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This article performs an in-depth examination on whether indices of diversity and equitability among
tree size classes are adequate for studying the structural complexity of forests. Diversity profiles and
the intrinsic diversity ordering of several field plots were compared. Results demonstrated that even-
sized stands are intrinsically non-comparable to uneven-sized stands with regard to their diversity of size
classes. Indices describing the diversity of size classes are consequently inadequate, as they order forest
structural types (FSTs) inconsistently. The concept of equitability, obtained when removing the richness
component from entropy, seemed more adequate for this purpose. Indices of equitability among size clas-
ses provided more consistent measures, since the field plots had comparable intrinsic equitability order-
ing. Furthermore, ranking individual trees by their size is a better approach than ranking size classes, and
therefore it is more correct to measure the inequality of tree sizes rather than equitability among size
classes. A particular interpretation of Lorenz curves applies when they are used for the study of forest
structures, as they should also be compared to a theoretical uniform distribution, and not just the diag-
onal line-of-absolute-equality. Advised indices are Gini coefficient (GC), De Camino homogeneity (CH),
and structure index based on variance (STVI), as they all are consistent with the Lorenz ordering.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the most relevant components of diversity in forests is
the variation in tree size (McArthur and McArthur, 1961). The eval-
uation of ecological, economic, and other multi-functional aspects
of forests can benefit from a good knowledge of size distributions.
Natural dynamics lead to more complex forest structures in the
absence of human intervention (Hett and Loucks, 1976), whereas
certain management alternatives may lead to homogeneously-
sized structures (Lähde et al., 1991). Seed regeneration and recruit-
ment are affected by the complex effect of canopy structure in light
penetration (Montgomery and Chazdon, 2001). Disturbances affect
forest structure (Coomes et al., 2003), and therefore forest dynam-
ics and development (Zenner, 2005).

Simple indices can be used for describing changes in the struc-
tural complexity of forests in a concise manner. They can be used
as a basis for classifying forest stands into generalized forest struc-
tural types (FSTs). They can also be used as a surrogate of other
important ecological properties, such as habitat quality for fauna.
Stand structure may influence the organization of avian communi-
ties (James and Wamer, 1982), or the distribution of small
ll rights reserved.
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mammals (Sullivan et al., 2001). Structure indices can be inte-
grated in forest dynamics models to improve their predictive
power (Lei et al., 2009). They can also be helpful in assessing the
protective function of forest ecosystems (Bachofen and Zingg,
2001). Objective indicators of tree size diversity are needed in or-
der to evaluate alternative management plans regarding their envi-
ronmental benefits and sustainability (Buongiorno et al., 1994;
Solomon and Gove, 1999). However, there is a lack of common
criteria on describing the size structure of forests (Cienciala and
Korhonen, 2011).

There have been several attempts to quantitatively summarize
the structural complexity of forests by means of simple indices
(Mc Elhinny et al., 2005). Pommerening (2002) provided an over-
view of all them and their general classification into non-spatial
and spatial (neighborhood) indices, and also distinguishing be-
tween those measuring spatial autocorrelation, species mixture,
or size classes diversity in both horizontal and vertical strata.
Furthermore, structural complexity can also be analyzed as beta
diversity, i.e., inter-stand heterogeneity, whereas alpha diversity
measures are performed at a finer within-stand scale (cf.,
McRoberts et al., 2008). The focus of this article is only on alpha
(plot-level) non-spatial indices of diameter classes diversity and
equitability. The calculation of these indices follows four broad
types of approaches in the research literature: (1) adaptations of
species biodiversity indices based on the probability for
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inter-specific encounters (Shannon, Simpson, etc.) to the study of
diversity of size classes; (2) adaptations of the equitability counter-
parts of those same diversity indices (Shannon or Simpson’s even-
ness); (3) indices based on dispersion estimates of tree size (Gini,
CH, variance, STVI); and a last group of (4) methods based on
descriptors of histogram’s shape (skewness, Weibull parameters,
etc.) which are not considered in this article.

1.1. Diversity of tree size classes

Biodiversity indices were originally intended to describe species
richness and their relative abundance; the number of species, and
the number of individuals per species, respectively (Magurran,
2004). When applying these indices to study the structural diver-
sity of forest stands, richness is described by the number of diam-
eter or height classes, whereas abundance is usually expressed in
terms of their relative proportions of number of stems, basal area,
volume or biomass (Pommerening, 2002). Some of these indices
are more influenced by the range of size classes present (richness)
and others also by the abundances (diversity), with some of the lat-
ter more influenced by the most abundant classes (dominance) and
others focused on the relative differences among them (evenness
or equitability). The most popular among all the alternatives is
the Shannon’s diversity index (H0). Although H0 is more widely used
as a measure of species mixture of forests (e.g., Motz et al., 2010;
Neumann and Starlinger, 2001; Sterba and Ledermann, 2006),
many authors have used this index for comparing tree sizes within
a single species. One of the earliest approaches aimed at describing
the vertical strata of forests by computing H0 from proportions of
foliage density at different heights within the canopy (James and
Wamer, 1982; McArthur and McArthur, 1961). These studies have
mainly been linked to bird ecology, as it has an intuitive causal
relation with crown layer structure. However, tree diameters are
easier to measure in the field and accordingly more commonly
available in plot-based forest inventory than crown bulk and verti-
cal strata. Moreover, diversity of diameter classes can be regarded
as a good proxy for foliage height diversity (Buongiorno et al.,
1994; Montgomery and Chazdon, 2001), and therefore it is more
common to find studies computing H0 from relative frequencies
of stems among diameter classes (Gove et al., 1995). Solomon
and Gove (1999) introduced the idea of computing the abundance
vector from proportions of basal area instead of stem frequencies.
Disadvantages of using diversity indices include the need for parti-
tioning into bins (size classes), with the subsequent loss of infor-
mation and dependency on the subjective choice of bin size
(Staudhammer and LeMay, 2001), and also their sensitivity to sam-
ple size (Lexerød and Eid, 2006) and plot dimensions (Barbeito
et al., 2009).

1.2. Equitability among size classes

The concept of equitability is closely associated to diversity
(Wittebolle et al., 2009), as it is a means of assessing evenness
among relative abundances. For a given number of size classes
(richness), the forest having abundances equally distributed
among them is also the one obtaining the maximum plausible va-
lue of diversity. Hence, diversity is a simultaneous measure of both
richness and equitability (Hill, 1973). For this reason, most equita-
bility (evenness) indices are based on some means of normalizing
its diversity counterpart by the number of size classes, or by its
maximum theoretical value. This approach was followed by
Buongiorno et al. (1994), who found that structural diversity can
be preserved without compromising the economic value of the for-
est. O’hara et al. (2007) observed that equitability is naturally
maintained by forest dynamics in multi-aged forests. Lexerød
and Eid (2006) compared diversity and equitability indices, finding
inconsistencies with regards to their potential for discriminating
among forest types and also to their ability to be arranged in a reli-
able order of structural complexity.

1.3. Diversity ordering

Many authors have reported unsatisfactory results when using
diversity indices (Barbeito et al., 2009; Harper et al., 2003; Kint
et al., 2000; O’hara et al., 2007; Rouvinen and Kuuluvainen,
2005), giving a general feeling that diversity indices are inconsis-
tent with the properties that they are meant to describe. Others
found forest structure to be more related to measures of dispersion
or equitability (Lexerød and Eid, 2006; McRoberts et al., 2008) than
to diversity indices. However, only weak statistical indications
have been used to reach these conclusions, such as correlations be-
tween diverse indices or statistical differences found among FSTs.
Little effort has been invested in examining the implications of
adapting those indices to the study of tree size classes, whether
it complies with the definition of diversity and its mathematical
interpretation, and assuring that the basic assumptions underlying
the calculation of these indices are not violated.

The problem of inconsistent ordering of communities or assem-
blages (here considered at plot-level) according to diversity indices
is not new, and nor is it confined to ecology studies (Patil and Tail-
lie, 1982). For this reason, many authors have stated that, prior to
using any diversity index, a diversity ordering method should be
tested in order to determine whether the communities considered
are comparable or not (Lambshead et al., 1983). A useful outcome
of these methods, a diversity profile, is a graphical representation
of a collection of indices which belong to the same general form.
If the diversity profiles of two communities intersect, the result
of the indices related are inconsistent and therefore unreliable
for comparing those two communities.

Liu et al. (2007) provided a useful categorization of diversity
ordering methods, differentiating between those based upon: (1)
information theory (entropy, numbers equivalent, diversity), (2)
the statistical expectancy of the number of size classes (rarefac-
tion), (3) ranking, or (4) the theory of intrinsic diversity ordering
(right tail-sum, majorization, k-dominance). The first category of
profiling methods represents a collection of indices which belong
to the same parametric family. For instance, a so-called diversity
profile is obtained when size classes count (s), H0, and Simpson
(DSi) are depicted together as entropy indices of order 0, 1 and 2
respectively. The second category is based on the expectancy and
variance for the total number of size classes (Hurlbert, 1971),
which is a more strict estimate of richness than sample s (see
e.g., McRoberts et al., 2008). The third category contains a single in-
dex based on ranking, which was introduced by Patil and Taillie
(1982) as a better descriptor of the internal composition of the
community. The fourth category has been suggested as the most
reliable approach for assuring that the abundance distributions of
the communities compared can intrinsically be ordered by the def-
inition of diversity used (Lambshead et al., 1983). This can be car-
ried out by comparing their intrinsic diversity profiles, which are
obtained by accumulating the relative dominances of their abun-
dances. Recent research (Gattone and Battista, 2009) has at-
tempted to enhance the use of profiles for describing ecological
diversity.

Methods for testing the intrinsic ordering of assemblages in-
clude right tail-sum, k-dominance plot, and majorization (cf., Liu
et al., 2007). Despite the demonstrated importance of comparing
diversity profiles, their use in adaptations of diversity indices for
forestry applications is sparse. Swindel et al. (1987) and Gove
et al. (1992) used them for assessing the effect of management
alternatives on forest biodiversity. Gove et al. (1995) and Solomon
and Gove (1999) subsequently applied the right tail-sum of stem
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frequencies to the study of diversity of size classes. Apart from
these studies, no reports on the intrinsic diversity ordering of data
can be found accompanying the above-mentioned size class-
adapted H0, in the forestry literature. Among those described by
Liu et al. (2007), in this article methods for (1) diversity profiling
and (4) intrinsic ordering were chosen. Diversity profiles demon-
strate whether indices arrange communities consistently, whereas
intrinsic ordering is used for testing if their intrinsic structure
makes them comparable by the diversity definition used by those
indices. Diversity numbers from generalized entropy were selected
to depict diversity profiles (Hill, 1973), and the majorization meth-
od was used for intrinsic ordering (Solomon, 1979).

1.4. Lorenz ordering

The Lorenz curve is another concept related to size ordering for
characterizing equitability (Studeny et al., 2011). Even though the
Lorenz curve was originally applied to a different problem area
(inequality of economic income), it is equivalent to an intrinsic size
diversity ordering method when richness is constant (Lambshead
et al., 1983), as it is also based on accumulated dominance. Using
Lorenz ordering for comparing biomass differences among individ-
uals in a plant community was first suggested by Weiner and Sol-
brig (1984), who also pointed out the usefulness within this
context of estimating diameter dispersion by means of the Gini
coefficient (GC). The GC equals to half the relative mean difference
in size among all the trees, and it is usually conceptualized as the
area comprised between the Lorenz curve and the diagonal line-of-
absolute-equality (e.g., Wittebolle et al., 2009). It has been used to
study how natural forest growth dynamics affect the equality
among tree sizes (Knox et al., 1989; Lei et al., 2009). GC has been
reported as a forest structure indicator which performs better than
H0 and other indices (Lexerød and Eid, 2006). Consequently, GC has
gained recent attention as an evaluator of forest management prac-
tice (Duduman, 2011; Klopcic and Boncina, 2011). However, it has
been noted that the same values of GC can be obtained by very dif-
ferent Lorenz curves, and consequently a Lorenz asymmetry coef-
ficient (S) was also developed (Damgaard and Weiner, 2000).

De Camino’s (1976) homogeneity index (CH) was also devel-
oped when applying Lorenz ordering to forestry, though its use
has been more marginal than GC’s. For example, Bachofen and
Zingg (2001) studied how forest management operations led to
changes in CH, and compared them to other unmanaged areas.
Another estimate of relative dispersion was also used by Staud-
hammer and LeMay (2001) in their structure index based on
variance (STVI), though its relation with Lorenz ordering has not
been addressed before. An advantage of GC, S, CH and STVI against
the other indices considered in this study is that there is no need
for grouping the sample into discrete size classes. Therefore it is
possible to keep all the information available and reduce subjectiv-
ity. One drawback of applying Lorenz ordering to study forest can-
opy structure is that it only makes sense for variables which are
cumulative at stand level, namely basal area, volume or biomass,
but it has no straightforward use for tree heights.

1.5. Objectives

The present article aims at expanding the applicability of using
diversity and equitability profiles in studies regarding the size
structure of forests. By observing the profiles of different FSTs
simultaneously, we clarify the reasons why differing diameter dis-
tributions may lead to similar values for some indices. We investi-
gated their intrinsic ordering properties, discussing which FSTs are
comparable and which are not. Lorenz curves are also presented, in
order to illustrate that measurements based on equitability are
more suited for studying forest structure than those intended to
describe diversity. This article also considers the difference be-
tween computing Lorenz curves by size classes or tree-by-tree,
describing the advantages of the latter approach. The interpreta-
tion of Lorenz curves applied to study forest structure is fully
discussed. All these constitute the basis for discouraging the use
of some indices and advising alternative ones.
2. Methods

2.1. Plot mensuration and forest structural types (FST)

The data for this study was collected in field plots measured in
the monospecific Scots pine (Pinus sylvestris L.) forest of Valsaı́n
(Spain; approx. lat.: 41�50N; lon.: 4�80W; 1.4 km a.s.l.). The plot ra-
dius was 20 m, as 0.13 ha was considered a sufficiently large plot
size not to influence index computation (Barbeito et al., 2009). Tree
basal areas (gt ;m2Þ were aggregated at plot level ðg;m2Þ, being
g ¼

Pn
t¼1gt , where n is the total number trees in the plot. As it

was mandatory for some of the indices involved, the dataset was
separated into discrete 2-cm diameter classes. Bin width selection
is a matter of subjectivity, and a fine scale was chosen to diminish
the loss of information when partitioning (e.g., Lexerød and Eid,
2006). We computed the number of stems ðniÞ and the basal area
ðgiÞ included within each tree size class i ¼ 1; . . . ; s; s being the
number of size classes found in a particular field plot. Valsaı́n for-
est was selected because it contains a great variety of forest struc-
tures, as a consequence of a group shelterwood forest management
based on long regeneration periods. Shade-intolerant natural
regeneration is encouraged by opening the canopy in patches, lead-
ing to a large spatial variability in its structural complexity. Six ref-
erence plots have been selected to illustrate throughout this article
the results obtained by the FSTs present (Fig. 1):

FST I: Even-sized. They are single-cohort situations, which can be
approximated to normal distributions in both stem-frequency
and basal area proportions. In order to signify in all figures
the range of indicator values that even-sized stands may obtain
and trends that can be observed along their stages of develop-
ment, two sub-types are differentiated throughout this article:
(i) FST Ia represents canopies mainly dominated by middle-aged
poles (quadratic mean diameter Dg < 35 cm); and (ii) FST Ib sig-
nifies very mature forest stands (Dg > 35 cm). All the remaining
FSTs represent uneven-sized scenarios.

FST II: Uniform. In group shelterwood forest management, this
FST appears only incidentally depending on disturbance history,
or as a boundary state if a plot is located close to the drip-line of
a canopy gap and contains trees from both groups. The main
idea is that stem frequencies are more or less uniformly distrib-
uted over a multiplicity of size classes, which means that the
proportions of basal area slightly increase towards the bigger
size classes, showing a negatively skewed distribution (cf., Lex-
erød and Eid, 2006). Due to high canopy closure, no saplings are
usually present at FST II, so that if a forest plot shows a signifi-
cant amount of trees <10 cm a classification as reverse-J (FST IV)
may be considered instead.

FST III: Bimodal. Two-cohort situations with a well-established
regeneration layer, obtained when recruitment has been
achieved (Zenner, 2005). The gap between the dominant and
subdominant strata must be clear, and basal areas must be
roughly balanced between them. FST III may be hard to identify
from a stem frequency histogram, as only the distribution of
basal areas may distinguish it from a FST IVa. They are difficult
to generalize, as different functions may apply for each cohort
(Coomes et al., 2003).
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Fig. 1. Histograms of diameter distributions (white bars on the left) and propor-
tions of basal area (dark bars on the right) per 2-cm size classes for each forest
structural type (FST).
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FST IV: Reverse J. In stands undergoing seed regeneration, sam-
plings co-exist with the dominant canopy, so that the frequency
of stems exponentially decreases towards the larger classes
resulting on a reverse J-shaped histogram. Its perfect general-
ization into a negative exponential or a power function (Hett
and Loucks, 1976) may be difficult to attain in practice, and usu-
ally many peaks are present if small bin sizes are considered,
like in the present study. Usually this situation can be identified
by a positively skewed histogram of diameters and a negatively
skewed basal area distribution. This FST can also be subdivided,
as parent trees coexist with saplings right after a disturbance
opens a gap in the canopy, therefore producing a descending
histogram with a small peak in the dominant canopy (FST
IVa). This later evolves into a more ideal reverse J-shaped histo-
gram (FST IVb).

2.2. Parametric family of diversity indices

The complexity of forest structures was measured with a num-
ber of non-spatially explicit indices, i.e., those not accounting for
tree positions but just relative frequencies of stems among diame-
ter classes, calculated at plot-level. The first approach applied was
to compute indices of diversity of size classes within a forest stand,
considering that they could be feasible descriptors about the com-
plexity of forest structure. In practice, this implies that indices
which are traditionally used for describing species biodiversity,
are adapted for their use to describe diversity, dominance or
inequality among tree layers. The most straightforward descriptor
of forest complexity would be to just state the number of size
classes ðsÞ observed in the plot (richness). Other diversity indices
describe the combined effect of both richness and relative abun-
dances p ¼ fpig of each size class i. When adapted to the study of
tree size distributions, p can be defined as either the relative fre-
quency of number of stems at each size class (pi ¼ ni=n, wherePs

i¼1ni ¼ n), or their relative proportions of basal area (pi ¼ gi=g,
where

Ps
i¼1gi ¼ g) per hectare. The abundance vector can also be

computed from proportions of wood volume and above-ground-
biomass, though in the present study they provided similar results
as basal areas and led to the same conclusions, and have conse-
quently been omitted.

Diversity indices are based on the probability that two ran-
domly encountered trees belong to the same size class. The proba-
bility of double-encounter averages 1=s if only considering the
number of size classes present in that forest. It can also be argued
that the probability is greater for the most abundant classes, and
accordingly use the relative abundances of each size class ðpiÞ as
sample descriptors of this probability. When p is computed from
basal area proportions, it is also considered that bigger trees will
be more likely encountered. An averaging of this property is there-
fore given by Simpson’s concentration index ðDSiÞ:

DSi ¼ 1
PS

i¼1p2
i

.
ð1Þ

The diversity of tree sizes in a forest plot would increase if the
uncertainty is higher, i.e., relative abundances are smaller or num-
ber of size classes is bigger. Consequently a reciprocal is calculated
so that the index increases as diversity does. DSi is a good measure
of dominance, since it would provide exceptionally low values if a
single size class account for most abundance. Moreover, Shannon’s
diversity index (H0) considers not just the relative dominance of
each class but also its rarity, measuring the uncertainty as
weighted average surprisal (�Inpi):

H0 ¼ �
Ps
i¼1

piInðpiÞ ð2Þ
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On the other hand, it may be preferred to place even more
importance on the dominance, and consider only the abundance
of the most dominant class, neglecting the frequency of the most
rare size classes. Following the same logic as in DSi, the reciprocal
of probability of the most abundant class is calculated in the Ber-
ger–Parker index ðDBPÞ:

DBP ¼ 1=maxðpiÞ ð3Þ

The choice of index usually depends on the properties to be de-
scribed since, although the values of H0 and DSi are affected by both
richness and relative abundance, H0 is more influenced by richness,
whereas DSi is more biased towards dominance of the most abun-
dant class (Lambshead et al., 1983). Diversity indices are therefore
intermediate degrees in between measuring only richness with s,
or just dominance in DBP . These four indices described so far,
s;H0;DSi, and DBP , are closely inter-related, as they are specific cases
of the generalized entropy of order a:

Ha ¼
1

1� a
In
Ps
i¼1

pa
i ð4Þ

Which can also be described by its corresponding diversity
number (Hill, 1973):

Na ¼ eHa ð5Þ

As the entropy of order a ¼ 0 is the number of size classes
s ¼ N0 ¼ eH0 ; the entropy of order a ¼ 1 equals to Shannon’s
H0 ¼ InðN1Þ ¼ H1; and the entropy of order a ¼ 2 is described in
Simpson’s index DSi ¼ N2 ¼ e�H2 . Note that we also may affirm that
DBP ¼ N1, as a ¼ 1 would emphasize the proportion of the domi-
nant class and a ¼ �1 would just describe how rare is the least
abundant class (dominance versus rarity).

A diversity profile of a forest plot is therefore obtained by exam-
ining the continuum of either Ha or Na along an increasing a. In-
stead of calculating single indices directly, prior observation of a
diversity profile showing the entire family of indices provides an
insight into whether the generalized method used for comparing
the forest plots is consistently describing the targeted concept of
forest structure. In other words, a forest plot would have more
diversity of size classes than another if its diversity values were
greater throughout its profile, whereas in the case of intersecting
profiles these plots would be non-comparable in terms of their
diversity. There is also a variety of other methods for generalizing
and ordering indices based on information theory, though we
chose to test these only, as Liu et al. (2007) have demonstrated
their equivalence.

2.3. Intrinsic diversity ordering

Another way of testing if two forest plots are comparable is to
check whether contrasting their distributions is compatible with
the definition of diversity itself. According to Patil and Taillie
(1982), an initial situation in the structure of a forest plot (F1)
can develop into an intrinsically more diverse state (F2) by a finite
sequence of (a) introducing new size classes, (b) transferring abun-
dances between two classes to make them more identical, or (c) it
should remain equally diverse if just permuting the components of
the abundance vector. When comparing two plots, this can be pro-
ven true if their accumulated dominance at each size class is al-
ways lower, i.e., their intrinsic diversity ordering is consistent.
This is called the majorization method Ikðk;MkÞ (Solomon, 1979),
and it is just one technique of many available for intrinsic diversity
ordering. Liu et al. (2007) demonstrated that intrinsic diversity
ordering methods are the most reliable procedure for ensuring that
two forest plots are comparable. Arranging the components of p in
descending order gives the ranked abundance vector p# ¼ fp#

k gÞ,
where k is the rank of each size class, and hence k ¼ 1; . . . ; s and
p#
1 > p#

2 > � � � > p#
s . A cumulative ranked abundance curve can be

obtained:

Mk ¼
Pk
j¼1

p#
j ðk ¼ 1; . . . ; sÞ: ð6Þ

When F1 has intrinsically more diversity of size classes than F2, its
intrinsic diversity profile ðIkÞ lies completely below F2’s. This com-
plies with the definition of diversity as F2 may become F1 by either
(a), (b) or (c). However, if their profiles intersect, there would be no
intrinsic ranking between them. The diversity indices described
above ðs;H0;DSi, and DBPÞ are all based on this definition, becoming
less weighted towards (a) for the entropy measures of higher the or-
der. For this reason, if no intrinsic ordering is assured, these indices
may be inconsistent in their measurement of diversity. It is note-
worthy to mention that Swindel et al. (1987), Gove et al. (1995),
and Solomon and Gove (1999) properly followed the theory of
intrinsic diversity ordering when applying tail-sums for selecting
among treatment alternatives, though there have been no recent
examples of this approach being applied in the recent forestry
literature.

2.4. Intrinsic equitability ordering

As explained, a measurement of diversity comprises both rich-
ness of size classes and the equitability of abundances among them
(Studeny et al., 2011). There may be interest in studying the
inequality among size classes independently from how many they
are, i.e., the shape of the abundance vector. This can be done if rich-
ness is also rescaled into cumulative proportions, being x ¼ fxkg,
where xk ¼ k=s. Then, we can obtain the curve Pkðxk;MkÞ, which
is also called the Lorenz curve, but with the difference that p# is
more commonly arranged in ascending order instead (in this arti-
cle, Lorenz curves are ranked in descending order to allow direct
comparison with intrinsic diversity ordering curves). In fact, pro-
vided that all the forest plots had the same number of size classes,
the Lorenz equitability ordering would be equivalent to the men-
tioned intrinsic diversity ordering methods (Lambshead et al.,
1983). Conversely, as the intrinsic diversity ordering scale is
normalized by richness, and ranks are arranged by cumulative pro-
portions of total richness at plot level, Pk becomes an intrinsic
equitability ordering method.

2.5. Parametric family of equitability indices

Once the intrinsic equitability ordering of a plot has been con-
structed, we may suggest the possibility of also generalizing the
method and drawing an equitability profile (Studeny et al.,
2011). The entropy indices described above, H0 and DSi, also have
their equitability counterparts, so-called Shannon’s ðJ0Þ and Simp-
son’s ðESiÞ, evenness (Magurran, 2004). In order to also express
equitability in the same terms as we did with the generalized
entropy Ha and diversity number Na, we can observe that the
traditional way of measuring J0 equals:

J0 ¼ H0=InðsÞ ¼ H1=InðsÞ ¼ eH1=s ¼ N1=s ¼ N1=N0 ð7Þ

Likewise ðESiÞ, is:

ESi ¼ DSi=s ¼ N2=s ¼ N2=N0 ð8Þ

This intuitively leads us to expressing generalized equitability
numbers as (Hill, 1973):

Ea;0 ¼ Na=N0 ð9Þ

An equitability profile of a forest plot can therefore be ob-
served in a similar manner as the diversity profile, by comparing
the values of Ea;0 along an increasing a. The intention would be
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to observe whether J0 and ESi order forest structural types consis-
tently. If, on the contrary, the empirical equitability profiles of
forest plots intersect, J0 and ESi would order structural types
inconsistently.

2.6. Individual trees instead of size classes

The above-explained adaptation of the Lorenz curve to the dis-
crete case can be useful for a study involving equitability among
species (Wittebolle et al., 2009), which is essentially a categorical
variable. It is also interesting to note how the Lorenz ordering fun-
damentally compares to the intrinsic diversity ordering methods,
and thus it can also be called an intrinsic equitability ordering
method (Studeny et al., 2011). However, it is a more common pro-
cedure to accumulate a continuous variable when computing Lor-
enz curves, and this is the case of the basal area g ¼ fgtg, which is
available for each individual tree within the plot. Hence, separating
into discrete size classes is unnecessary, if the trees can themselves
be ranked according to the variable used. In this approach, the con-
cept of richness is no longer considered as the total number of size
classes s, thus changing into the total number n of trees in the plot.
Likewise, instead of size class ranks k, we obtain tree size ranks r.
Individual trees can be ranked according to their size in descending
order g# ¼ fg#

r g, where r ¼ 1; . . . ;n and g#
1 > g#

2 > � � � > g#
n , and

these basal areas can be accumulated as:

Mr ¼
Pr
j¼1

p#
j ðr ¼ 1; . . . ;nÞ; where p#

j ¼ g#
j =g ð10Þ

The Lorenz curve can be plotted to observe the relative increase
in basal area accounted by each tree Prðxr ;MrÞ, being xr ¼ r=n (as
compared to xk ¼ k=s for Pk). It is worth noting the analogy with
Mr , and also express xr as:

xr ¼
Pr
j¼1

p#
j ðr ¼ 1; . . . ;nÞ; where p#

j ¼ n#
j =n ð11Þ

Eqs. (10) and (11) clearly show how Pris a normalization of the
accumulated abundance in terms of basal area (can also be volume
or biomass) expressed by the accumulated abundance in terms of
number of trees, therefore observing the equitability of the mea-
sured variable (g and therefore dbh) independently from the total
number of trees. As was the case for diversity indices, the use of sin-
gle indices based on equitability ordering also requires a detailed
analysis of Lorenz curves (Studeny et al., 2011; Weiner and Solbrig,
1984).

3. Results

Figs. 2 and 3 illustrate the diversity and equitability profiles,
respectively. Fig. 4 shows the Lorenz curves computed for individ-
ual trees. In Figs. 2 and 3, a and b refer to profiles computed from a
vector of abundances calculated as relative frequencies of stems,
whereas c and d refer to abundances expressed as proportions of
basal area. The same plots as depicted in Fig. 1 were used to con-
struct all the diversity and equitability profiles presented in this
article, allowing direct comparison of all figures.

3.1. Diversity profiles

Fig. 2a and c show the intrinsic diversity ordering Ikðk;MkÞ of
the FSTs considered, and make it possible to observe if their
abundance distribution is consistent with the definition of diver-
sity. Under the diversity scale given by majorization (see Sec-
tion 2.3), a forest plot has more diversity of size classes than
another if its curve lies completely below. For instance, results
showed that FST IVb has intrinsically more diversity of size classes
than FST IVa, whether abundances are considered from stem fre-
quencies or basal areas. However, many of these profiles inter-
sected, indicating for example that FST III and FST IVa are
intrinsically non-comparable using this diversity scale.

Fig. 2b and d are the diversity numbers obtained by these same
field plots, and therefore they illustrate if diversity indices order
them logically and consistently. The gray boxes in the background
of these figures illustrate the correspondence between the order of
entropy ðaÞ and the diversity indices described, which are explic-
itly indicated at the bottom. Profiles of more diverse plots lie above
less diverse ones, demonstrating that a higher value is obtained by
each specific diversity index. Using the same examples as before, it
can be observed that FST IVb consistently obtained higher values
than FST IVa for all the diversity indices of the parametric family.
The opposite situation was found when comparing FST III and FST
IVa, since s and DSi (a = 0 and 2, respectively) evaluated their rela-
tive diversity of size classes differently, as a consequence of their
lack of intrinsic ordering.

In general, profiles were comparable when they were originated
from similarly-shaped distributions. Results suggested that
exponentially decreasing stem distributions, namely bimodal and
reverse J (FSTs III and IV), were usually comparable. It is also possi-
ble to inter-compare among profiles originated from distributions
that can be approximated to a normal distribution (FSTs I). On
the other hand, profiles from even-sized plots intersected those
from reverse J-shaped ones, indicating that they are non-compara-
ble. Likewise, when computing abundance from basal areas, nega-
tively skewed distributions (FSTs II and IV) were non-comparable
to the normal and bimodal ones (FSTs I and III). For this reason,
H0 and DSi seemed meaningless when comparing all plots at once.
Otherwise, diversity indices were a suitable method for comparing
plots within a same FST. Overall, the intersecting curves demon-
strated that s, H0, DSi, and DBP , categorized the plots by their struc-
tural diversity inconsistently, and they cannot be relied upon to
provide a logical order of the empirical plots according to their
structural complexity.
3.2. Equitability profiles

Fig. 3a and c show the intrinsic equitability ordering Pkðxk;MkÞ
of the plots, i.e., their Lorenz ordering by size classes. The gray
diagonal line represents the ideal situation in which abundances
are equal among all the size classes present, and therefore curves
closer to the diagonal signify more equitability among size classes.
Profiling equitability resulted in fewer intersections than diversity,
and curves were more distant to each other. However, it should be
noted that their intrinsic equitability ordering was not prone to
intersections either, as FST III and FST IVb lacked intrinsic equitabil-
ity ordering when abundances were considered from stem fre-
quencies. In general, the concept of equitability suggested that
plots belonging to FST I had more inequality among their size clas-
ses than those within FST IV.

Fig. 3b and d are the equitability numbers obtained by these
plots, and therefore they illustrate if equitability indices, i.e., diver-
sity numbers normalized by richness, order them logically and
consistently. The correspondence with the equitability indices con-
sidered is also shown by the gray boxes in the background of these
figures; therefore, the curves at the top signify higher values of
these indices. Most results were consistent, and only small differ-
ences between J0 and ESi, ða ¼ 1 and 2, respectively) were obtained
for those plots lacking intrinsic ordering. Equitability in stem fre-
quencies clearly discriminated even-sized and uniform plots (FST
I and II) from bimodal and reverse J (FST III and IV). When basal
areas are used the separation is less clear, but the order remained
similar except in the case of uniform (FST II) and bimodal (FST III)
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Fig. 2. Diversity ordering methods. Computed from relative frequencies of stems (a and b) and basal area proportions (c and d). In (a) and (c), majorization (Eq. (6)) was used
for intrinsic diversity ordering Ikðk;MkÞ against ranks ðkÞ. They are used to test if two forest plots are comparable by the diversity definition assumed by the indices. In (b) and
(d), diversity profiles were constructed from diversity numbers ðNaÞ of increasing order a (Eqs. (4) and (5)). Their equivalence with diversity indices (see Section 2.2) is also
illustrated by gray boxes in the background, which include the actual index obtained at each value of a. The values of s;H0;DSi and DBP , obtained for the same forest plot can in
this way be evaluated simultaneously along its diversity profile.
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structures, which seem to be evaluated very differently depending
on how abundances are computed.

3.3. Lorenz curves from individual tree sizes

Fig. 4 shows the Lorenz curves obtained when trees are ranked
individually Prðxr;MrÞ. In order to clarify the interpretation of this
figure, the Lorenz curves of theoretical distributions were included
in gray color. Like in Fig. 3a and c, the diagonal is the line-of-abso-
lute-equality (gray dotted line), although in this case it is obtained
by any forest stand with all trees of equal size, regardless of
whether they are big or small. The opposite situation would be a
maximally bimodal distribution (gray dashed line), characterized
by a theoretical forest plot with two cohorts of equal basal areas,
so that few large trees account for half the basal area in the dom-
inant canopy and the other half is cumulated from lots of small
saplings. In the particular case of applying Lorenz curves to the
study of tree size distributions, it is of particular interest to observe
as well the ideal situation represented by the line-of-perfect-uni-
formity (gray solid line), obtained from a theoretical sequence of
trees with steady increase in their diameters along the whole
range.

The best results were obtained when the intrinsic equitability
ordering was observed for the individual trees (Fig. 4), instead from
size classes. Lorenz curves generated from individual trees clearly
showed the best separability among FSTs. Also, the forest plots
were shown in an order which seemed more logical according to
their structural properties.
4. Discussion

4.1. Applicability of methods based on diversity

The results reveal that diversity indices are not applicable for all
studies of the complexity of forest structure. The field plots did not
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Fig. 3. Equitability ordering methods. Computed from relative frequencies of stems (a and b) and basal area proportions (c and d). In figures (a) and (c), majorization (Eq. (6))
was used for intrinsic equitability ordering Pkðxk;MkÞ against cumulative proportions of size class ranks ðxk ¼ k=sÞ. They are used to test if two forest plots are comparable by
the equitability definition assumed by the indices. The diagonal gray line represents the theoretical situation of equal proportions in all size classes. In figures (b) and (d),
equitability profiles were constructed from equitability numbers ðNa;0Þ of increasing order a (Eqs. (4), (5) and (9)). Their equivalence with evenness indices (see Section 2.5) is
also illustrated by gray boxes in the background, which include the actual index obtained at each value of a. The values of J0 and ESi , obtained by a same forest plot can this
way be evaluated simultaneously along its equitability profile.
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follow the same intrinsic diversity ordering (Fig. 2a and c), and
therefore a concise indicator based on this assumption is inade-
quate for their inter-comparison. This conclusion would also apply
to other diversity indices based on information theory, e.g., McIn-
tosh or Brillouin (cf., Lambshead et al., 1983), as they are grounded
on the same assumptions.

On the other hand, not all cases led to non-comparable diversity
ordering. Diversity indices seem perfectly fine to be used for com-
paring among even-sized stands, or analyzing the success of regen-
eration in reverse J-shaped ones. For this reason, these results do
not necessarily invalidate the conclusions reached by previous
studies using Shannon, or other indices alike. For instance, forest
plots partitioned into larger bin widths are more likely to be intrin-
sically comparable, as it could be the case of McArthur and
McArthur (1961), who divided the canopy into just three vertical
strata. It can also be feasible to contrast distributions of similar
shape, like Buongiorno et al. (1994) and Sullivan et al. (2001),
who compared among reverse J-shaped stands to test the effects
of disturbances and management alternatives in uneven-sized
stands. However, the absence of intrinsic diversity ordering may
be the reason why it has been reported that Shannon index may
lead the same value for very different FSTs (Harper et al., 2003;
Kint et al., 2000; Lexerød and Eid, 2006; Rouvinen and Kuuluvai-
nen, 2005). Using circular plots of variable radii (Sullivan et al.,
2001) can be another source for confusion, as plot size influences
the computation of indices affected by sample richness (Barbeito
et al., 2009; James and Wamer, 1982).

O’hara et al. (2007) found that uneven-sized stands did not nec-
essarily obtain better values of diversity indices than even-sized
ones, but their conclusions should be taken cautiously as these
indices have been demonstrated unreliable for such comparison.
Diversity indices may be consistent for field plots in other studies,
but Fig. 2 proves the need for accompanying any index with corre-
sponding diversity profiles, as there is potential for inconsistencies.
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The validity of results based in diversity among size classes cannot
be confirmed until diversity profiles are evaluated and empirical
data assured comparable. We suggest that future studies include
the assessment of the intrinsic ordering of the data with diversity
and equitability profiles, prior to reporting any results on single
indicators and reaching any conclusions.

As an alternative to always plotting the intrinsic ordering when
using a single index, an analytical approach could also be per-
formed, by programmatically assuring that Mk consistently in-
creases/decreases for all k (Gove et al., 1992), or testing for Shur
concavity (Gattone and Battista, 2009). Gove et al. (1995) applied
this method to assure diversity of basal area proportions among
size classes, though using the right tail-sum method Rkðk; TkÞ in-
stead of majorization. For each size class, they accumulated the
proportion of abundance in the remaining s� k least abundant
size classes (Patil and Taillie, 1982):

Tk ¼
Ps

j¼kþ1
p#

k ; for k ¼ 1; . . . ; s� 1 ð12Þ

When compared to Eq. (6), it becomes apparent how Tk accen-
tuates the relative abundance of the least common size classes
(rarity), whereas Mk emphasizes the importance of most common
ones (dominance). Both methods lead to the same result (Liu et al.,
2007) and they are only conceptually different, and therefore
choosing either one is just a matter of whether diversity is used
with the intention of describing dominance or rarity.

Future research on diversity profiling may consider some
plotting alternatives which enhance visual identification of inter-
secting profiles. Lambshead et al. (1983) suggested the use of
k-dominance curves KkðInk;MkÞ showing percentages of cumu-
lated dominance, as the logarithmic scale straightens the curves
and their separability or intersections becomes easier to assess.
When the purpose is to compare management alternatives against
a common baseline, another useful approach was developed by
Swindel et al. (1987) as comparative diversity profiles CkðMk;M

0
kÞ.

These profiles directly compare the intrinsic ordering of one plot
ðMkÞ against another ðM0

kÞ, and therefore serves as an intersection
test in itself. The authors recommend these in future studies,
though those used in this article allowed direct comparison be-
tween majorization and Lorenz ordering. From the statistical point
of view, there are also some improvements that could be taken into
account in further research. For instance, as cumulated dominance
was computed from sample plots, the profiles themselves can be
considered as their average estimate, with corresponding confi-
dence intervals. For this reason, Gove et al. (1992) used a jack-knif-
ing method to infer whether two profiles significantly intersect.
The most important consequence is that the confidence range is
variable along the profile, and therefore the significance of inter-
sections depends upon where profiles cross. Future research may
also investigate the effect of other assumptions underlying the
use of relative abundances as descriptors of the probability for
double-encounter in diversity indices. Sample estimators of rich-
ness and abundance are only asymptotically ðn!1Þ unbiased
(Sheldon, 1969), and there is a premise of no spatial autocorrela-
tion which is implicitly contravened by tree competition. Sample
plot size can be optimized to minimize these effects, and exces-
sively fine scales should in general be avoided (Barbeito et al.,
2009).
4.2. Diversity vs. equitability

The intrinsic equitability ordering (Fig. 3a and c) observed for
the empirical plots suggests that equitability is a concept more sui-
ted for comparing them than diversity. As a consequence, diversity
indices seemed less reliable for studying forest structures that their
equitability counterparts. Contradictorily, Shannon’s index is the
most popular among all alternative indices for describing struc-
tural complexity of forests. Diversity indices give a higher or equal
value from an initial situation by (a) incorporating more classes, (b)
transferring abundances, or (c) relabeling classes (Patil and Taillie,
1982). As explained, the higher the order of an entropy measure is,
the less weighted towards (a) it becomes. When using an equitabil-
ity measure, the values depend only on (b) and (c), whereas the
component of (a), which is expressed alone in the entropy of order
zero, is removed. These definitions for the concepts of both diver-
sity and equitability should be born in mind when using these indi-
ces, as they will not apply if the intrinsic orderings intersect.
However, this does not mean that indices cannot be used in any
case if intrinsic ordering is not assured. It may be the case that just
practical criteria needs to be taken into account, such as their dis-
criminant ability and capacity for ordering in a logical ranking
(Lexerød and Eid, 2006; Staudhammer and LeMay, 2001).
4.3. Number of stems vs. basal areas

Either option for computing the abundance vector p showed
different advantages in their intrinsic ordering, as number of stems
resulted in fewer intersections (Fig. 3a) and Lorenz curves from ba-
sal areas were more separated to each other (Fig. 3c), providing
more potential for FST discrimination. Solomon and Gove (1999)
recommended using variables strongly influenced by larger trees,
such as basal area volume or biomass, so that the resulting indices
become more representative with regards to forest management. A
criterion of practicability for the aim of each management practice
should prevail over the mathematical properties of the distribu-
tions, though these should also be observed in accordance with
the methods chosen. For example, both methods coincided in eval-
uating FST I plots as having more equitability among their size clas-
ses than FST IV ones, but they disagreed in the assessment of FSTs II
and III. The choice of either stem density or basal area therefore de-
pends on whether the forest manager wishes to emphasize the
success of recruitment or the continuity of canopy strata.
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Results are also differently evaluated if number of stems or ba-
sal areas are considered. In all cases, curves closer to the diagonal
result in lower GC and higher J0 and ESi. However, depending on the
abundance vector used, a different forest structure is defined as the
most equitable. Absolute equitability would be obtained by a the-
oretical forest plot with uniformly distributed diameters in Fig. 3a,
whereas at Fig. 3c the diagonal would instead represent exponen-
tially decreasing stems frequencies showing uniformly distributed
basal areas. This distribution was simulated by Lexerød and Eid
(2006) suggesting that a reverse J would obtain higher values for
equitability indices. In our field plots such distribution was not ob-
served in practice, and basal areas were seemly more evenly segre-
gated in a bimodal (FST III) than in a negative exponential (FST IVb)
(Fig. 1). As a consequence, the highest values of J0 and ESi were
obtained by FSTs I and III (Fig. 3d).

Overall, after considering all the diversity and equitability pro-
files, we conclude that using the information from stem frequency
and basal area simultaneously (Fig. 4) can be a better approach
than one of them alone (Fig. 3a and c). This got signified by Eqs.
(10) and (11), which exemplify how information on both the distri-
bution of stems and their basal areas is contained within the axes
in Fig. 4. By observing in Fig. 1 the distributions of stem frequency
and basal area of the different FSTs considered, it can be intuitively
presumed that neither of them alone contains enough information
for reliably distinguishing among them. For instance, FST IV would
not be discriminated from FST III by a descriptor of histogram’s
shape, while describing the skewness of the basal area distribu-
tions would also fail to differentiate it from FST II. The Lorenz
curves in Fig. 4 combine information from both stem/basal area
distributions, and therefore are more feasible for FST discrimina-
tion. Lorenz curves in Fig. 4 have to be interpreted differently, as
there is a semantic difference between considering equality in tree
sizes or evenness among size classes. Theoretical stands in Fig. 4
with uniform distribution (gray solid line) and all trees equal (gray
dotted line), would both coincide with the diagonal at Fig. 3a. They
are, however, very different from the silvicultural point of view, as
they belong to FST II and I respectively.
4.4. Interpretation of Lorenz curves from tree sizes

In light of the results shown in Fig. 4, we suggest that a partic-
ular interpretation of Lorenz curves applies when they are com-
puted with the purpose of analyzing the structural properties of
the canopy. Lorenz curves computed from individual tree sizes
should not only be compared to the traditional line-of-absolute-
equality (gray dotted line), but also to the line-of-perfect-unifor-
mity (gray solid line). This line can be used as a reference for
studying forest dynamics and stand development. Note that GC
equals 0.5 for an asymptotically uniform distribution. Hence, for
forest plots obtaining GC > 0.5, starting from a peaked reverse J
(FST IVa), the success of natural regeneration and ingrowth can
be indicated by decreasing GCs. Also, the asymmetry coefficient
would shift from S < 1 to S > 1 (for concave Lorenz curves, but from
S > 1 to S < 1 for convex ones) as an indication of achieved recruit-
ment (FST III) from a reverse J (FST IVb). On the other hand, GC < 0.5
denotes even-sized forest structures (FST I), and therefore they can
be used to study self-thinning processes taking place when stand
development is determined by competition for light and space
(Montgomery and Chazdon, 2001). Conversely, disturbances would
be indicated by a symmetric shift of the Lorenz curve to either side
the line-of-perfect-uniformity, as for example a gap opened in the
canopy would lead from FST Ib to FST IVa. This would indicate any
type of disturbance increasing mortality rate for larger trees (Coo-
mes et al., 2003), whether naturally (e.g., windthrow) or artificially
(e.g., thinning from above). Then, although FST Ib and FST IVa are on
opposite areas of the plot, we can consider them to be quite similar
in terms of the dominance of the upper canopy layer.
4.5. Selecting indicators of structural complexity of forests

Reasoning from the results presented in this article, any indica-
tors based on Lorenz curves can be well suited for describing the
complexity of forest structures, such as GC and CH. Values of GC
should be interpreted according to their theoreticals, as GC = 0,
0.5 and 1 for the diagonal, uniform and maximally bimodal, respec-
tively. This property is invariant of the species considered and
applicable to other forest ecosystems, as is consistent with recent
research by Duduman (2011) and Klopcic and Boncina (2011)
which also ordered FSTs by increasing GCs as: even-sized, uniform,
bimodal and reverse J. As Lorenz curves may cross, it is advisable to
accompany GC with the Lorenz asymmetry coefficient S (Damg-
aard and Weiner, 2000). Furthermore, when developing his CH,
De Camino (1976) also paid special attention to this line-of-per-
fect-uniformity. CH equals 1 for a forest stand belonging to this
line, and higher values are given as the distance between this line
and the Lorenz curve increases in either direction. This index was
initially conceived for ranking proportions of volume, though there
is no theoretical limitation in using basal areas instead.

Using diversity indices is discouraged, though they can still be
valid if it can be assured that all comparisons are performed at
either side of the line-of-perfect-uniformity, as the two groups
were demonstrated to be non-comparable by the definition of
diversity. Apart from GC, a rapid analytical method for assuring
this restriction can be to compare sample variance in diameters
against the variance of a uniform density function. Lorenz curves
under this line would have smaller variances than a theoretical
uniform, whereas those over this line would be higher. This prop-
erty has an important analogy with the rationale used by Staud-
hammer and LeMay (2001) in their structure index based on
variance (STVI). For this reason, STVI is also recommended as an in-
dex coherent with the properties stated in this article, as it also de-
scribes the distance from this line-of-perfect-uniformity.

Equitability of basal areas among size classes, measured by
means of Simpson’s evenness index, is also a criterion with good
potential for FST discrimination (Fig. 3d). In light of our results,
ESi is probably the best of the alternatives considered in this article,
though still difficult to interpret. Although equitability was consid-
ered as the subtraction of the richness component from diversity, it
should nevertheless be noticed that equitability indices are not
completely prone to a dependency on s (Sheldon, 1969). Lexerød
and Eid (2006) also found that the problem of using Margalef’s in-
dex was its dependency on n, which prevents stands of differing
densities to be comparable. These are more arguments in favor of
using individual trees instead of size classes, as sample size in-
creases and stands become density-normalized.
5. Conclusions

The concept of diversity is inadequate for describing the struc-
tural complexity of forests, and therefore adapting species diver-
sity indices to measure entropy among tree size classes is
incorrect. Intersecting diversity profiles from various forest plots
demonstrated that they are non-comparable by the definition of
diversity. Hence, this practice should be avoided in future studies,
or otherwise intrinsic ordering must be properly assured and re-
ported. Evaluating equitability was demonstrated more satisfac-
tory than diversity for this purpose, and there is no conceptual
mistake in describing structural complexity of forests with a
measurement on the evenness among its size classes. Nonetheless,
results were more satisfactory when equitability was evaluated
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from individual trees instead of size classes in the Lorenz curve, as
information of the both distribution of stems and their basal areas
was simultaneously included. However, the Lorenz curves were
not totally prone to intersections either, and therefore it is advised
to observe always the curves rather than using a simple index.
Whenever a simple indicator is required, GC (accompanied by S),
CH and STVI are recommended, as they are coherent with the
intrinsic equitability ordering of the empirical data. Further efforts
should focus on investigating the applicability of these recom-
mended indices for more accurate estimation in forest growth
modeling, or for choosing among management alternatives. It
may also be worth using Lorenz curves for investigating the differ-
ent dynamics of various forest ecosystems.
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