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A B S T R A C T

The relationships between woody species, soil biota activity and soil quality were largely ignored in semi-arid
areas. This study evaluated the influence of life form and seasonal variation on the mesofauna activity and soil
chemical and microbial properties under three tree species (Quercus brantii (QU), Acer monspessulanum (AC) and
Pistacia atlantica (PI), and three shrub species (Crataegus puntica (CR), Amygdalus scoparia (AM) and Lonicera
nummularifolia (LO)) in a semiarid oak forest in western Iran. Soils were sampled beneath each individual woody
species in spring and winter. Soil chemical and biological properties and soil mesofauna diversity were measured
and soil quality index (SQI) was produced. The comparison of soil chemical properties under tree and shrub
species showed that only soil total nitrogen (Ntot), available potassium (Kava) and soil organic carbon (SOC)
were significantly higher under trees than shrubs (respective mean values for spring: 0.31 vs 0.19%; 1304 vs
1103 mg/kg, 3.94 vs 3.16%). In contrast, all of the studied soil biological characteristics including microbial
biomass carbon (MBC), microbial biomass nitrogen (MBN), basal respiration (BR), and substrate induced re-
spiration (SIR) were significantly higher under trees than under shrubs (respective mean values for spring in mg/
kg soil/day: 603.5 vs 431.2, 49.6 vs 35, 46 vs 35 and 57.6 vs 36.5). Besides, we found clear seasonal and species
effects for most soil properties. Values were higher in spring than in winter and were the most similar for QU and
AC for tree species (especially due to the higher content of SOC and MBN under these species in spring) and for
AM and LO for shrub species. The Shannon-Wiener diversity index and richness of the soil mesofauna were
significantly higher under trees than under shrubs (respective mean values for spring: 1.59 vs 1.09 and 6.5 vs
3.8). The Shannon-Wiener diversity and richness indices for soil mesofauna were positively linearly related to
the soil quality index (SQI) in spring and winter. These relationships were weaker in winter than in spring and
showed an increase of both indices from shrubs (LO, AM and CR) with low SQI values to trees (QU and AC) with
higher SQI values. Based on these results, we conclude that these indices can be used as efficient soil bioindi-
cators which can be helpful in restoration or conservation projects in semi-arid areas.

1. Introduction

Many terrestrial organisms, including trees and shrubs, are directly
or indirectly dependent on soil’s chemical and biological processes
(Binkley and Fisher, 2013; Kleiber et al., 2019; Matei et al., 2020). At
the same time, trees may also influence soil properties through plant
remains and alteration of microclimatic soil conditions (Lucas-Borja

et al., 2016). On this context, there is still insufficient basic information
on the various soil biological and chemical systems associated with
vegetation characteristics in many terrestrial ecosystems. This indicates
the need for multiple studies and defining reference values for optimal
ecosystem quality under different spatial and temporal environmental
conditions (Ratcliffe et al., 2018). Semi-arid lands cover about 15
percent of the world’s land area (Safriel et al., 2005). Forests in these
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areas contribute to maintain suitable conditions for human livelihood
especially in providing wood and non-wood products. They also pro-
vide a shelter for the wildlife and flora and produce a wide range of
ecosystem services such as water balancing, mitigation of the micro-
climate, limitation of erosion, carbon sequestration and soil fertility
restoration (e.g. Malagnoux et al. 2008; Conti and Díaz, 2013; de
Oliveira Silveira et al., 2019).

In different regions, especially in arid and semiarid regions, the
presence of woody species has an undeniable role in creating efficient
microclimates with multiple facilitating processes such as surface runoff
reduction, seed trapping efficiency (Aerts et al., 2006), creation of
fertile islands (Avendaño-Yáñez et al., 2018), facilitation of seedling
establishment especially in degraded sites (Heydari et al., 2017a; Xie
et al., 2017; Maltoni et al., 2019). Different woody species can have
different effects on soil properties, in particular through soil carbon
inputs and nutrients, due to differences in crown and root structure as
well as differences in the quality and quantity of litter and root exudates
(Prescott, 2002; Liu et al., 2019a). Therefore, the spatial distribution of
different wood species on the horizontal surface of the forest makes the
forest floor conditions heterogeneous in terms of different environ-
mental factors such as moisture, temperature and litter depth. This
leads to the creation of various microhabitats (Prescott and Grayston,
2013) that can affect nesting, diversity and activity of organisms within
and on soil surface (Tedersoo et al., 2016; Gallé et al., 2017) as well as
physical, chemical and biological soil properties (Waring et al., 2016).
For example, Prescott and Grayston (2013) stated that the stabilized
carbon produced by trees enters the forest ecosystem with different
mechanisms and that the chemical differences of these carbon pools
between different species greatly determine the composition, diversity
and the abundance of soil biota. Vegetation distribution therefore in-
fluences soil quality which is defined as the soil's continued capacity in
providing life bedding (Karlen et al., 1997) and which depends on soil
physical, chemical and biological properties and their interactions
(Karlen et al., 2003; Ratcliffe et al., 2018). In fact, in order to imple-
ment a sustainable soil management, it is necessary to evaluate soil
quality. Soil quality is one of the three ingredients of environmental
quality, besides water and air quality (Bunemann, et al. 2018;
Nguemezi, et al. 2020). It is broadly defined as “the capacity of a soil to
function in ecosystem and land-use boundaries to sustain biological
productivity, maintain environmental quality, and promote plant and
animal health” (Doran and Parkin, 1994). The complexity and site-
specificity of the belowground part of forest ecosystems and also con-
nection between soil indicators and soil-based services can be reflected
by this definition. At this point, plant and soil properties may be used
together in a soil quality index aiming to determine proper semiarid
ecosystems characteristics related to a high environmental quality.
Biomass and tree growth are common traditional indicators of soil
quality (Schoenholtz et al., 2000), but physical and chemical soil
properties such as soil bulk density, soil acidity and nutrient levels are
increasingly used (Bünemann et al., 2016). However, changes in these
properties as indicators of soil quality can be relatively slow over time,
and therefore may not reflect short-term changes in soil quality
(Kirschbaum, 2000). Therefore, these indicators might not be as effi-
cient as traditional ones to reflect a high temporal and spatial varia-
bility (Doran and Zeiss, 2000). However, the close relationships be-
tween soil biological properties and soil processes and their high
sensitivity to environmental changes as well as their relatively low cost
and rapid evaluation explain a growing interest for this category of soil
quality indicators (Dhyani et al., 2019; Moghimian et al., 2019).

Soil quality indicators can also be defined using ecological traits of
the soil fauna. In fact, the interactions between soil invertebrates and
their ecological niches in the soil matrix indicate that these organisms
usually have sedentary life and have a certain composition in different
habitats and locations, so they can be useful bioindicators to reflect
environmental conditions (Madzaric et al., 2018; Elie et al., 2018; Feng
et al., 2019). This fact has prompted many scientists to evaluate soil

conditions and quality with methods based on such soil bioindicators to
monitor different processes such as land degradation, land recovery or
and the influence of management actions on the ecosystem (Lima et al.,
2017; Pelosi and Römbke, 2018). Thus, the characteristics of the soil
faunal community are closely related to soil quality (Yan et al., 2012;
Fusaro et al., 2018). Although some taxon groups are commonly used to
monitor soil variation and quality (such as Acari and Collembola), the
use of bioindicators for many other groups of soil organisms, in parti-
cular soil mesofauna, is still largely ignored (Menta and Remelli, 2020).
Soil arthropods are an integral part of soils. These organisms are highly
dependent on soil and environmental conditions for their nutrition and
survival (Yan et al., 2012; Liu et al. 2019b) and represent a major
component of the diversity of different terrestrial ecosystems (Majer
et al., 2007; Marquart et al., 2020). They also play a major role in
important soil processes including displacement, breaking and trans-
location of organic matter, nutrients cycle, soil structure and conse-
quently water regulation (Yin and Koide, 2019; Menta and Remelli,
2020). Therefore, their contribution is vital in determining soil quality
and guaranteeing sustainable production of terrestrial ecosystems
(Stork and Eggleton, 1992). Among the soil arthropods, soil mesofauna
with sizes ranging from 0.1 to 2 mm and with different diets (such as
detritivores and predators) live in litter and the soil surface layer (Dar,
2009). Although this group of arthropods plays an important role in soil
function (Morais et al., 2010), its role and relationships with different
woody species are still poorly understood in many forest ecosystems
(Young et al., 2018; Pressler et al., 2019). The high spatial hetero-
geneity of the forest in the horizontal dimension, such as the variation
in canopy density, and vertical dimension, such as the variation in the
quantity and quality of leaves and woody texture, create different mi-
croclimatic conditions and various microhabitats for arthropods
(O'Brien et al., 2017). It should be noted that the effects of woody
species on soil physical and chemical properties are moderated by soil
fauna. In fact, soil arthropod fauna through the comminution of plant
debris can accelerate and facilitate the effect of plant species on soil
physical and chemical properties (Seastedt, 1984; Bagyaraj et al.,
2016). For example, litter decomposition is for a part driven by soil
arthropod fauna (Tresch et al., 2019) and there is a positive relationship
between soil fauna species richness and decomposition (Nielsen et al.,
2011) improving soil fertility (Culliney, 2013).

The preservation, restoration or monitoring of soil quality is an
important challenge in arid and semi-arid forests, including Zagros
forests in western Iran. These forests present a high heterogeneity in
terms of species composition and canopy structure of woody species
(Assal et al., 2016; Heydari et al., 2017a) which guarantees diverse
ecosystem services and a high biodiversity level. However, these sys-
tems have been submitted to a high level of human pressure due to the
strong livelihood dependence of people on forest resources. These an-
thropogenic disturbances, accentuated by climatic and land-use
changes, have altered vegetation composition and eliminated many
species in the forest habitats (Plieninger, 2006; Vallejo and Alloza,
2019; Moreno-Fernández et al., 2019). Having solid information about
soil quality, which could be assessed by mesofauna diversity and
composition, would help to correctly manage arid and semiarid en-
vironments. In this context, the restoration of habitat diversity depends
on a better understanding of mesofauna - soil quality - woody species
interactions (Latty et al., 2004; Campbell et al., 2009).

In this study, we have produced soil quality and soil mesofauna
diversity indices in various conditions of vegetation and for different
seasons in a semi-arid oak forest in western Iran. We have studied the
relationships between the soil quality index and the soil mesofauna
diversity indices to see to what extent both indicators are correlated.
Previous reports have highlighted the close relationship between plant
cover and activities of soil organisms in various sites (Bayranvand et al.
2017; Stroud, 2019). In fact, plants can provide different carbon and
nutrient sources for soil organisms through the quality and quantity of
organic matter as well as through the release of various substrates by
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roots. Consequently, the density and diversity of soil biota are known to
vary widely in habitats with different plant types (Gastine et al. 2003a,
b; Errington et al. 2018). In addition to type of vegetation cover, the
activities of soil organisms are highly influenced by changes in biotic
and abiotic factors due to seasonal changes (Cui et al. 2019). The
changes in environmental conditions, i.e. temperature and moisture
regimes, can strongly affect the dynamics of soil biological activities
directly and, following that, nutrient cycling and site productivity (Ren
et al. 2018). Investigations into the relationship between above and
below- ground systems is an ambitious and aspiring area of research
adding to the study of functional implications of vegetation forms
(Bardgett et al. 2005). To the best of the authors’ knowledge, to date, no
studies have reported on the relationship between above-ground ve-
getation types and the activities of soil biota and quality at the semi-
arid areas in Iran.

The objective of this study was to evaluate soil quality and meso-
fauna diversity relationship in semiarid oak forests of western Iran
which are considered as especially fragile and sensitive ecosystems.
More specifically our working hypotheses are the following: a) The soil
quality index and soil properties are differentially influenced by the life
form (tree vs. shrub) and we expect higher values under trees than
under shrubs. b) Soil quality index and soil properties values also vary
with the season. In particular, the spring season is likely the most fa-
vorable for the mesofauna activity, which exerts a positive influence on
most soil properties. c) There is a direct relationship between soil me-
sofauna diversity and soil quality index. It is hoped that the results
would improve scientific approaches to further understand the me-
chanism of plant-soil feedback, and help in optimizing vegetation type
management and enhance ecosystem services.

2. Material and methods

2.1. Site description

The study site is located in the Zagros forests (Sirvan city, western
Iran) (Fig. 1). It is covered by 60 ha forest dominated by Persian oak
(Quercus brantii L.) associated with some tree and shrub broadleaved
species, such as Acer monspessulanum L. subsp. cinerascens (Boiss.)
Yaltirik., Pistacia atlantica Desf., Crataegus puntica C. Koch., L., Amyg-
dalus scoparia Spach., and Lonicera nummularifolia Jaub & spach. In this
forest area, there was a long history of anthropogenic disturbances over

the last half-century related to the high dependence of people's liveli-
hood on oak forest services and functions such as grazing and fuelwood
demands (Heydari et al., 2012). After the change in national policy in
1963, private administration shifted to governmental management
(Sotoudeh Foumani et al., 2017) and the study area was protected by
the office of the natural resources. Currently, the vegetation in the area
is an opened forest with a discontinuous patchy tree and shrub cover.
The ground vegetation is relatively dense and composed of annual and
perennial grasses and forbs, such as Bromus tectorum L., Astragalus ad-
scendens Boiss., Gundelia turneffortii L., Geranium lucidum L., Hordeum
bulbosum L., Alyssum marginatum Steud. ex Boiss., Avena wiestii Steud,
Medicago radiata L., Valerianella vesicaria Moench and Neslia apiculata
Fisch. The physiographic conditions are homogenous on the site
(slope < 10% and altitude 1900–2000 m a.s.l.). The average annual
precipitation is 428.8 mm and the average annual temperature is
18.55 °C (Sarableh climate station, 2009–2018). The dry season is be-
tween May and October. Soils are shallow with a sandy clay loam
texture. Soils are calcareous with pH = 7.3–7.7 and lime content
20–37%.

2.2. Experimental design

We studied three tree species Quercus brantii (hereinafter indicated
as QU), Acer monspessulanum L. (AC) and Pistacia atlantica Desf. (PI),
and three shrub species, Crataegus puntica C. Koch. (CR), Amygdalus
scoparia Spach. (AM) and Lonicera nummularifolia Ja ub & spach. (LO).
We then sampled five patches (≈ 55–240 m2 canopy cover) included
4–5 individuals of the same woody species) in each species (total of 30
patches), i.e. small groups of individuals of the same species and of the
same size. The minimum distance between two neighboring patches
was 40 m.

Between patches of the same species, the size was also kept the less
variable as possible. Sampling was done at two seasons, spring (May)
and winter (December) 2018 (beginning and end of the growing
season), using the same patches. Within each patch, beneath the canopy
of the central individual, three soil cores were randomly extracted at
0–25 cm depth using a cylindrical extractor with an area of 314 cm2.
The three soil cores were mixed into a composite sample for the analysis
of the mesofauna. Immediately after sampling, the samples were stored
in plastic bags for subsequent analyses. Samples were then placed into a
Berlese funnel to extract the terrestrial arthropods. Arthropods

Fig. 1. The location of the study site ( ) in Ilam province in western Iran.
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mesofauna were identified at the species level using standard taxo-
nomic keys and reference slides (Mirab-balou et al., 2011; Ramroodi
et al., 2014; Nassirkhani et al., 2017).

2.3. Chemical and biological soil properties and soil quality index

Using the same sampling procedure, we also prepared one compo-
site soil sample per patch (0–25 cm depth, 314 cm2) for chemical and
microbial analyses. Soils were placed in hermetic boxes and im-
mediately brought to the laboratory. Soils were sieved through a 2 mm
mesh and split into two sub-samples. One subsample was stored at 4 °C
at its water content to measure soil microbial activity. The second
subsample was air-dried to measure soil chemical properties. Soil water
content, soil organic carbon (SOC), total nitrogen (Ntot), soil pH,
electrical conductivity (EC), available phosphorus (Pava), available
potassium (Kava), microbial biomass carbon (MBC), microbial biomass
nitrogen (MBN), basal respiration, substrate induced respiration (SIR)
were analyzed base on standard methods (see Heydari et al., 2017b) in
Ilam university soil laboratory. These measurements were used as soil
indicators affecting soil quality as shown in many previous studies
(Mukhopadhyay et al., 2016; Rasouli-Sadaghiani et al., 2018). Because
of different indicator units, each indicator was transformed and nor-
malized to a value between 0 and 1.0 using Fuzzy membership function
(Liu et al., 2013). The weight for each indicator was assigned by
standardized factor analysis based on its communality (Shukla et al.,
2006). In factor analysis method, the communality of each indicator
was calculated and then the ratio of its communality to cumulative
communality of all indicators was considered as weight of each in-
dicator. After computing the weight, the quality index for each soil
sample was calculated using weighted additive integrated soil quality

index (SQIWA) according to the following equation (Cherubin et al.,
2016):

= ×
=

SQI W NWA i

n
i i1

where SQIwa is the weighted soil quality index, Wi is the weight of each
soil attribute, Ni is the score of each soil attribute and n the number of
soil attributes.

2.4. Soil mesofauna composition and diversity

We computed the following indices for the mesofauna: richness
(SR), diversity (H’, Shannon and Wiener, 1949) and evenness (J’,
Pielou, 1966) using the equations shown below:

=SR S (1)

=
=

H p pln
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'
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=E H ln S'/ ( ) (3)

where pi is the proportion of species ‘i’, N is the total number of in-
dividuals and S is the total number of mesofauna species.

2.5. Statistical analysis
The effects of woody species (SP), growth form (GF, tree and shrubs)

and seasons (SE, spring and winter) and their interaction on soil
properties and diversity indices of soil mesofauna were tested using
general linear models (GLMs). Post-hoc Duncan's Multiple Range tests

Table 1
Results of GLMs testing for season (SE: spring and winter), species (SP: Quercus brantii, Acer monspessulanum, Pistacia atlantica, Crataegus pontica, Amygdalus scoparia,
Lonicera nummularifolia) and growth form (tree and shrub) effects on soil properties. Significant P > -values at P < 0.05 are indicated in bold.

Source SQI pH EC (dS/m)

df MS F P MS F P MS F P

SE 1 0.04 11.92 0.001 0.091 16.674 < 0.001 0.254 4.673 0.056
SP 5 0.04 13.01 < 0.001 0.090 16.354 < 0.001 0.037 0.671 0.516
GF 1 0.52 168.02 < 0.001 0.011 2.048 0.159 0.015 0.268 0.607
SE × SP 5 0.003 0.89 0.42 0.003 0.522 0.597 0.023 0.422 0.658
SE × GF 1 0.003 0.84 0.36 0.000 0.019 0.890 0.078 1.434 0.237
SP × GF 5 0.01 2.77 0.07 0.036 6.556 0.003 0.041 0.757 0.474
SE × SP × GF 5 0.005 1.75 0.19 0.039 7.190 0.002 0.048 0.876 0.423

Ntot (%) SOC (%) Pava (mg/kg dry soil)
SE 1 0.23 12.08 < 0.001 1.87 14.59 < 0.001 1266.28 240.16 < 0.001
SP 5 0.31 6.03 0.002 30.47 237.59 < 0.001 145.41 27.59 < 0.001
GF 1 119.99 16.61 < 0.001 6.24 48.66 < 0.001 5.00 0.95 0.335
SE × SP 5 0.05 7.48 0.001 0.11 0.87 0.42 26.44 5.02 0.011
SE × GF 1 0.74 14.63 < 0.001 0.27 2.07 0.15 0.43 0.08 0.775
SP × GF 5 0.98 1.24 0.0421 1.78 13.84 < 0.001 18.59 3.53 0.037
SE × SP × GF 5 0.60 6.59 0.003 0.07 0.55 0.58 25.79 4.89 0.012

Kava (mg/kg dry soil) WC (%) BR (mg.kgsoil−1.day−1)
SE 1 3638.52 0.23 0.633 1783.84 63.572 < 0.001 9300.150 929.5 < 0.001
SP 5 18617.15 1.18 0.316 561.28 20.003 < 0.001 358.190 35.798 < 0.001
GF 1 1,139,006 72.11 < 0.001 2592.62 92.395 < 0.001 74.951 7.491 0.009
SE × SP 5 99049.01 6.27 0.004 321.59 11.461 < 0.001 207.994 20.787 < 0.001
SE × GF 1 82203.50 5.20 0.027 507.29 18.079 < 0.001 171.501 17.140 < 0.001
SP × GF 5 330557.8 20.93 < 0.001 131.03 4.669 0.014 55.477 5.544 0.007
SE × SP × GF 5 100393.8 6.36 0.004 146.13 5.208 0.009 13.472 1.346 0.270

MBC (mg.kgsoil-1) MBN (mg.kgsoil-1) SIR (mg.kgsoil-1.day-1)
SE 1 375.420 0.07 0.785 480.22 13.76 0.001 4034.24 140.9 < 0.001
SP 5 120426.6 24.03 < 0.001 220.12 6.31 0.004 523.27 18.278 < 0.001
GF 1 676635.9 135.03 < 0.001 2096.71 60.07 < 0.001 3002.91 104.8 < 0.001
SE × SP 5 17973.7 3.59 0.035 67.01 1.92 0.158 226.58 7.915 0.001
SE × GF 1 19305.3 3.85 0.055 113.67 3.26 0.077 602.49 21.046 < 0.001
SP × GF 5 20567.4 4.11 0.023 338.40 9.70 < 0.001 7.79 0.272 0.763
SE × SP × GF 5 60021.0 11.98 < 0.001 115.16 3.30 0.045 126.14 4.406 0.018

SQI: soil quality index, pH: Soil acidity, EC: electrical conductivity, SOC: soil organic carbon, Pava: P available phosphorus, Kava: K available potassium, WC: water
content, BR: basal respiration, SIR: substrate-induced respiration, MBN: microbial biomass nitrogen, MBC: microbial biomass carbon.
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were used to compare the means. The stepwise discriminant analysis
(SDA) was applied to achieve linear combinations of the soil properties
that best separated the woody species. In order to select the variables
that entered in the equation, the Wilks’ lambda statistic was used. Entry
and removal of soil variables resulted from the tests of the associated F-
statistics. Then, a matrix of pairwise F-ratios for each pair of woody
species was used according to the selected soil variables after each step.
Scores were calculated for each discriminant function (DF) and visua-
lized by plotting DF2 against DF1. The associated classification matrix
was used to determine the predictive accuracy of the discriminant
functions (Heydari et al., 2017b). Prior to the analyses, the variables
were transformed when necessary to satisfy assumptions of normality
and homoscedasticity of residuals. Linear regression used for indicting
relationships between soil quality index (SQI) and total mesofauna di-
versity indices. Statistical analyses were carried out in SPSS (version
21.0).

3. Results

3.1. Variation of the soil quality index and soil properties according to the
life form and the season

Soil quality index was significantly influenced by species, season
and growth form (Table 1). It was higher beneath trees than shrubs with
the highest value for QU and the lowest for AM (Fig. 2). Soil quality
index value was higher in spring than in winter but was only significant
for AM. Soil moisture content under trees was significantly higher than
under shrubs. It was also significantly higher in spring than in winter
only for Quercus brantii, Acer monspessulanum and Crataegus pontica. Soil
pH values did not significantly vary between trees and shrubs but were
higher in spring than in winter for some trees (Acer monspessulanum and
Pistacia atlantica) and for some shrubs (Crataegus pontica). Similarly,
Ntot, organic carbon, and potassium were higher under trees than
under shrubs. In contrast, the other chemical properties (except phos-
phorus) did not show a significant difference between the two seasons
whatever the woody species. Phosphorus content was higher in spring
than in winter for all species. Soil biological indices (BR, SIR, MBN and
MBC) were significantly higher under tree species than shrubs and
higher in spring than in winter particularly for BR. In contrast, we
found no difference under shrubs for SIR (except for CR) and MBN and
under trees for MBC (Fig. 2 and Table 1).

3.2. Classifying the woody species based on soil properties

The results of SDA (stepwise discriminant analysis) showed that the
set of soil properties including WC, SOC, Ntot, Kava, BR, SIR, MBC and
MBN best separated woody species in both seasons (Table 2). Ex-
amination of the pairwise F-ratio matrices for each pair of woody
species showed that these species were significantly separated at step 1
and step 2 in both seasons. Based on the selected variables, two sig-
nificant functions were obtained in spring with respective eigenvalues
of (λ1 = ) 9.19 and (λ2 = ) 4.11, which explained 73.8% and 17.1% of
the total variance, respectively. In winter, eigenvalues were (λ1 = )
8.13 and (λ2 = ) 3.15 which explained 59.8% and 19.23% of the total
variance, respectively. According to the standardized coefficients of
each variable, the best functions to separate the woody species in spring
included WC, SOC, Ntot, SIR, and MBN in function 1, and Kava, SOC,
Ntot, BR, SIR and MBC in function 2, (Table 2). In winter, Kava and
MBC in function 1, versus WC, SOC, Ntot, BR and SIR in function 2,
were best able to separate woody species (Table 2). According to almost
a similar pattern, QU and AC were effectively separated from the shrubs
(AM and LO) along DF1, while PI and CR separated along DF2 in both
seasons (Fig. 3). QU and AC were closer to each other in the dis-
criminant ordination in spring compared to winter, indicating similar
understory soil conditions (Fig. 3). Besides, shrubs AM and LO were
gathered in both seasons especially in winter. Totally, the pattern is

similar in both seasons, but it is clearer in winter.

3.3. Influence of the species, life form and the season on the soil mesofauna
diversity indices

The Shannon-Wiener diversity and richness indices of top soil me-
sofauna were significantly influenced by species identity (six woody
species), growth forms (tree vs. shrubs) and the interaction between
species identity, growth forms and sampling seasons while the Pielou
evenness was only significantly (P < 0.05) influenced by the interac-
tion between seasons, species identity and growth forms (Table 3). The
Shannon-Wiener diversity index and richness of the soil mesofauna
were significantly higher under trees than under shrubs (Fig. 4). In
addition, in both seasons, the Shannon-Wiener diversity index and the
richness were significantly higher under both trees QU and AC than
under shrubs and PI. Significant differences between both seasons were
only observed under AC and PI with higher values in spring than in
winter except for richness under PI (Fig. 4).

3.4. Relationships between soil quality index (SQI) and mesofauna diversity
indices

The Shannon-Wiener diversity and richness indices for soil meso-
fauna were positively related to the soil quality index in spring and
winter. These relationships were weaker in winter than in spring
(Fig. 5). They showed an increase of both indices from shrubs (LO, AM
and CR) with low SQI values to trees (QU and AC) with higher SQI
values. In contrast, we did not find any significant relationship between
Pielou's evenness index and the soil quality index in both seasons
(Fig. 5).

4. Discussion

4.1. Influence of vegetation life form and species on soil properties

The life form of vegetation types plays a prominent role for eco-
system functions, determining primary production, organic matter de-
composition, and nutritional cycles (Gastine et al. 2003a, b; Balvanera
et al. 2006). In addition, changes in vegetation types can cause varia-
bility of soil properties that in further consequence can strongly influ-
ence abundance and activities of soil biota (Decaëns et al. 2004; Cui
et al. 2019). The impact of plant covers on soil properties can be as-
signed to both the quantity and quality of organic matter input into a
soil ecosystem (Zhang et al. 2015). Actually, soils are the most diverse
components of the biosphere and have distinguishing features and
processes within them at the nano- and macro-scales. The spatial and
temporal variability of organic matter input into soil, due to the pre-
sence of different plants, causes hotspot areas of different soil proper-
ties, especially biota activities, in terrestrial ecosystems (Zhang et al.
2015).

Comparison of soil properties under tree and shrub species showed
that among the chemical soil properties only Ntot, Kava, and SOC were
significantly higher under trees than shrubs. In contrast, all of the
studied soil biological characteristics including MBC, MBN, BR and SIR
were significantly higher under trees than under shrubs. These mod-
ifications of soil properties can be mainly explained by the differences
in the quantity and the quality of the litter production (Kerdraon et al.,
2019) resulting in contrasted patterns and rates of decomposition of the
organic matter (De Groote et al., 2018; Mao et al., 2018). In fact, the
current results emphasize the importance of the type, or source of or-
ganic inputs in the maintenance of soil biota providing various eco-
system functions (Bayranvand et al. 2017).

Contrary to our findings, previous reports (Gastine et al. 2003b;
Salamon et al. 2004; Wardle et al. 2006) claimed that the type of above-
ground vegetation has no remarkable effect on the soil properties and
the activities of soil biota. Literature reviews suggest that there are
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contradictory records about the variability of soil properties and food
preferences of soil organisms. Wardle et al. (2006) claimed that soil
biota consume all kinds of plant residues and thus do not show reac-
tions on different litter quality. Tiunov and Scheu (2004) emphasized
that carbon availability is a limiting factor for the presence of soil or-
ganisms, while Martin and Lavelle (1992) suggested that nitrogen
availability plays a decisive role. It is therefore, not exactly clear which
components or fractions of the soil organic matter plays a more pro-
minent role in promoting the activity of soil organisms (Briones et al.,
2005). Consequently, predicting whether the life form of vegetation
cover could affect the soil properties and activity of soil biota remains a
complex and difficult task.

In the semi-arid Zagros forest ecosystem, large tree species such as

QU and AC with their thick and broad crowns produced a larger
quantity of litter than the shrubs. Soil biological activity has a direct
relationship with soil organic carbon storage due to the high depen-
dence of soil microbial activity on substrate carbon availability
(DeForest, 2009). Therefore, with higher carbon storage under tree
species than under shrubs, the basal respiration and the microbial
biomass are enhanced. In addition, soil processes are also influenced by
a large set of microclimatic factors, such as light availability,
throughfall, air and soil temperature (e.g. Zhang et al., 2016; Hardiman
et al., 2018; Giesbrecht et al., 2017) which are controlled for a part by
the canopy architecture and phenophase of the species (Xu et al., 2019;
Raddi and Magnani, 2019). For instance, soil temperature and humidity
play an important role in the activity and metabolism of soil

Fig 2. Differences in soil properties (mean ± standard error) according to the different woody species (QU: Quercus brantii, AC: Acer monspessulanum, PI: Pistacia
atlantica, CR: Crataegus pontica, AM: Amygdalus scoparia, LO: Lonicera nummularifolia) and growth forms (tree vs. shrub) in the two seasons (spring and winter).
Lowercase letters indicate significant differences between woody species based on Duncan's multiple range test (p < 0.05) while uppercase letters indicate dif-
ferences between shrubs and trees; SQI: soil quality index (a), pH (b), Ntot: total nitrogen (c), SOC: soil organic carbon (d), Pava: P available phosphorus (e), Kava: K
available potassium (f), WC: water content (g), BR: basal respiration (h), SIR: substrate-induced respiration (i), MBN: microbial biomass nitrogen (j), MBC: microbial
biomass carbon (k).
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decomposer community, controlling the rate of decomposition of the
litter and the release of nutrients such as carbon, nitrogen and phos-
phorus (Moore et al., 2006; Bayranvand et al., 2017). For the same
reasons mentioned above, trees are likely to create more stable and
suitable microclimate conditions than shrub species in terms of tem-
perature and humidity beneath their canopy (Heydari et al., 2017b).
Besides, tree canopy can more efficiently reduce the rainfall intensity
during intense events and therefore can prevent the erosion of organic
matter and fine particles such as clay. In these conditions, the rate of
litter decomposition under trees is enhanced and thus the organic
carbon content of the soil as the main substrate for the activity of mi-
croorganisms is increased (Xu et al., 2014).

It is noteworthy that soil characteristics among the different woody
species based on SDA were the most similar for QU and AC for tree
species (especially due to the higher content of SOC and MBN under
these species in spring) and for AM and LO for shrub species. The

Fig 2. (continued)

Table 2
Standardized canonical coefficient of soil attributes in each function.

Soil attributes Function (spring) Function (winter)

1 2 1 2

WC 0.334 − 0.282 0.041 0.322
SOC 0.774 − 0.394 0.276 0.511
Kava 0.051 0.379 0.359 − 0.050
Ntot 0.520 −0.421 0.171 0.601
MBC 0.303 0.569 0.365 0.101
MBN 0.547 0.215 0.070 0.147
BR 0.120 0.401 0.013 0.347
SIR 0.351 0.488 0.071 0.344

Abbreviations: SOC: soil organic carbon, Ntot: total nitrogen, Kava: available
potassium, WC: water content, BR: basal respiration, SIR: substrate-induced
respiration, MBN: microbial biomass nitrogen, MBC: microbial biomass carbon;
bold significant coefficients (P < 0.05).
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coefficient of organic carbon in the DA was higher than the other soil
characteristics in spring (0.774) and winter (0.511). This confirms the
importance of a species effect in changes in soil organic carbon stocks.
Consistent with our results, previous studies have shown that differ-
ences in plant species characteristics, such as leaf area, quantity and
quality of the litter can induce temporal and spatial heterogeneity of
soil characteristics (Boeger et al., 2004; Yang et al., 2005; Scherer-
Lorenzen et al., 2007).

4.2. Seasonal effect on soil properties

We found a significant effect of the season on most soil chemical and
biological variables, although the interaction of season and species or
growth form has clearer trend on soil biological variables. This result
reflects the fact that plant species or plant life form can be mediator of
the changes of the chemical soil properties with seasons. For example,
higher SIR and MBC in spring compared to winter depended on the
presence of tree and shrub vegetative forms, respectively. Therefore,
studying the biological characteristics of soil in forests of arid and semi-
arid Mediterranean regions can be a better indicator than the soil
chemical properties to reflect the effect of seasonal changes on soil
conditions under different types of woody species. Bastida et al. (2006)
also emphasized the good performance of soil biological properties in
reflecting soil conditions in different seasons and in different canopy
cover conditions. Previous studies (Suthar, 2012; Song et al. 2016)
emphasized that the microclimate conditions during sampling (i.e.
sampling season) and the availability of resources affected soil biota
communities. Soil conditions are known to depend on season providing
either favorable conditions for the activity of soil organisms

(Bayranvand et al. 2017) or reducing the activity of soil biota
(Hackenberger and Hackenberger, 2014) during the cold or warm
seasons. Similar to our findings, Uvarov et al. (2011) reported that soil
moisture and temperature are the main factors explaining variations in
soil biota under different vegetation types. Parallel to the current
findings in these study sites, previous research (Suthar, 2012; Xu et al.
2012; Crumsey et al. 2013; Ren et al. 2018) already declared that soil
fauna activities increased during the spring season.

4.3. Variation of the SQI

Among the species under study, QU and then AC exhibited higher
SQI values than the other species. These two tree species are dominant
in the region and belong to the climax species in the forest ecosystem of
the Zagros region. As already mentioned, the high and wide crown of
AC and QU produces a large quantity of litter as a source of soil nu-
trients and attenuates more efficiently the variations of air temperature
and humidity, which leads to favorable conditions for the activity of
microorganisms under these species. This also explains increasing SQI
values under tree species than under the small-sized canopy shrub
species. This crown size effect seems more important than a species
effect as we did not record any significant difference in SQI values
between shrub species. Similarly, Liu et al. (2014) showed that im-
portant determinants of SQI, including soil respiration, were sig-
nificantly higher under large-sized canopies than under small-sized
canopies in both dry and wet soil conditions. This result suggests that
managers and decision makers should focus primarily on tree species in
conservation, rehabilitation or afforestation projects in semi-arid areas.
The richness and diversity of the soil mesofauna species were

Fig. 3. Distribution of the plots along the first two discriminant function values according to the different woody species including QU: Quercus brantii, AC: Acer
monspessulanum, PI: Pistacia atlantica, CR: Crataegus pontica, AM: Amygdalus scoparia, LO: Lonicera nummularifolia in spring (a) and winter (b).

Table 3
Results of GLMs for woody species (SP: Quercus brantii, Acer monspessulanum, Pistacia atlantica, Crataegus pontica, Amygdalus scoparia, Lonicera nummularifolia), growth
form (GF, tree and shrubs) and seasons (SE, spring and winter) effects on diversity indices (Shannon–Wiener diversity, richness (number of species) and Pielou's
evenness) of soil mesofauna.

Source Shannon–Wiener diversity Richness (No. of species) Pielou's evenness

df Mean square F-value P-value Meansquare F-value P-value Meansquare F-value P-value

SE 1 0.075 1.697 0.199 0.267 0.340 0.562 0.008 0.922 0.342
SP 5 0.986 22.430 0.000 23.617 30.149 0.000 0.014 1.679 0.197
GF 1 2.289 52.054 0.000 96.267 122.894 0.000 0.019 2.305 0.136
SE × SP 5 0.110 2.505 0.092 6.317 8.064 0.001 0.019 2.312 0.110
SE × GF 1 0.131 2.989 0.090 0.267 0.340 0.562 0.005 0.657 0.422
SP × GF 5 0.243 5.520 0.007 8.517 10.872 0.000 0.010 1.261 0.293
SE × SP × GF 5 0.144 3.272 0.047 9.817 12.532 0.000 0.030 3.612 0.035

Bold p-values indicate significant statistical differences at p < 0.05.
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influenced by the life form as they were higher under trees than under
shrubs. In fact, the higher contents in soil nutrients, organic matter,
moisture under trees were beneficial to the soil fauna activity. This
result is consistent with the findings of Prescott and Grayston (2013)
and Bayranvand et al. (2017) who reported that various woody species
can differently modify soil moisture, carbon substrate availability,
temperature, and nutrient regimes through root turnover, shading, and
litter accumulation this affecting in turn the distribution of soil ar-
thropods (see also Sayad et al., 2012; Korboulewsky et al., 2016).

There is also a close relationship between the change in canopy
cover of different woody species and the litter depth (e.g. Binkley and
Fisher, 2013). Due to the dependence of the soil mesofauna to the forest
floor litter as a shelter and source of nutrition (Wissuwa et al., 2012; Wu
and Wang, 2019), it makes sense to find a greater diversity and richness
of mesofauna beneath tree species (with more litter depth) than be-
neath shrub species. Thus, in this study the mean litter depth increases
from tree species to shrub species according to the following order: QU
(5.30 ± 0.53), AC (3.15 ± 0.61) and PI (2.75 ± 0.33), CR
(2.08 ± 0.35), AM (0.81 ± 0.18) and LO (0.90 ± 0.26). We found a
significant variation of soil mesofauna richness and diversity indices
under tree species but not under shrub species (excepted for CR in
spring). Similarly, Peterson et al. (2001), reported comparable soil ar-
thropods richness under different types of shrubs for both the spring
and the winter seasons in the Mediterranean region. However, other
studies have shown that the presence of shrub species (compared to the
open space) can affect the distribution and assembly of soil arthropods
(Doblas-Miranda et al., 2009). Among the shrub species, a higher me-
sofauna richness was found for CR in spring. This result maybe ex-
plained by the large crown and the high fruit and debris production of
this shrub, characteristics which are likely to attract a more abundant
mesofauna (Mazía et al., 2006). Among the tree species, the highest
values of the diversity and richness indices of soil mesofauna were

observed according to the following order PI < AC < QU. This result
can be explained by an increase in litter inputs (from PI to QU) which
leads to an amelioration of soil properties (such as soil moisture and
organic matter) and thicker organic layers more favorable to the soil
fauna (Bardgett and Van Der Putten, 2014; Coyle et al., 2017; Qiu et al.,
2019). In this study, the richness, diversity and evenness indices under
most studied species did not vary with the season. This can be due to
the modulating role of the physical environment (microclimate, soil
nutrient and water availability) by the canopy of the woody species e.g,
(Doblas-Miranda et al., 2009; Zhao and Liu, 2013). In particular, the
accumulation of litter under the canopy acting as a hermal insulator,
can provide suitable conditions for mesofauna activity even in winter
(Parmenter et al., 1989).

4.4. Relationships between soil mesofauna indices and SQI

Our results showed that the increase in soil quality from tree species
to shrub species coincided with an increase in richness and diversity of
soil mesofauna with a similar pattern in both seasons. This can reflect
the large influence of tree species on soil factors and microclimate in
semiarid areas (Heydari et al., 2017a). It also indicates that soil me-
sofauna arthropods can be very effective in expressing soil quality
under different woody species in Zagros semi-arid forest ecosystem.
This positive relationship between soil mesofauna diversity and rich-
ness indices with soil quality index provides a new evidence supporting
the niche complementarity hypothesis. This hypothesis suggests that
most of the ecosystem functions (such as MBC and BR in our study)
should increase with soil mesofauna diversity in relation with a greater
capacity to exploit the resources available in the ecosystem (Schnitzer
et al., 2011; Lamb et al., 2011). In contrast, there was no significant
relationship between soil mesofauna evenness and soil quality index,
which indicates that the change in soil mesofauna evenness has no
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effect on soil quality changes. We hope that these results will be tested
in a replicated study to determine whether our findings can be gen-
eralized. We believe that such a study in different natural forest eco-
systems could be conducted using the set of measurements and the
analytical tools we have presented, which revealed that soil mesofauna
indices and SQI is tied to forest ecology and management.

5. Conclusion and implications for soil management

Semiarid Mediterranean ecosystems present a discontinuous patchy
vegetation cover composed of trees or shrubs of various species. These
types of vegetation play a crucial role in mitigating the harsh climatic
conditions prevailing in these areas and in creating spots of high soil
fertility. In this study, we showed that most of the chemical and bio-
logical soil properties and SQI were influenced by the life form of the
vegetation and were more favorable under trees than under shrubs, thus

confirming our first hypothesis. Moreover, we detected a clear seasonal
effect as anticipated in our second hypothesis. After the life form, the
species identity plays an important role and modification of soil fertility
is likely to be linked to a size-canopy effect: species with a large and
dense crown being more favorable than species with a less developed
crown (typically Quercus brantii for trees and Crataegus puntica for
shrubs in this study). Finally, in line with our third hypothesis, we show
that the diversity and richness of soil mesofauna are closely related with
soil properties and SQI. This finding therefore indicates that these in-
dices can be used as efficient soil bioindicators. By identifying the most
valuable microhabitats in terms of soil characteristics and soil meso-
fauna diversity and by defining the relationships between these two
components, we hope that these results will be useful in defining sus-
tainable soil management practices in semiarid systems. Such practices
are in fact crucial to optimize a large set of soil functions such as pri-
mary productivity, carbon management, nutrient cycling, water
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regulation and habitat for biodiversity. Soil organisms has a lead role to
play in promoting these functions through the mineralization of nu-
trients or decomposition of organic matter in soils. Therefore, land
managers should consider the effects of their actions on the health and
function of the soil biological community. All soils have the capacity to
deliver all functions, but the landscape, land management strongly in-
fluence which soils deliver which functions at an optimum capacity.
Therefore, by selecting the right management practices, we can opti-
mize these functions, rather than the traditional focus on primary
production alone. Despite the well-known importance of soil biological
processes, the development of monitoring and management guidelines
is in its infancy. However, land managers can learn the general prin-
ciples of how their choices affect biological processes and can monitor
changes in soil function. In semi-arid areas, as for other systems, soil
biological health generally improves when the following management
practices are applied as (1) regularly adding adequate organic matter,
(2) diversifying the type of plants across the landscape and though time,
(3) keeping the ground covered with living plants and residue, (4)
avoiding excessive levels of disturbances including soil mixing or til-
lage, compaction, pesticides, heavy grazing, and catastrophic wildfires.
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