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A B S T R A C T   

Forest biotic populations and communities are undergoing irreversible changes due to climatic perturbations, 
and these effects may be exacerbated by insect pests. In the southeastern United States (U.S.), Dendroctonus 
frontalis is one of the most important forest pests that can cause substantial tree mortality over large geographic 
areas. As life-history of D. frontalis is dependent on environmental conditions, our objective was to determine the 
effects of climatic variables on the species occurrence of D. frontalis and their main predator, Thanasimus dubius. 
U.S. Department of Agriculture - Forest Service beetle trapping data (proxy for true abundance) for 2014–2018 
were assessed with nine climatic variables including: (1) average monthly minimum, maximum, and mean 
temperatures; (2) mean winter temperature; (3) minimum, maximum and mean annual temperature; and (4) 
cumulative winter and annual precipitation. Variable selection was performed using least absolute selection and 
shrinkage operator (LASSO), and selected variables were fit to varying coefficient generalized additive models 
(GAMs). Minimum temperatures for February and March and maximum temperatures for January and prior year 
August were found to have a significant effect on D. frontalis numbers, and model accuracy was ~89%. Beetle 
suitability was assessed for 1981–2100 under three different shared socioeconomic pathways (SSP). The model 
indicated that the suitability of D. frontalis has increased from 1981 to 2019 in certain regions of Alabama, 
Mississippi, and Georgia, while Arkansas, Kentucky, Louisiana, North Carolina, Tennessee, East Texas, and 
Virginia had low suitability. Future projections indicated comparable D. frontalis numbers to current numbers 
under the lowest SSP of 2.1 ◦C by year 2100, but D. frontalis may decrease under higher warming projections. The 
same climatic predictors influenced T. dubius, except average September maximum temperature replaced August 
maximum temperatures in the model. Understanding how these abiotic factors influence forest pest populations 
may better guide prevention and management practices aimed at identifying high risk areas and reducing pest 
outbreaks.   

1. Introduction 

Forests comprise approximately 300 million hectares of the terres
trial land surface in the United States of America (U.S.) and provide 
beneficial services (e.g., carbon storage repositories, soil erosion miti
gation, timber products, and wildlife habitat and forage) (Oswalt and 
Smith, 2014). These forests are subjected to many abiotic and biotic 
disturbances which inhibit their ability to provide such services and 
disturbances may be amplified due to climate change (Seidl et al., 2016). 
Forecasted changes in temperature, precipitation, and the frequency of 
extreme weather events over the coming decades will irreversibly alter 
forest structure and productivity (Adams et al., 1990; McNulty et al., 
1996; Spittlehouse and Stewart, 2003). Among biotic disturbances, 

insect pests are prominent drivers of disturbance and mortality in forests 
and may exacerbate the effects of climate change (Marini et al., 2017). 
Large-scale pest-induced tree mortality may convert forests from carbon 
sinks to sources (Kurz et al., 2008), resulting in a feedback loop whereby 
the consequences of climate change become partial drivers of future 
climate change. 

The Southeast U.S. contains 40% (~80 million hectares) of the pine 
(Pinus spp.)-dominated timberland in the U.S., thus changing climate may 
intensify insect damages and is of great ecological and economic concern. 
Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae) is an 
aggressive bark beetle that is an important agent of disturbance throughout 
pine forests in the southeastern U.S (Ungerer et al., 1999). They are obligate 
tree-killers of pines and they excavate feeding and reproduction galleries in 
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the phloem layer causing girdling of the tree and introducing weakly path
ogenic fungi (Hain et al., 2011). These beetles can be found in most forests 
throughout their range at low population levels on stressed or dying trees, 
and usually co-occur with other less aggressive bark beetles (e.g., Ips species) 
and their main predator, Thanasimus dubius Fabricius (Coleoptera: Cleridae) 
(Thatcher and Pickard, 1966; Nebeker, 2011). Dendroctonus frontalis un
dergo sporadic and eruptive shifts to outbreak population levels, which re
sults in mortality of healthy pine hosts and revenue losses of $43–237 million 
per year across the Southeast U.S. (Hain et al., 2011; Pye et al., 2011). Better 
prediction of D. frontalis populations will be invaluable for timely and sus
tainable forest management practices, as this will allow forest managers to 
focus management efforts on high risk areas. 

Insects are poikilothermic with limited thermoregulation, thus 
weather influences D. frontalis gallery construction, development, 
oviposition rates, emergence and flight, survival, and voltinism (Ayres 
et al., 2000; Hain et al., 2011; Stephen, 2011). Dendroctonus frontalis 
have one to two generations per year at northern latitudes and up to nine 
in the warmer southern latitudes, thus resulting in increased population 
numbers and possibly an increased outbreak risk. Dendroctonus frontalis 
have an upper threshold of approximately 33 ◦C and lower lethal tem
perature of − 12 ◦C with complete mortality occurring at − 16 ◦C. Den
droctonus frontalis are considered the least tolerant bark beetle species to 
cold temperatures, thus winter temperatures are an important source of 
population control and are considered to be the most important factor 
limiting northern range expansion (Ungerer et al., 1999; Ayres et al., 
2000; Stephen, 2011). Consequently, researchers have expressed 
concern about future warmer temperatures facilitating the species niche 
expansion into the Northeast U.S. and Canada (Dodds et al., 2018). The 
historic range of D. frontalis was restricted to the southeastern and 
southwestern U.S., Mexico, and Central America, but range expansion 
into the northeastern U.S. is now being documented (Thatcher and 
Barry, 1997; Gan, 2004; Hain et al., 2011). This new distribution may 
devastate pine species that have not coevolved with D. frontalis and 
therefore, lack adequate defenses (Heuss et al., 2019). 

Despite the integral role of weather in D. frontalis life history, few 
studies have been able to quantify the relationship between climatic 
variables and D. frontalis population dynamics. Climatic variables have 
been used to predict the presence of outbreaks, outbreak growth rate, 
quantity of infested pines, monetary losses, and range expansion (e.g., 
Hines et al., 1980; Feldman et al., 1981; Coulson et al., 1989; Turchin 
et al., 1991; Williams and Liebhold, 2002). Relationships between spe
cies capture data and climate records (e.g., temperature and rainfall) are 
non-linear, multi-dimensional with complex correlation structures, 
making it very hard to model with traditional techniques. Latest in
novations in ecological modeling that incorporate more advanced 
techniques [e.g., conditional inference framework, generalized additive 
models (GAM) (Hastie and Tibshirani, 1990), and random forests 
(Breiman, 2001)] and the availability of georeferenced climatic data 
over large areas (Thornton et al., 2017, 2018), may allow for better 
interpretation of insect distributions in relation to climate. Previous 
work has successfully used these techniques to predict climate-related 
species distributions for other bark beetle species (DeRose et al., 2013; 
Hart et al., 2015; Lloret and Kitzberger, 2018) providing a good 
framework to test these relations with D. frontalis and its predator, 
T. dubius. 

Our study aims to build on previous work by investigating the effects 
of climatic variables on pest populations using a novel modeling 
approach that has both explanatory and predictive power. This study 
addresses issues of variable selection, multi-dimensional and correlated 
data, spatial and temporal resolution, model uncertainty, and cross- 
validation to generate a framework that can be used by ecologists and 
foresters interested in expanding our results. Specifically, our objectives 
were to: (1) determine which variables (precipitation and temperature) 
are significant predictors of D. frontalis and T. dubius numbers and how 
these variables influence species occurrence; and (2) predict the spa
tial–temporal effects of these variables under climatic changes over 

time. First, we hypothesized that beetle numbers would increase as 
precipitation decreases due to reduced host trees defense (e.g., alter
ations in physiological properties and secondary metabolites). Under the 
growth-differentiation balance hypothesis, secondary defensive com
pounds may initially increase under low water stress due to a reduction 
in resources for growth but would subsequently be reduced under more 
severe water stress (Herms and Mattson, 1992). Second, we hypothe
sized that as temperature increases beetle numbers would increase due 
to increased survival and faster development (Vose et al., 1993; Ayres 
et al., 2000; Hain et al., 2011; Stephen, 2011). Understanding how 
climate has influenced D. frontalis populations over the last few decades 
may elucidate future population dynamics in their native range, possible 
future range shifts and/or expansion, and can be integrated in outbreak 
prediction models. These applications may allow for more effective and 
timely management [i.e., prevention methods that increase forest health 
(thinning) or loss reduction (removal of infested trees)] of one of the 
most economically important herbivorous beetles on pine trees in the 
eastern U.S. 

2. Materials and methods 

2.1. Data 

Data for D. frontalis and T. dubius were obtained from the annual 
springtime trapping survey conducted by the United States Department 
of Agriculture Forest Service (USDA-FS), the methodology for which is 
described in Billings and Upton (2010) and Billings (2011). Lindgren 
funnel traps (Lindgren, 1983) baited with beetle attractants are placed 
on federal and state-owned land in spring every year to monitor 
D. frontalis populations. Trap establishment coincides with the blooming 
of eastern redbud (Cercis canadensis L.) and the growth/differentiation 
period of pine trees (Billings and Upton, 2010; Billings, 2017), which is 
also the time for D. frontalis emergence and peak spring flight (Sullivan 
et al., 2016). Traps were baited with frontalin and terpenes prior to 
2017, however the D. frontalis pheromone component endo-brevicomin 
was added to the bait in 2017. These lure components are produced by 
D. frontalis (frontalin and endo-brevicomin) and host trees (terpenes). 
Frontalin and terpenes are attractive to both D. frontalis and T. dubius, 
while endo-brevicomin is only attractive to D. frontalis. Trap collections 
are sorted, identified, and counted by USDA-FS personnel. We obtained 
five years of data (2014–2018) for 13 states (782 total observations) 
(Fig. 1). The number of observations per year for 2014–2018 were 141, 
141, 153, 158, and 189 observations, respectively. Due to variability in 
the collection period (i.e., traps were emptied once every 7–8 days for 
four weeks), all beetle counts were standardized to the number of beetles 
captured per trap per day during spring emergence. Due to the cryptic 
nature of D. frontalis and use of lures and traps, abundance is difficult to 
obtain and thus, trap catch data are described as occurrence, catches or 
numbers. 

We used climatic variables as independent predictors to make 
inference about insect occurrence, as well as for backcasting and fore
casting. Predictors were summarized from past weather values obtained 
from Daymet Daily Surface Weather and Climatological Summaries 
(DAYMET) (Thornton et al., 2017, 2018). Three temporal scales were 
considered for this study for the period prior to the annual trapping 
survey (April t-1 through March): (1) average monthly minimum, 
maximum, and mean temperatures; (2) mean winter temperature 
(Novembert-1 – February); and (3) minimum, maximum and mean 
annual temperature. The effects of precipitation likely occur over a 
longer temporal scale, therefore we included cumulative winter 
(Novembert-1 – February) and annual precipitation only. All data were at 
a 1 km2 spatial resolution. 

2.2. Variable selection 

Given the number of independent predictors as well as their corre

H.L. Munro et al.                                                                                                                                                                                                                               



Forest Ecology and Management 483 (2021) 118770

3

lated structure, we used least absolute shrinkage and selection operator 
(LASSO) to determine the weather variables that significantly affected 
D. frontalis and T. dubius numbers. LASSO was fit using a generalized 
linear model with a Poisson distribution (Eq. (1)): 

g(E(Yi) ) = α + Xi1 + ⋯ + Xi42 (1)  

where E(Yi) is the expected number of D. frontalis per day during spring 
emergence, g(Yi) is the log link function for the Poisson distribution, and 
Xi indicates the 42 weather explanatory variables. LASSO regression 
extends the common Ordinary Least Squares loss function by including a 
weighting penalty (λ) (L1 regularization) on the absolute value of the 
coefficient sums for standardized predictors (Eq. (2)): 

Llasso(β̂) =
∑n

i=0
(yi − x’

i β̂)2
+ λ

∑m

j=0

⃒
⃒
⃒
⃒β̂j

⃒
⃒
⃒
⃒ (2) 

LASSO shrinks coefficients to zero if they are poor predictors or are 
highly correlated (i.e., the variable with the lowest coefficient is reduced 
to zero), dropping unnecessary variables while reducing model over
fitting. In our case, λ parameter was found through a ten-fold cross- 
validation against a training set comprised of 80% of the data. The 
model for each insect species was then fit using the calibration data and 
λ, which was subsequently used to make predictions on the test data. The 
variables with non-zero coefficients were selected for each of the final 
models. 

2.3. Model description 

To determine the effects of weather and predict D. frontalis and 
T. dubius numbers, we used varying coefficient generalized additive 
models (GAMs) with a negative binomial error distribution. Given the 

zero inflated nature from our data a negative binomial distribution for 
the expected response was selected as it has been shown to perform 
better than traditional transformations (O’Hara and Kotze, 2010). GAMs 
extend linear regressions (Eq. (1)) to obtain: 

g(E(Y) ) = α + s1(X1) + ⋯ + sp
(
Xp
)

(3)  

where E(Y) is the expected number of D. frontalis per trap per day during 
spring emergence, g(Y) is the log link function for a negative binomial 
distribution, and s(X) indicates the smoothing function of each of the 
explanatory variables. GAMs are an extension of the linear model 
framework that allow for nonparametric forms through the inclusion of 
smoothing splines (i.e., basis functions). To avoid overfitting, GAMs 
penalize the smoothing parameter based on the magnitude of smoothing 
in a similar way as the LASSO regression. This modeling framework 
allowed the accommodation of non-linear relations between the pre
dicted variable and weather predictors without the need of a beforehand 
parametric form, while maintaining the ease of interpretability of a 
linear model. In this work, we used one kind of smooth, the thin plate 
splines (TPS), which does not require an a priori error covariance matrix 
further simplifying model formulation (Hutchinson and Gessler, 1994). 
We implemented the GAMs as varying coefficient models to account for 
the two different insect baits (i.e., inclusion of endo-brevicomin in baits 
where year ≥ 2017). endo-Brevicomin has been shown to enhance trap 
catches (Sullivan et al., 2007) and the presence of this pheromone 
component may have influenced the results, so the varying coefficient 
model allowed us to look at how the coefficients change depending on 
the presence or absence of endo-brevicomin. Our final model was 
implemented using maximum likelihood estimation. The log-likelihood 
function for each coefficient can be expressed as:  

Fig. 1. Dendroctonus frontalis trap locations obtained from the United States Department of Agriculture - Forest Service annual trapping survey for 2014–2018 for 13 
states (782 total observations) across the southeastern United States of America. 
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This function seeks to maximize the dispersion parameter (θ) and 
coefficient estimate (β) given the number of either D. frontalis or 
T. dubius captured per trap per day during spring emergence (y: response 
variable) as a function (i.e., TPS) of the weather predictor variables [f 
(x): explanatory variable] grouped by the presence or absence of endo- 
brevicomin and interaction between latitude and longitude (Eq. (4)). A 
separate GAM was run for D. frontalis and T. dubius that included all 
variables with non-zero coefficient from the LASSO regression. Pre
dicted number of D. frontalis per day during spring emergence was 
included in the model for T. dubius, as the number of predator beetles is 
likely highly dependent on the presence of prey. To prevent violating the 
assumption of independent observations, year was placed in the model 
as an autoregressive model (AR1) to test and account for temporal 
autocorrelation and an interaction between latitude and longitude was 
included in the systemic portion of the model to account for the spatial 
autocorrelation between trap locations. 

Coefficients from the final GAMs for D. frontalis and T. dubius were 
extracted and used to create interpolated prediction maps in 20-year 
intervals during 1981–2100, allowing for the visualization of changes 
in species occurrence and range over time. This temporal interval was 
selected based on the availability and format of climate data available 
for forecasting. Historical temperatures (1981–2019) used for back
casting were obtained from DAYMET. DAYMET provides historical 
weather data for every year, so predictions were made for each year 
(1981–2019) based on the temperatures that year and then a moving 
average of those predictions were calculated for each interval 
(1981–2000 and 2001–2019). Future scenarios used for forecasting 
were obtained from the WORLDCLIM climate dataset. WORLDCLIM 
provides future gridded climatic variables obtained via the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) multi-model on a 2.5- 
minute resolution (~21 km2), which has a coarser resolution than 
DAYMET (1 km2). Climatic data is provided for four different shared 
socioeconomic pathways (SSP) developed under CMIP6 (Eyring et al., 
2016). These SSPs are described further in Meinshausen et al. (2019). 

We selected three SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for 
our analyses based on The Canadian Earth System Model version 5 
(CanESM5) (Swart et al., 2019), which represent an average warming of 
2.1 ◦C (SSP1-2.6), 3.3 ◦C (SSP2-4.5), and 5.5 ◦C (SSP5-8.5) from years 
1990 to 2100. 

Statistical analyses used an alpha level of 0.05. All analyses and vi
sualizations were completed using R statistical software version 3.6.2 (R 
Core Team, 2019) and RStudio (RStudio Team, 2016) using the pack
ages glmnet (Friedman et al., 2010), ggplot2 (Wickham, 2016), lattice 
(Sarkar, 2008), mgcv (Wood, 2003, 2011, 2017), raster (Hijmans, 
2019), rgdal (Bivand et al., 2019), and tidyverse (Wickham et al., 2019). 

2.4. Model validation 

A leave-one-out cross-validation was used to assess model perfor
mance: 

CV(k) =
1
k
∑k

k=1
(yi − ŷi)

2 (5) 

This is a k-fold validation technique where the number of folds (k) is 
equal to the number of observations (n = 782 traps). For every i = 1, …, 
n, the model was calibrated on every observation except for one for 
which the test error was computed, finally, an average test error was 
calculated based on all iterations (Eq. (5)). The model and cross- 
validation sum of squared estimate of errors (SSE) (i.e., test error) 
were then compared to estimate model performance. 

3. Results 

3.1. Dendroctonus frontalis 

Across the five-year study, D. frontalis spring trap catches ranged 
from 0 to 380 beetles per day, however the mean beetles captured per 
day was 0.208 when endo-brevicomin was absent and 20.9 when pre
sent. Raw D. frontalis and temperature data indicated that the number of 
beetles captured per day increased for areas with higher temperatures 

Table 1 
Varying coefficient generalized additive model (GAM) with thin plate spline smoothing functions for Dendroctonus frontalis and Thanasimus dubius. A large estimated 
degrees of freedom (EDF) indicates more wiggliness, while an EDF close to one indicates a more linear form.  

Variable endo-brevicomin EDF Reference degrees of freedom Chi-square p-value 

Dendroctonus frontalis 
January maximum temperature – 2.05 2.58 1.98 0.38 

+ 1.74 2.15 12.7 <0.01** 
February minimum temperature – 2.41 2.96 10.4 0.02** 

+ 5.06 5.85 15.8 <0.01** 
March minimum temperature – 2.82 3.50 6.98 0.13 

+ 7.84 8.51 41.8 <0.01** 
August maximum temperature – 1.00 1.00 0.567 0.45 

+ 3.30 4.11 32.9 <0.01** 
Latitude × longitude n/a 22.1 24.2 192 <0.01** 
Thanasimus dubius 
February minimum temperature – 1.09 1.16 4.61 0.04** 

+ 4.09 4.88 6.25 0.20 
March minimum temperature – 4.02 4.96 26.3 <0.01** 

+ 4.72 5.84 42.3 <0.01** 
August minimum temperature – 5.21 6.28 34.0 <0.01** 

+ 5.76 6.82 22.1 <0.01** 
September minimum temperature – 4.55 5.62 15.8 <0.01** 

+ 4.78 5.93 14.6 0.02** 
Latitude × longitude n/a 24.5 27.4 221 <0.01** 

** Indicates a significant result at an alpha-level of 0.05. 

lnL(θ, β) =
∑n

i=0

(

yilnθ + yi( f (xi)β ) −
(

yi +
1
θ

)

ln
(
1 + θe f (xi)− β )+ lnΓ

(

yi +
1
θ

)

− lnΓ(yi + 1) − lnΓ
(

1
θ

))

(4)   
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and were nominal in locations if temperatures were <10 ◦C. Trap 
catches were highest for locations where temperatures were between ~ 
18–22 ◦C. LASSO identified prior year August (β = 0.93) and current 
year January (β = 0.30) maximum temperatures, and February (β =
0.98) and March (β = 0.31) minimum temperatures as important pre
dictors of D. frontalis numbers. All other temperature variables were 
shrunk to zero. Neither annual nor winter precipitation were found to 
influence D. frontalis numbers (β = 0). Coefficients were obtained using 
the LASSO with a cross-validated λ = 0.81. The four temperature vari
ables identified by LASSO and an interaction between longitude and 
latitude were included in the final GAM. 

The addition of the latitude and longitude interaction reduced 
autocorrelation to acceptable levels (Supplemental File 1). Conversely, 
temporal autocorrelation was low (0.29) and would have increased the 
complexity of forecasting, so AR1 was removed from the final model 
(Supplementary figure 1). All variables included in the final model were 
significant predictors of D. frontalis. Interestingly, all variables were 
significant for observations only when traps were baited with the 
D. frontalis pheromone component endo-brevicomin except for February 
minimum temperature (Table 1). The number of beetles per day during 
spring decreased for areas where prior year August temperatures were 
above 28 ◦C and reached zero when temperatures were above 34 ◦C. For 
January through March temperatures, there was a decrease in numbers 
at either temperature extreme. The model had an adjusted r-squared of 
0.57 and explained ~ 88.5% of the deviance. The SSE for both the model 
(SSE = 0.598) and leave-one-out cross-validation (SSE = 0.672) were 
comparable, indicating a good model fit. 

Predicted number of beetles per day during spring emergence 
increased over the last four decades (1980–2019) in Alabama, Georgia, 
southwestern Mississippi, and northern Florida, and these states were 
also found to have the highest number of trapped beetles per day as 
compared to other southeastern states. Conversely, Arkansas, Kentucky, 
Louisiana, North Carolina, Tennessee, East Texas, and Virginia had low 
numbers (<2 beetles per trap per day in spring). Future projections 
indicate that the temperature variables (i.e., January and prior year 
August maximum temperatures, and February and March minimum 
temperatures) used in the model are comparable to present day pre
dictions (Fig. 2; Supplemental File 2), and beetle numbers nominally 
fluctuate under the lowest warming scenario (SSP1-2.6) (Figs. 3 and 4; 
Supplemental File 3). There is a more pronounced increase in monthly 
temperatures and decline in predicted beetle numbers as the rate of 
warming temperatures increases (Figs. 3 and 4; Supplemental File 3). 
These predictions indicate that D. frontalis may be primarily constrained 
to Alabama and Georgia between years 2041–2060 under SSP5-8.5 and 

years 2061–2080 under SSP2-4.5. Additionally, it predicts the climate 
may not be advantageous for D. frontalis across most of the southeastern 
U.S. under a 5.5 ◦C increase in temperatures by year 2100. Uncertainty 
around these projections increased with time and from the lowest SSP to 
the highest SSP (Supplemental File 3). 

3.2. Thanasimus dubius 

The number of T. dubius captured per day during spring ranged from 
0 to 411 beetles. Similar to D. frontalis, traps baited with the D. frontalis 
pheromone component endo-brevicomin captured more T. dubius (9.6 
beetles), while traps where this pheromone component was absent 
captured less (3.95 beetles). There was an increase in T. dubius numbers 
as temperature increased until ~18 ◦C, at which point numbers 
decreased. LASSO identified previous year’s August (β = 3.45), and 
current year February (β = 1.32) and March (β = 0.96) minimum tem
peratures as important predictors of T. dubius numbers, while all other 
temperature variables were shrunk to zero. Neither annual nor winter 
cumulative precipitation had an effect on T. dubius numbers (β = 0). 
LASSO coefficients were obtained using a cross-validated λ = 0.42. The 
three temperature variables identified by LASSO and an interaction 
between longitude and latitude were included in the GAM. 

All temperature variables included in the final model were signifi
cant predictors of T. dubius, except February minimum temperature 
when endo-brevicomin was included in the bait (Table 1). Like 
D. frontalis, predicted T. dubius numbers have increased slightly since the 
1980s (Fig. 5; Supplemental File 4). Numbers were predicted to stay 
approximately the same under SSP1-2.6 and decrease under SSP2-4.5 
and SSP5-8.5 (Fig. 6; Supplemental File 5). Unlike D. frontalis, the 
model indicated that T. dubius may not be as constrained by temperature 
(Figs. 5 and 6; Supplemental File 5). The model had an adjusted r2 of 
0.34 and explained approximately 63.6% of the deviance, and the model 
(SSE = 0.482) and cross-validation (SSE = 0.562) test errors were 
comparable. Like D. frontalis, uncertainty around these projections 
increased with time and from the lowest SSP to the highest SSP (Sup
plemental File 5). 

4. Discussion 

Our study provides the first in-depth assessment of how monthly, 
seasonal, and annual temperatures and precipitation prior to peak spring 
flight influences the species occurrence (i.e., trap catches as a proxy for 
abundance) for D. frontalis across the entire sampled geographic range in 
southeastern U.S. We found that temperature plays an important role in 

Fig. 2. The spatial suitability of Den
droctonus frontalis for 1981–2000 
(Left) and 2001–2019 (Right) for the 
southeastern United States of America 
(U.S.). Suitability is expressed as the 
average number of beetles per day 
during spring emergence as a function 
of temperature (maximum January 
and August and minimum February 
and March monthly temperatures). 
Interpolated predictions were created 
through a varying coefficient general
ized additive model with thin plate 
spline smoothing functions. Due to the 
significance of the addition of the 
D. frontalis pheromone component 
endo-brevicomin in the baits, all pre
dictions were made as if endo-brevi
comin was included in the baits. 
Historic temperature data were ob
tained from DAYMET. Uncertainty for 
predictions are in Supplemental File 2.   
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beetle occurrence, which aligns with prior work that has supported the 
importance of optimal thermal ranges, extreme temperatures, and 
warmer winter temperatures on bark beetle ecology (Beal, 1933; Tran 
et al., 2007; Friedenberg et al., 2014; Goodsman et al., 2018). In our 
study, trap catches were highest when temperatures were between ~ 
18–22 ◦C, with nominal trap catches below 10 ◦C. The monthly tem
peratures found to be the best predictors of D. frontalis numbers corre
spond with the time period leading to D. frontalis peak flight, which 
occur around the end of March through April with a second smaller 
flight period around August (Hedden and Billings, 1977; Billings, 1979). 
Further, host tree physiology is changing during spring, including the 

formation of new tissue and resin defenses, which likely influences in
sect development and thus species abundance (Lorio, 1986). The fall and 
winter temperatures seem to significantly influence adult emergence 
after their overwintering period, but temperatures may be influencing 
beetle dispersal. Fall dispersal has not been fully investigated in prior 
research and these data are not present in our study; however, the in
clusion of these data may allow for increased model accuracy when 
investigating the relationship between weather and population 
dynamics. 

While outbreak prediction was not the scope of this study deter
mining how weather and climate are influencing D. frontalis numbers 

Fig. 3. The spatial suitability of Dendroctonus frontalis for 2021–2100 in 20-year intervals for the southeastern United States of America (U.S.). Suitability is expressed 
as the average number of beetles per day during spring emergence as a function of temperature (maximum January and August and minimum February and March 
monthly temperatures). Interpolated predictions were created through a varying coefficient generalized additive model with thin plate spline smoothing functions. 
Due to the significance of the addition of the D. frontalis pheromone component endo-brevicomin in the baits, all predictions were made as if endo-brevicomin was 
included in the baits. Future temperature data were obtained from WORLDCLIM based on The Canadian Earth System Model version 5 (CanESM5), which represents 
a multi-model average warming of 2.1 ◦C (SSP1-2.6), 3.3 ◦C (SSP2-4.5), and 5.5 ◦C (SSP5-8.5). Uncertainty for predictions are in Supplemental File 3. 
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will provide a foundation for these models. Dendroctonus frontalis out
breaks have become less common over the last few decades in areas that 
are intensively managed but are still common in overstocked or un
managed forest land (Asaro et al., 2017), thus extensive efforts are 
ongoing to predict outbreaks. Studies linking temperature to outbreak 
risk reported: (1) February temperatures were an important predictor of 
D. frontalis outbreaks (Kroll and Reeves, 1978); (2) higher winter and 
spring temperatures increased the risk of outbreaks and higher fall 
temperatures reduced outbreak risk (Gan, 2004); and (3) average cli
matic conditions increased outbreak likelihood with the exception of 
extended periods of low temperatures and high precipitation (Duehl 
et al., 2011). Conversely, no relationship between weather and out
breaks has also been reported (Turchin et al., 1991). Since our study was 

looking at species trapping data which differs from the outbreak data, 
comparison between studies should be done with caution. For example, 
it is possible that climate may only initiate or sustain outbreaks but not 
both and there may be different climatic drivers of species occurrence 
compared to outbreaks. Nevertheless, building on this novel model on 
species count data may allow for the prediction of frequency and 
magnitude of future outbreaks and merging these two models may 
greatly improve the accuracy of outbreak predictions on a temporal and 
spatial scale. 

There has been concern about possible future temperatures facili
tating an increase in beetle numbers and range expansion and has 
already been noted in D. frontalis and other bark beetles (Ungerer et al., 
1999; Williams and Liebhold, 2002; Safranyik et al., 2010). We found 

Fig. 4. Projected average temperatures for the climatic variables found to be correlated with Dendroctonus frontalis numbers. Averages were calculated from 13 states 
(Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, East Texas, and Virginia) under three 
shared socioeconomic pathways (SSP): SSP1-2.6, SSP2-4.5, and SSP5-8.5. Future temperature data were obtained from WORLDCLIM based on the Canadian Earth 
System Model version 5 (CanESM5), which represents an average warming of 2.1 ◦C (SSP1-2.6), 3.3 ◦C (SSP2-4.5), and 5.5 ◦C (SSP5-8.5). 

Fig. 5. Expected number of Thanasimus 
dubius per day during spring emergence for 
1981–2000 (Left) and 2001–2019 (Right) 
for the southeastern United States of 
America (U.S.). Interpolated predictions 
were created through a varying coefficient 
generalized additive model with thin plate 
spline smoothing functions and are based on 
historical temperature (August, February, 
and March monthly temperatures) data ob
tained from DAYMET. Uncertainty for pre
dictions are in Supplemental File 4.   
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that while D. frontalis have been present in Alabama, Georgia, and 
Mississippi, our model predicted an increase in beetle numbers in these 
areas over the last few decades. However, our model also indicated that 
future beetle numbers will be highly dependent on the rate of warming 
but may drastically decrease as the rate of warming increases. Thus, 
future low climate suitability in the South may result in a range shift 
North, rather than an expansion North. Interestingly, our model shows 
low suitability of D. frontalis in East Texas and western Louisiana despite 
these areas being part of their historical native range, which supports 
field observations of undetectable D. frontalis populations in these areas 
(Asaro et al., 2017). Our model performed well when predicting 

D. frontalis numbers in the southeastern U.S., but uncertainty increased 
as the distance from the trap locations increased. Hence, greater 
D. frontalis monitoring data for the northeastern U.S. and eastern Ca
nadian provinces would help reduce the uncertainty and should be 
included prior to looking at range expansion in this northern extent. 

To our knowledge, we provide the first empirical analysis looking at 
the effects of climate on T. dubius numbers. In our study, we did not see a 
decline in T. dubius numbers until January through March temperatures 
were above 18 ◦C or when August temperatures were above 25 ◦C. Like 
D. frontalis, T. dubius has displayed two peak emergence periods in 
spring and fall, which may be why temperatures in these months were 

Fig. 6. Expected number of Thanasimus dubius per day during spring emergence for 2021–2100 in 20-year intervals for the southeastern United States of America (U. 
S.). Interpolated predictions were created through a varying coefficient generalized additive model with thin plate spline smoothing functions. Predictions are based 
on future temperature (August, February, and March monthly temperatures) data obtained from WORLDCLIM based on the Canadian Earth System Model version 5 
(CanESM5), which represents an average warming of 2.1 ◦C (SSP1-2.6), 3.3 ◦C (SSP2-4.5), and 5.5 ◦C (SSP5-8.5). Uncertainty for predictions are in Supplemental 
File 5. 
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important predictors of the number of beetles per day (Reeve, 2000). 
These effects are important to consider, as T. dubius is considered a 
major natural source of population control for D. frontalis (Vité and 
Williamson, 1970; Frazier et al., 1981) and there will likely be an 
interactive effect between climate change and this predator–prey rela
tionship (e.g., directly through predation rate or indirectly through the 
presence/absence of other prey species). Predicted T. dubius numbers 
have increased over the last four decades, but the model indicated that 
temperatures in most of the Southeast have been suitable for T. dubius. 
Since T. dubius is a generalist predator whose presence is highly 
dependent on available prey, including the presence of all prey species 
may improve model fit. 

The D. frontalis pheromone component endo-brevicomin was added 
into the monitoring bait in 2017 and dramatically increased trap catches 
(Sullivan et al., 2016). Most predictors in our model for D. frontalis were 
not significant in the absence of endo-brevicomin, which indicates that 
the addition of endo-brevicomin may allow for increased precision in 
predicting D. frontalis numbers. A more attractive lure should produce a 
higher dynamic range of trap catches and thus potentially provide 
greater information content. Consequently, this may help elucidate why 
some prior models have been unable to ascertain the relationship be
tween and/or the effects of weather and/or climate on D. frontalis 
populations or outbreaks, but this is unclear due to differences in the 
dependent variables between studies. For T. dubius, most predictors 
were significant regardless of the presence or absence of endo-brevico
min. While the effects of endo-brevicomin on T. dubius has not been fully 
explored, thus far they have not shown increased attraction to traps 
baited with endo-brevicomin (Mizell et al., 1984; Sullivan et al., 2016). 

Few studies have investigated the role of precipitation in D. frontalis 
numbers or outbreaks. Kroll and Reeves (1978) found that seasonal (i.e., 
previous year spring, summer, and fall) cumulative rainfall influenced 
the likelihood of D. frontalis infestations and Kalkstein (1976) found that 
evapotranspiration was an important predictor of D. frontalis activity. To 
our knowledge, no prior work has looked at the relationship between the 
presence of T. dubius and precipitation. Interestingly, precipitation 
levels did not seem to affect the numbers of either D. frontalis or 
T. dubius. Due to the effects of severe drought on tree physiology and the 
possible subsequent susceptibility to pests, it is possible that extreme 
precipitation events (i.e., sudden onset and/or prolonged severe 
drought), rather than cumulative precipitation, over longer temporal 
scales need to be further investigated. 

The scope of the present study was to look at trends in D. frontalis and 
T. dubius occurrence over space and time, and while the models per
formed well, there is a level of uncertainty. We addressed the model 
uncertainty but there may be other sources of uncertainty for the cli
matic predictor variables as largescale climatic data obtained from 
weather stations and/or satellites are often associated with large un
certainty. These data are projected over space and time via interpolation 
and other modeling techniques, to provide predicted values for un
known locations (Thornton et al., 2017, 2018). Use of these data may 
introduce uncertainty into the model, thus biasing the model output. 
Few studies on ecological species abundance have incorporated the 
uncertainty surrounding climatic predictor variables; however, model
ling advances, such as SIMEX (Delaigle and Hall, 2008), may provide 
solutions for addressing error within predictor variables in the future. 

Overall, we evaluated the effects of current weather and past climatic 
conditions on an eruptive forest pest and their main predator using 
LASSO regression and generalized additive models. These techniques 
allowed us to account for nonlinearity, spatial autocorrelation, and the 
inclusion of climatic variables without the effects of multicollinearity. 
Our findings show that temperature plays an important role in 
D. frontalis occurrence and range limits, and to a lesser extent that of 
T. dubius occurrence. Dendroctonus frontalis model predictions per
formed well with ~89% accuracy and may be extrapolated on to build 
predictive models to be used by foresters for pest population levels in 
upcoming summer, through simple tools with Apps and/or online 

resources. Additionally, given the flexibility and success of these 
modeling procedures (LASSO and GAM) in this study, we propose these 
as alternative techniques for modeling other forest pests. Recent 
research has emphasized the importance of prevention management 
strategies that increase tree health (Nowak et al., 2008), but early 
detection and prediction is critical for mitigating outbreaks, particularly 
since research supports spatial and temporal changes in pest risk due to 
climate change. 
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Vité, J.P., Williamson, D.L., 1970. Thanasimus dubius: prey perception. J. Insect Physiol. 
16 (2), 233–239. https://doi.org/10.1016/0022-1910(70)90165-4. 

Vose, J.M., Clinton, B.D., Swank, W.T., 1993. Fire, drought, and forest management 
influences on pine/hardwood ecosystems in the southern Appalachians. In A paper 
presented at the 12th Conference on Fire and Forest Meteorology, October 26-28, 
1993, at Jekyll Island, Georgia. https://www.fs.usda.gov/treesearch/pubs/4726. 

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New 
York.  

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Yutani, H., 
2019. Welcome to the tidyverse. J. Open Source Software 4, 1686. 

Williams, D.W., Liebhold, A.M., 2002. Climate change and the outbreak ranges of two 
North American bark beetles. Agric. For. Entomol. 4 (2), 87–99. https://doi.org/ 
10.1046/j.1461-9563.2002.00124.x. 

Wood, S.N., 2003. Thin-plate regression splines. J. Royal Stat. Soc. (B) 65, 95–114. 
https://doi.org/10.1111/1467-9868.00374. 

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood 
estimation of semiparametric generalized linear models. J. Royal Stat. Soc. (B) 73, 
3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x. 

Wood, S.N., 2017. Generalized Additive Models: An Introduction with R. Chapman and 
Hall/ CRC Press. 

H.L. Munro et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0378-1127(20)31539-5/h0290
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0290
https://doi.org/10.1093/jee/59.4.955
https://doi.org/10.1093/jee/59.4.955
https://doi.org/10.3334/ORNLDAAC/1345
https://doi.org/10.3334/ORNLDAAC/1345
https://doi.org/10.3334/ORNLDAAC/1343
https://doi.org/10.3334/ORNLDAAC/1343
https://doi.org/10.1890/06-0512
https://doi.org/10.1890/06-0512
https://doi.org/10.1093/ee/20.2.401
https://doi.org/10.1046/j.1365-2699.1999.00363.x
https://doi.org/10.1046/j.1365-2699.1999.00363.x
https://doi.org/10.1016/0022-1910(70)90165-4
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0335
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0335
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0340
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0340
https://doi.org/10.1046/j.1461-9563.2002.00124.x
https://doi.org/10.1046/j.1461-9563.2002.00124.x
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1111/j.1467-9868.2010.00749.x
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0360
http://refhub.elsevier.com/S0378-1127(20)31539-5/h0360

	Through space and time: Predicting numbers of an eruptive pine tree pest and its predator under changing climate conditions
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.2 Variable selection
	2.3 Model description
	2.4 Model validation

	3 Results
	3.1 Dendroctonus frontalis
	3.2 Thanasimus dubius

	4 Discussion
	Credit authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


