and Sork, 2002; Pearse et al., 
2016). Elevated CVi and synchronous reproduction in turn result in high 
population-level inter-annual variation in reproduction (CVp), another 
important feature of masting behaviour (Kelly and Sork, 2002). 
Following from observations of these marked and taxonomically wide
spread population-level dynamics in reproduction, a crucial challenge in 
masting research has been to understand the ecological and evolu
tionary forces that underlie CVp in seed output, thus illuminating on the 
drivers of masting as well as its implications for plant and animal 

communities and ecosystem function (Pearse et al., 2016). Identifying 
these drivers and the mechanisms by which they affect CVp can also 
increase our understanding of closely linked temporal patterns in 
seedling regeneration and population-level responses to changing 
environmental conditions, key aspects for management and conserva
tion of forests. 

Much of the research on masting has focused on the proximate 
drivers of variability in reproductive output and synchrony (Bogdzie
wicz et al., 2020a). For example, weather variables have been shown to 
play a decisive role in dictating inter-annual variation in plant repro
duction by acting as phenological cues. For example, the onset of 
reproduction and total seed output correlates with inter-annual vari
ability in spring/summer temperature or summer precipitation (Pearse 
et al., 2014; Roland et al., 2014; Bogdziewicz et al., 2020b), differences 
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in summer temperature between consecutive years (Kelly et al., 2013), 
or summer drought (Pérez-Ramos et al., 2010; Wion et al., 2020). To the 
extent that these cues modulate seed set across years (Koenig et al., 
2015; Bogdziewicz et al., 2018), greater inter-annual variability in 
weather conditions would be expected to result in greater CVp (hy
pothesis 1). A recent macroecological test reported on the effects of 
temporal variation in climatic cues on CVp by testing the same cue across 
species (e.g. Pearse et al., 2020). However, species have been shown 
vary in the identity of weather cues affecting their reproductive output 
(e.g. Koenig et al., 2016; Moreira et al., 2019). This calls for studies 
addressing intra-specific variation in the association between weather 
cues and CVp to elucidate variation in within-species climatic controls 
over CVp which then informs interspecific comparisons. 

Temporal variation in reproductive output can also emerge due to 
dynamics of resource use across years (Miyazaki, 2013; Crone and Rapp, 
2014; Abe et al., 2016). Plants deplete significant amounts of resources 
(e.g. carbohydrates, mineral nutrients) during masting years (Smaill 
et al., 2011; Sala et al., 2012; Allen et al., 2017) which results in one or 
more subsequent years of low reproductive output, often resulting in 
negative correlations between past and current reproductive output, i.e. 
so-called lagged negative autocorrelations (Isagi et al., 1997; Moreira 
et al., 2015; Monks et al., 2016; Fernández-Martínez et al., 2019). 
Following from this, it is expected that increases in the strength of 
negative autocorrelations would result in greater CVp (hypothesis 2). 
These plant endogenous processes could be associated to weather cues to 
the extent that abiotic conditions influence resource availability (Monks 
et al., 2016; Allen et al., 2017), such that studies jointly testing for these 
mechanisms are necessary to determine the independent effects of 
resource constraints and weather cues on CVp. 

In this study, we provide an intra-specific test of proximate drivers of 
CVp in seed output for Norway spruce (Picea abies), a masting conifer 
species. Specifically, we asked: (1) Do weather cues consistently predict 
reproductive output across spruce populations and is interannual vari
ability in such cues predictive of CVp? And (2) Are lagged negative au
tocorrelations between current and past seed output (potentially related 
to resource constraints) widespread across populations and are they 
predictive of CVp? Data from this study come from a published database 
including long-term measurements (>century) of annual fruit and seed 
set in P. abies and covering a large proportion of the species distribution 
in Europe (Ascoli et al., 2017a). Whereas previous work using this 
database tested how climatic variation affects long-term variation in 
P. abies masting across Europe by quantifying how much of the species 
distribution exhibited heavy seed crops each year (Ascoli et al., 2017b), 
here we describe CVp patterns across populations and potential mech
anisms behind them, one presumably operating via climatic cues and the 
other via resource constraints. Thus, by addressing two proximal 
mechanisms using a long-term, multi-population data set, the present 
work provides a detailed and robust assessment of within-species pat
terns of CVp in reproduction and its potential drivers for one of the most 
widespread tree species in northern Europe. These findings can 
contribute to forest management and conservation by uncovering 
drivers of temporal variation in seed output and population responses to 
abiotic variation which determine seedling regeneration and population 
reproductive success under changing environments. 

2. Material and methods 

2.1. Natural history 

Picea abies (Pinaceae) is a long-lived, evergreen tree native to most of 
Europe, and is distributed from northern Greece (39◦N) to northern 
Norway (70◦N). Its elevation range goes from sea level in Northern 
Europe up to above 2400 m. It is found mostly in areas with cool summer 
climates and rich sandy soils (Frankis, 1992). The species is also 
monoecious, producing separate male and female flowers (cone-like 
structures called strobili) in late spring. Female cones are green or 

reddish, and mature 5–7 months after pollination (usually in 
September). Once they are dry, cones open and seeds are dispersed by 
wind. Masting events are common in this species (Gallego-Zamorano 
et al., 2018; Nussbaumer et al., 2018). 

2.2. Literature search and data acquisition 

We obtained the data for this paper from a published dataset (Ascoli 
et al., 2017a), for which the authors conducted a systematic review of 
the published data to reconstruct P. abies masting (Ascoli et al., 2017a). 
They searched peer-reviewed journals in ISI Web of Knowledge and 
Google Scholar, as well as non-peer-reviewed articles, unpublished data 
and books in Google Scholar, Google books, OPACplus of the Bavarian 
Central Library, the global Karlsruhe Virtual Catalog and the Austrian 
BFW literature database (Ascoli et al., 2017a). The search terms used 
were spruce masting in an appropriate selection of European languages 
(Ascoli et al., 2017a). Additionally, experts from governmental and 
private forest nurseries, ministries for the environment, and research 
institutes were contacted (Ascoli et al., 2017a). 

Authors collected quantitative and qualitative data on fruit or seed 
set (Ascoli et al., 2017a). They recorded fruit and seed set in a variety of 
units and ordinal index (Ascoli et al., 2017a). Whereas previous work 
has conducted analyses using the full data set (e.g. Vacchiano et al., 
2017), in the present study we used a subset of the full data set by 
restricting our analysis to series with a minimum of 6 years (Minimum =
6 years, Maximum = 65 years, Mean = 32.03 years) reporting contin
uous variables of seed or fruit production (e.g. counts per area, mass per 
area, volume per area, seed energy [calories] per area, percentage of 
fruiting trees). This yielded a total of 1,987 yearly observations from 61 
populations distributed from northern Italy (45◦N) to southern Norway 
(58◦N) (Fig. 1), covering a time span from 1886 to 2015. Descriptive 
statistics of seed production in each P. abies population are shown in the 
Table S1 (Appendix A). 

2.3. Statistical analyses 

We calculated CVp for each population as the standard deviation 
divided by the mean seed set across the time series. The CVp did not 
continuously vary and was not unimodally distributed among seed set 
datasets (Fig. S1 in the Appendix A). Therefore, we log-transformed CVp 
for all analyses described hereafter. 

First, following Vacchiano et al. (2017) we tested for associations 
between reproductive output and several candidate climate variables to 
identify the best weather cue. Specifically, we performed Pearson cor
relations testing for an association between annual seed production and 
annual values for weather cues separately for each population. The 
following weather variables were chosen for these analyses based on a 
priori work with P. abies (Ascoli et al., 2017b), as well as other tree 
species (Vacchiano et al., 2017; Pearse et al., 2020): mean monthly 
temperature, monthly mean of daily maximum temperature, monthly 
mean of daily minimum temperature, total monthly precipitation, and 
potential evapotranspiration. We obtained annual weather time series of 
monthly climate data from the gridded database CRU TS 4.04 (0.5◦

resolution; years 1901–2019; http://www.cru.uea.ac.uk/). We calcu
lated Pearson’s r and associated P-values for each population and each 
weather variable across all 36 months of three-year period which 
included the calendar year of seed production and the two years prior to 
current seed production (i.e. lag –1 and lag –2) (Vacchiano et al., 2017). 
We considered significant correlation coefficients at the 95% confidence 
interval. We adjusted threshold P-value by a Bonferroni correction 
(0.05/36). In addition, following Vacchiano et al. (2017) we also ran 
correlations against aggregated summer (June–July) weather variables 
of one and two years before seed production. After identifying the best 
cue (i.e. that with the strongest and most frequently significant corre
lations across populations), we then ran linear and quadratic regression 
models with such cue as predictor of CVp to decide whether to include 
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only the linear or both the linear and quadratic terms for this predictor 
in the joint test for proximate drivers on CVp (see ahead). We compared 
these models based on their Akaike Information Criterion (AIC) values; 
the model with the lowest AIC was taken as that with the best fit given 
the data (Burnham and Anderson, 2002). In addition, models for which 
the difference in AIC was <2 are taken to be equivalent (Burnham and 
Anderson, 2002). 

Second, we estimated lagged autocorrelations between current and 
past seed output (lag –1) for time series of seed set using the acf function 
in the stats package of R (R Core Team, 2020). We then ran and 
compared linear and quadratic regressions with lagged autocorrelation 
as a predictor of CVp. We compared these models based on their AIC 
values as above (Burnham and Anderson, 2002). In addition, to rule out 
a spurious association between lagged autocorrelations and CVp as both 
variables were estimated from year-to-year variability in seed output, 
we performed a Monte Carlo procedure consisting of 10,000 multiple 
regressions independently generated upon randomized data (Morris 
et al., 2006). We obtained the distribution of F-values based on these 
simulations and calculated a P-value by comparing the observed F-value 
to this probability distribution. 

Third, we tested for the independent effects of exogenous (i.e. 
weather) and endogenous (i.e. resource limitation) drivers of CVp by 
running a population-level multiple regression jointly testing for the 
effects of the standard deviation (SD) of the weather cue and the lagged 
autocorrelation (fixed factors) on CVp using the lm function in the stats 
package of R (R Core Team, 2020). We included linear or both linear and 
quadratic terms for each predictor based on the results from previously 
described linear and quadratic regressions run separately for each 
predictor. 

Because CVp can be influenced by the length of the time series 
(Pearse et al., 2017) we previously tested for an effect of this factor on 
CVp and found it to be significant (r = − 0.37, P = 0.003). Therefore, to 
control this methodological effect we ran weighted least squares models 
considering series length for all analyses described above. Finally, pro
vided that recent work has reported on latitudinal variation in CVp 
(Pearse et al., 2020) we also tested the effect of latitude on CVp and 

found that it was significant (F1,59 = 40.18, P < 0.001). Based on this, we 
included latitude as a covariate in all models described above. 

3. Results 

We found that lagged (lag –1) aggregated summer (June–July) mean 
temperature was the strongest and most consistent predictor of seed 
output (Fig. 2, Fig. S2-S5 in the Appendix A). Follow-up analyses indi
cated that a quadratic regression model with the standard deviation of 
this weather cue as predictor of CVp. did not provide a better fit than the 
linear model (AIClinear = − 5.89 , AICquadratic = − 3.98 ; χ2 = 0.09, P =
0.762). 

A quadratic regression with the lag –1 negative autocorrelation as 
predictor of CVp. provided a better fit than the linear model (AIClinear =

13.80, AICquadratic = 10.55; χ2 = 5.25, P = 0.022), and we therefore 
included both the linear and quadratic terms in testing for the lag 
autocorrelation in our joint analysis of CVp drivers (see below). The 
Monte Carlo analysis indicated that the significant effect of the linear 
and quadratic terms of lag –1 autocorrelation on CVp, was not spurious 
(linear term: observed F-value = 8.13, df = 1, 57, PMonteCarlo < 0.01; 
quadratic term: observed F-value = 5.12, df = 1, 57, PMonteCarlo < 0.05). 

Based on the above, we ran a multiple regression model jointly 
testing for the effects of independent effects of each predictor, specif
ically the linear effects for summer temperature, and both linear and 
quadratic for the lag –1 autocorrelation. Results indicated a significant 
negative effect of the standard deviation of lag –1 aggregated summer 
(June–July) mean temperature on CVp (Table 1, Fig. 3). In addition, we 
found a significant non-linear, hump-shaped relationship between lag –1 
autocorrelation and CVp (Table 1), whereby populations with moder
ately negative autocorrelations exhibited the highest variability in 
reproduction, whereas those at the extremes (i.e. highly negative or 
positive autocorrelations) exhibited the lowest CVp (Fig. 4). We also ran 
follow-up models testing for each predictor separately and found that 
the joint model provided a significantly better fit than the former 
(Table S2 in the Appendix A), thus supporting the multiple regression as 
the optimal approach. 

Fig. 1. Maps showing the location of all Picea abies sampled populations. The black dots indicate the populations.  
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4. Discussion 

Contrary to hypothesis 1, we found a significant negative (not posi
tive) association between temporal variability in the weather cue (lag –1 
summer mean temperature) and CVp for P. abies. This finding mirrors the 
observed negative association between temperature variability and CVp 

reported across species by Pearse et al. (2020). However, contrary to this 
study which also reported a positive association between CVp and 
variability in precipitation, in our case precipitation-related variables 
were not the best predictors of spruce reproductive output. The expla
nation may lie in that this species is distributed in humid temperate 
forests of central and northern Europe and is commonly found at mid to 

Fig. 2. Pearson correlations between monthly mean temperature and seed production for Picea abies. The larger portion of the figure shows correlations between 
mean monthly temperature for the present year, one, or two years before (e.g. Dec1 and Dec2, respectively) and seed production for each population (horizontal 
axis), whereas the lower portion shows correlations using either the mean summer (June-July) temperature one or two years before current output (JJ1, JJ2, 
respectively). Blue color indicates negative correlation coefficients whereas red color indicates positive correlation coefficients. Significant P-values are denoted by 
black squares (P-values for correlation coefficients for monthly climatic variables are Bonferroni-corrected, 0.05/36). For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article. 

X. Moreira et al.                                                                                                                                                                                                                                



Forest Ecology and Management 498 (2021) 119562

5

high elevations, where reproduction may be more strongly influenced 
by temperature than precipitation. In contrast, species found in drier 
and warmer climates (e.g. Mediterranean-type) appear to be more 
responsive to precipitation variability (see Pérez-Ramos et al., 2015; 
Moreira et al., 2019). It is important to point out that populations varied 
to a considerable extent in the strength of (positive) associations be
tween temperature and seed output (see Fig. 2), a finding reported for at 
least one other species (Quercus lobata; Koenig et al., 2020). Such vari
ation would presumably introduce noise in estimating the relationship 
between CVp and SD temperature due to additional underlying popu
lation variability in temperature responses. However, in principle there 
is no reason to expect that this would contribute to generate the 
observed negative association between CVp and SD temperature (e.g. 
that weakly sensitive populations have smaller CVp and predominantly 
occur at sites with moderate to high temperature variability). While this 
suggests no apparent analytical or methodological aspects underlying 
the negative correlation between temperature variability and CVp, 
further work is needed to understand the mechanisms by which weather 
variability contributes to long-term reductions in temporal variation in 
population reproduction in P. abies as well as other masting species. 

Our results could be viewed as providing partial or inconsistent 
support for hypothesis 2 in that CVp increased with increasingly 

negative autocorrelations from weak (or absent) to moderately negative 
autocorrelations (as expected), but the relationship reversed from 
moderate to highly negative autocorrelations. This pattern mirrors the 
hump-shaped pattern reported by Pearse et al. (2020) across plant taxa. 
A reduction in CVp under strongly negative lagged autocorrelations is 
difficult to explain if the latter are indicative of strong resource deple
tion as this would presumably result in fewer masting events of greater 
magnitude which would reduce the mean and increase the standard 
deviation across years (i.e. longer intervals between events as it takes 
longer to restore resources for the next large seed crop), thus increasing 
CVp. Instead, the observed pattern suggests that CVp is lower under 
strong resource constraints because masting events are of lesser 
magnitude and extremely infrequent which would disproportionately 
reduce the standard deviation (relative to the mean) across years. Cor
relations between CVp and measurements of temporal variation in soil 
resources across populations (e.g. with naturally varying resource 
availability or along a resource gradient) and long-term manipulative 
experiments of resource availability are needed to test for bottom-up 
controls of resource availability and constraints on temporal variation 
in plant reproductive output. 

Our joint analysis of endogenous (i.e. weather cues) and exogenous 
(i.e. resource availability) allowed us to test for the effects of each driver 
after controlling for the other on CVp. In addition, the model with both 
predictors was more robust than either model testing for each one 
separately. Together, these findings indicate that the mechanisms 
behind these two effects exert independent effect on temporal variation 
in P. abies reproduction and that they better explain reproductive pat
terns in combination than separately. In addition, it is important to 
consider that these mechanisms may be contingent on each other. Our 
previous work with Pinus ponderosa and oaks (Moreira et al., 2015; 
Moreira et al., 2019) showed that weather variables acting as cues for 
reproduction at the individual tree level also correlate with the strength 
of lagged negative autocorrelations, suggesting that responses to such 
weather cues could have evolved to minimize resource constraints and 
increase lifetime reproductive output. This could be scaled up to the 
population level (e.g. using super-producer trees as links to population- 

Table 1 
Results from multiple regression models testing for the effects of the standard 
deviation of lagged (lag –1) summer (June–July) mean temperature (SD mean 
temperature) and the linear and quadratic terms of the lagged (lag –1) auto
correlation on log-transformed inter-annual variation in seed output at the 
population level (CVp) for Picea abies. The model also included the latitude as a 
predictor (see Methods). Slope estimates and their standard errors (SE), F-values, 
degrees of freedom of the numerator and denominator (DFnum,den), and signifi
cance levels (P) are shown. Significant (P < 0.05) effects are in bold.   

Estimate ± SE F-value DF P-value 

SD mean temperature − 1.76 ± 0.31  39.34 1, 56  <0.001 
lag –1 autocorrelation − 0.61 ± 0.18  4.04 1, 56  0.049 
lag –12 autocorrelation − 1.69 ± 0.53  9.99 1, 56  0.003 
Latitude − 0.02 ± 0.01  74.48 1, 56  <0.001  

Fig. 3. Relationship between population-level standard deviation (SD) of lag
ged (lag –1) summer (June–July) mean temperature and log-transformed inter- 
annual variation in seed output at the population level (logCVp) in Picea abies. 
Grey circles represent tree populations (N = 61). The black solid line represents 
a significant (P < 0.05) relationship. Statistics from this model are shown 
in Table 1. 

Fig. 4. Relationship between population-level lagged (lag –1) autocorrelations 
(estimated as the slope estimators from population-level regression between 
current and past seed output, see Methods) and log-transformed inter-annual 
variation in seed output at the population level (logCVp) in Picea abies. Grey 
circles represent tree populations (N = 61). Black solid line represents a sig
nificant (P < 0.05) relationship between logCVp and lag –1 autocorrelations 
based on a quadratic model (see Methods). Statistics from this model are shown 
in Table 1. 
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level patterns; Minor and Kobe, 2017), namely that variability in 
weather cues relates to stand-level variability in resources and resource- 
based lagged autocorrelations, which in turn affect CVp. Interestingly, 
we also observed dampening in the negative autocorrelation with 
increasing temperature variability (r = 0.49, P < 0.001), which could 
explain the negative correlation between temperature variability and 
CVp (at weak to moderate autocorrelations, see above). Nonetheless, it is 
also important to consider that weather cues could directly influence 
negative autocorrelations independently of changes in resource avail
ability (see Kelly et al., 2013). Therefore, the observed negative effect of 
weather variability on the CVp might involve a direct influence and/or 
an effect occurring through changes in resource availability and the 
strength of the negative autocorrelation in reproduction. In this sense, 
the latter possibility would be more difficult to predict given non-linear 
effects of the autocorrelation on CVp, and it is also possible that both 
mechanisms are operating at the same time further complicating 
predictions. 

5. Concluding remarks 

Recent studies (e.g. LaMontagne et al., 2020) including our own 
work (Moreira et al., 2015; 2019), emphasize the need for intra-specific 
assessments that jointly consider weather cues and lagged reproductive 
correlations to explain temporal (and spatial) patterns in reproductive 
output. To this end, long-term, more multi-population data sets of 
reproductive output (e.g. Koenig et al., 2016) are needed to robustly 
assess intra-specific patterns and elucidate species-specific proximal 
mechanisms. A better understanding of these mechanisms can inform 
forest conservation and management practices by considering the effects 
of population variation in seed output on seedling recruitment to assess 
population resilience to global change drivers such as climate change. 
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González: Data curation, Formal analysis, Investigation, Methodology, 
Software, Validation, Visualization. Luis Abdala-Roberts: Conceptual
ization, Investigation, Methodology, Supervision, Validation, Visuali
zation, Writing - original draft, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We thank Davide Ascoli and collaborators for making available this 
dataset. 

Funding 

XM was financially supported by a grant from the Spanish Ministry of 
Science, Innovation and Universities (RTI2018-099322-B-100), a grant 
from the Regional Government of Galicia (IN607D 2016/001), and the 
Ramón y Cajal Research Programme (RYC-2013-13230). 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foreco.2021.119562. 

References 

Abe, T., Tachiki, Y., Kon, H., Nagasaka, A., Onodera, K., Minamino, K., Han, Q., 
Satake, A., 2016. Parameterisation and validation of a resource budget model for 
masting using spatiotemporal flowering data of individual trees. Ecol. Lett. 19, 
1129–1139. 

Allen, R.B., Millard, P., Richardson, S.J., 2017. A resource centric view of climate and 
mast seeding in trees. In: Lüttge, U., Cánovas, F.M., Matyssek, R. (Eds.), Progress in 
Botany. Springer International Publishing AG, Heidelberg, Germany, pp. 1–36. 

Ascoli, D., Maringer, J., Hacket-Pain, A., Conedera, M., Drobyshev, I., Motta, R., 
Cirolli, M., Kantorowicz, W., Zang, C., Schueler, S., Croisé, L., Piussi, P., Berretti, R., 
Palaghianu, C., Westergren, M., Lageard, J.G.A., Burkart, A., Bichsel, R.G., 
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