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A B S T R A C T

Accurate quantification of below-ground biomass (BGB) of woody vegetation is critical to understanding ecosystem
function and potential for climate change mitigation from sequestration of biomass carbon. We compiled 2054 mea-
surements of planted and natural individual tree and shrub biomass from across different regions of Australia (arid
shrublands to tropical rainforests) to develop allometric models for prediction of BGB. We found that the relationship
between BGB and stem diameter was generic, with a simple power-law model having a BGB prediction efficiency of
72–93% for four broad plant functional types: (i) shrubs and Acacia trees, (ii) multi-stemmed mallee eucalypts, (iii) other
trees of relatively high wood density, and; (iv) a species of relatively low wood density, Pinus radiata D. Don. There was
little improvement in accuracy of model prediction by including variables (e.g. climatic characteristics, stand age or
management) in addition to stem diameter alone. We further assessed the generality of the plant functional type models
across 11 contrasting stands where data from whole-plot excavation of BGB were available. The efficiency of model
prediction of stand-based BGB was 93%, with a mean absolute prediction error of only 6.5%, and with no improvements
in validation results when species-specific models were applied. Given the high prediction performance of the generalised
models, we suggest that additional costs associated with the development of new species-specific models for estimating
BGB are only warranted when gains in accuracy of stand-based predictions are justifiable, such as for a high-biomass
stand comprising only one or two dominant species. However, generic models based on plant functional type should not
be applied where stands are dominated by species that are unusual in their morphology and unlikely to conform to the
generalised plant functional group models.
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1. Introduction

Both above-ground biomass (AGB) and below-ground biomass
(BGB) contribute to the woody vegetation sink within the global carbon
budget (Le Quéré et al., 2015). Climate change may result in shifts in
the ratio of tree BGB to AGB (e.g. via changes in water deficit that affect
partitioning or the size distribution of trees), with far-reaching con-
sequences for the global carbon budget (Ledo et al., 2018). However,
BGB cannot be quantified using remote sensing metrics as has been
done for the AGB component (Haverd et al., 2013; Mitchard et al.,
2013; Chen et al., 2015). Therefore, the development of models to ex-
plain BGB is critical to informing predictions of biomass yields or bio-
mass carbon stocks (Richards and Evans 2004).

BGB can be estimated from AGB at either an individual- or stand-
level through the use of root-to-shoot ratios (BGB:AGB, Ledo et al.,
2018), and this approach has merit when broad-scale AGB estimates are
obtained via remote sensing products rather than via field-based as-
sessments. However, this approach has limitations. Estimating BGB
based on predictions of AGB are subject to relatively high uncertainties;
for example, mean absolute prediction error of AGB was 15–39% and
13% at the individual- and stand-level, respectively, for plant functional
types across the Australian continent (Paul et al., 2016). In contrast, if
BGB of an individual is predicted by applying verified allometric
models to field measurement of stem diameter (D) measured at a spe-
cified height above the ground, the uncertainty is likely to be much
lower because errors in D estimation are relatively small (e.g. 2–7%,
Paul et al., 2017). Moreover, BGB:AGB defaults obtained from the
average of multiple stands of a given ecosystem (Mokany et al., 2006)
do not explicitly account for variations in stand density and the mix of
species; both of which influence BGB (Westman and Rogers, 1977;
Bernardo et al., 1998; Ritson and Sochacki, 2003; Xue et al., 2011;
Gonzalez-Benecke et al., 2014). Stand-based estimates of BGB, resulting
from application of allometric models with D as a predictor variable to
each individual within a stand, may inherently account for stand den-
sity and species-mix.

When developing allometric models for prediction of BGB of woody
plants, it is unclear to what extent data should be pooled or separated
according to their morphological, phylogenetic and/or phenological
characteristics; variation often encapsulated by classification of species
into plant functional types. It is also unclear whether the inclusion of
stand characteristics or bioclimatic variables improves the performance
of BGB allometric models compared with using D alone. A true test of

the accuracy of such models is direct validation at the stand-level by
comparing allometry-predicted BGB against that measured through
whole-plot excavation. Although such stand-level validation has been
undertaken previously by Paul et al. (2014) for young plantings in
southern Australia, no such validation has been undertaken for more
broadly-applicable BGB allometric models derived from root data
sampled from both planted and natural systems, and across a range of
stand ages and ecosystem types.

Australia provides a good case study for testing generalised allo-
metric models given its long history of research contributions to BGB
data sets (e.g. Forrest, 1969; Baldwin and Stewart, 1987; Applegate,
1982) spanning a broad range of ecoregions (i.e. arid shrublands to
tropical rainforests) with plant functional types ranging from shrubs
and short multi-stemmed trees to some of the largest trees in the world
(Sillett et al., 2015; Specht and Specht, 2002, 2013). Improving the
assessment of Australia’s vegetation carbon sink is of global importance
as the high inter-annual variability that is characteristic of the global
vegetation sink is in large part due to variability in the carbon capture
of the semi-arid ecosystems of Australia (Houghton et al., 2012; Poulter
et al., 2014; Ballantyne et al., 2015).

Here we collated destructively-measured BGB datasets from individual
trees and shrubs sampled from a broad range of stands from differing cli-
matic regions of Australia, including those in natural ecosystems or other-
wise established through human intervention (i.e. planted). We then ana-
lysed this data set to assess whether D-based allometric models of BGB were
improved: (i) when based on species rather than plant functional groups;
and (ii) by the inclusion of stand characteristics (age and management) or
climatic variables. Our objectives were to recommend the most appropriate
allometric model(s) for estimating BGB in ecosystems across the Australian
continent, and to quantify the accuracy of the recommended model(s) when
tested against direct measurements of stand-level BGB obtained using
whole-plot excavation across a range of contrasting sites. The recommended
models for predicting BGB were applied together with those previously
recommended for prediction of AGB (Paul et al., 2016) to provide estimates
of BGB:AGB ratios for plant functional types of differing allometry.

2. Methods

2.1. Data set

2.1.1. Data compilation
Data sets of BGB from destructive harvesting of 2054 individual

Fig. 1. Location of trees or shrubs sampled for biomass by terrestrial ecoregion across Australia (DSWPC, 2015).
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trees and shrubs were obtained from 38 published and unpublished
sources (Paul et al., 2018a). These were from a range of managed and
natural woody ecosystems across 210 sites in various Australian ecor-
egions (Fig. 1).

BGB was defined as tree and shrub roots of> 2mm in diameter
extracted from a soil depth of 2–3m, including stem biomass to a height
of 10 cm above ground (i.e. the ‘stump’). This method of root extraction
ensured the majority of root biomass was captured because: (i) fine
roots (< 2mm) of woody plants only comprise 8–14% of the total root
biomass, depending on the AGB (Applegate, 1982; Misra et al., 1998; Li
et al., 2003; Mokany et al., 2006), and (ii) typically 95% of all roots are
found within 2m of the ground surface (Schenk and Jackson, 2002).
The stump was included in the calculation of BGB because 10 cm is a
common height targeted in operational harvesting, and hence, remains
together with the roots as part of the unharvested biomass.

When sampling for BGB, sub-samples (0.5–25 kg each, depending
on the size of the individual) were used for percentage moisture content
determination, with the lignotuber and/or root stump sampled sepa-
rately from other coarse roots. These sub-samples were oven-dried at
70 °C to constant weight, with the estimates of moisture content of
components used to calculate the total dry weight of BGB (kg dry
matter (DM) of an individual plant).

Each tree or shrub excavated also had a measure of stem diameter
(D, measured over bark). For single-stemmed trees, D was measured at
130 cm height above ground level (D130); the most common interna-
tional standard (e.g. Picard et al., 2012). However, for shrubs and small
multi-stemmed trees where D130 measurements introduced errors due
to the presence of multiple stems at this height, or where the individual
was too small to have a measurable D130, the D of each stem was ty-
pically measured at 10 cm height above the ground (D10). For multi-
stemmed individuals, a single, pooled D estimate was obtained from the
diameter equivalent representing the sum of the cross-sectional areas of
each of the individual stems.

2.1.2. Functional groups
The data set included 128 species. Only seven species (Eucalyptus

polybractea, E. loxophleba, E. kochii, E. globulus, E. occidentalis, Pinus
pinaster and P. radiata D. Don) were sampled in sufficient numbers
(N > 100 individuals) to have confidence in developing species-spe-
cific models that are likely to reflect the true population (i.e. targeted
coefficient of variation in predicted BGB being ca 5%; Roxburgh et al.,

2015). This relatively high sample size requirement was based on the
assumption that, due to measurement errors being relatively high when
extracting roots from the soil, BGB allometric models are likely to have
a relatively high inter-sample variability, with residual standard de-
viations of about 0.50.

Because the sample size of most (95%) species was insufficient to
assess the allometry of BGB at a species-specific level, we categorised all
species in the data set into plant functional types of unique physiog-
nomic growth form (Gitay and Noble, 1997), i.e. groupings of plant
species with distinctive branch architecture and/or stem wood density.
There is evidence that such an approach negates the need to explicitly
account for stem wood density in allometric models of biomass for
Australia (Paul et al., 2016). Consistent with species groupings used in
allometric models of AGB by Paul et al. (2016), the groups used for BGB
were:

i. FShrub&Ac. Shrubs and small multi-stemmed trees. This group in-
cluded the common Australian genus Acacia (36% of the FShrub&Ac
data set), which comprised both shrub (31%, e.g. A. hemiteles, A.
murrayana and A. victoriae) and small tree (69%, e.g. A. saligna, A.
acuminata and A. aneura) forms. The group also included another 18
genera of shrubs (generally < 2m height), with the most common
genera being Eremophila, Dodonaea and Melaleuca.

ii. FMallee. Multi-stemmed (mallee) trees from the genus Eucalyptus,
which commonly have a lignotuber and relatively high wood den-
sity: mean ± standard deviation (SD) 0.88 ± 0.08 g cm-3, largely
(93%) based on estimates from the global stem density database
(Chave et al., 2009; Zanne et al., 2009), with the remainder being
directly measured. This group included 17 species, with the most
common being those typically established in monoculture plantings,
such as E. loxophleba subsp. lissophloia (41%), E. polybractea (24%)
and E. kochii subsp. plenissima and subsp. borealis (18%). Other
common species included E. loxophleba that were not subsp. lis-
sophloia, E. porosa, and E. platypus.

iii. FTree. Typically single-stemmed trees of relatively high wood den-
sity: mean ± SD 0.69 ± 0.16 g cm-3, largely (80%) based on esti-
mates from the global stem density database, with the remainder
being directly measured. This group included 35 genera, most
commonly Eucalyptus (or the closely-related Corymbia) (77%) from
either hardwood plantations or native forests or woodlands. Other
well-sampled species included the introduced Pinus pinaster (14%),
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Fig. 2. Number of individuals (N) sampled of each of the four plant functional types by ecoregion (defined in Fig. 1).
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which is a common low-rainfall plantation species in Australia.
There was a large diversity of genera sampled from the tropical
ecoregion, with the most common being species from the genus
Argyrodendron.

iv. FRadiata. The specific tree species Pinus radiata, of relatively low stem
woody density: mean ± SD 0.40 ± 0.04 g cm-3, largely (86%)
based on estimates from the global stem density database, with the
remainder being directly measured. This species is the most
common species in softwood plantations within high rainfall re-
gions of temperate Australia.

The FShrub&Ac, FMallee, FTree, and FRadiata groupings comprise about 20,
30, 40 and 10% of the data set respectively. The geographical extent of
the Australian terrestrial ecoregions is shown in Fig. 1, and the re-
presentation of these ecoregions in the sampling for each plant func-
tional type is shown in Fig. 2. The ‘Mediterranean forests, woodlands
and scrub’ was the most well represented ecoregion (66%).

2.1.3. Harmonisation of BGB data estimates
Because measurement of BGB is resource-intensive and challenging,

among the 38 studies used to build the data set (Paul et al., 2018a),
various protocols were utilised, based on the resources available and
the type of ecosystem sampled. The most common protocol (51% of
data) included the stump in the BGB sampling and excavated the area
around the individual to the mid-point boundaries with neighbouring
trees, termed ‘Voronoi polygons’ (Wildy and Pate, 2002; Saint-André
et al., 2005). Three other protocols were used for the remaining 49% of
the data set. For 20% of the data set where the stump was included with
the AGB, stump biomass was estimated using empirical data as de-
scribed by Paul et al. (2014), and added to the BGB. For 15% of the data
set, where BGB was excavated in a set area (generally 4m2 around a
tree base), based on empirical evidence (Paul et al., 2014), we assumed
that only 70.2% of BGB was excavated and so an additional 29.8% was
added to the BGB sampled. Finally, for 14% of the data set, where ex-
cavation of the BGB of individuals was not possible due to the close
spatial association of the target individual with nearby individuals
(known as ‘clustering’), relatively large areas (50–200m2) were ex-
cavated and the BGB of the entire vegetation ‘cluster’ was provided.
Although root stumps belonging to each individual could be identified,
the remaining coarse roots were allocated to each individual within the
‘cluster’ in accordance with its proportional contribution to the total
AGB measured for that ‘cluster’.

As quantified by Paul et al. (2014), uncertainties in allometry-pre-
dicted BGB result from assumptions required to harmonise the BGB data
sets derived from alternative protocols. These uncertainties may be
reduced as additional data becomes available to inform the adjustment
factors applied, e.g. varying the adjustment factor for set area excava-
tion based on the size of the tree and/or the stand density.

2.1.4. Ancillary stand and site data
Data about the stand and site from which an individual was sampled

were collated (Table 1). Stand variables included whether the site was
‘natural’ (i.e. naturally-regenerated shrubland, woodland or forest) or
managed (i.e. human-induced establishment from planting of nursery
stock, direct seeding or human-induced natural regeneration), and
whether the stand was younger than 20 years. There was insufficient
replication, and/or confidence in exact ages, to facilitate further age-
class groupings. Site factors included long-term mean annual rainfall
(MAR, mmyr-1) and mean annual temperature (MAT, °C) (BoM, 2015;
1970–2015, 2.5 km resolution).

2.1.5. Standardising diameter estimates, and outlier checking
For many individuals in the data set, D was measured at multiple

heights, thereby allowing derivation of generic relationships for pre-
diction of D at a given height based on D measured at another height
(see empirical linear relationship between D measured at different
heights given in Table S2 of Paul et al., 2016). These relationships were
used to ‘gap-fill’ D estimates as required, with D130 or D10 being esti-
mated for 28% of the 2 054 individuals within the data set.

Very small individuals (D10 < 0.6 cm and D130 < 1.1 cm) were not
included in the database because they were considered unlikely to
conform to biomass scaling laws typical of woody plants due to rela-
tively little secondary thickening (Niklas, 2004; Enquist et al., 2007).
Data for a further 38 individuals from 10 sites (and six sources) were
excluded as outliers as their measured BGB fell outside the 99.9%
confidence interval of prediction of the mean of the appropriate plant
functional type model. These outliers were removed on the basis that
they were highly unlikely to have the reported values of BGB for the
measured dimensions.

2.2. Allometric model

The simple power-law allometric model was used to predict BGB of
an individual tree or shrub based on the explanatory variable, X (Eq.
(1)). Eq. (1) was linearized by natural logarithmic transformation (Eq.
(2)) so that coefficients (a and b) could be estimated using ordinary
least squares linear regression analyses, with data corrected for het-
eroscedasticity, such that residual errors were normally distributed on
the logarithmic scale (ε; which becomes a multiplicative error in the
power model, ε′, Picard et al. (2012)):

= × × ′a XBGB εb (1)

= + × +a b Xln BGB ln ln ε (2)

Eq. (2) was applied to model the entire dataset (universal model,
AllUniversal), and to the data sets of the four plant functional types: FShrub&
Ac, FMallee, FTree and FRadiata. The simplest form of Eq. (2) had X= D,
where D is D10 or D130 for FTree and FRadiata, and by necessity, D10 for
FShrub&Ac and FMallee, and hence, AllUniversal.

When back-transforming from the logarithmic to the natural scale, a

Table 1
Characteristics collated for the entire data set (AllUniversal), or for each of the four categories of plant functional types. (FShrub&Ac, FMallee, FTree, and FRadiata).
Abbreviations as follows: ‘N individuals’, total number of individuals; ‘D10’ and ‘D130’, mean stem diameter measured over bark at 10 cm and 130 cm height above the
ground respectively; ‘N stands’, number of stands from which the trees or shrubs were harvested; ‘N spp.’, number of species that were sampled; ‘%Age < 20 yrs’,
percentage of individuals from stands with age < 20 years; ‘%Managed’, percentage of individuals from stands that were managed rather than naturally regenerated
without human intervention; ‘MAT’, long-term mean annual temperature, averaged across sites from which individuals were sampled; and ‘MAR’, long-term mean
annual rainfall, averaged across sites from which individuals were sampled. Where relevant, standard deviations (and for D10 and D130, the range in values) are
provided in parentheses.

Type N individuals D10 (cm) D130 (cm) N stands N spp. %Age < 20 years %Managed MAT (oC) MAR (mm yr-1)

AllUniversal 2 054 17.0 (19.6; 0.6–177.0) NA 210 128 72.0 77.4 16.9 (2.5) 591 (510)
FShrub&Ac 351 11.8 (10.6; 0.6–98.4) NA 45 33 41.0 43.0 18.8 (2.0) 532 (496)
FMallee 644 11.8 (10.0; 1.0–81.1) NA 100 17 88.8 97.2 17.0 (1.5) 393 (75)
FTree 810 24.4 (27.1; 2.1–177.0) 18.9 (21.2; 1.1–138.8) 72 77 65.8 69.5 16.7 (2.9) 781 (683)
FRadiata 249 13.8 (8.8; 3.6–49.6) 9.8 (7.8; 1.4–41.4) 4 1 92.4 100.0 14.6 (1.8) 569 (211)
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correction factor (CF) is required to remove bias in biomass estimates. A
review of nine CFs (Clifford et al., 2013) recommended the MM CF
(Minimize Mean Square Error CF, Shen and Zhu, 2008) for predicting
biomass of new trees or shrubs as it gave relatively low prediction bias.
Because the value of the MM CF varies with D, a range of MM CF values
are reported. The more commonly used Baskerville CF (Baskerville,
1972), which assumes the variability is constant across D, may lead to
biased estimates of biomass, particularly for individuals with a D that is
appreciably larger or smaller than the mean D used to develop the al-
lometric model. In this study the MM and Baskerville CFs were con-
sistent, at least to one decimal place, due to our large sample sizes; and
therefore we report both the MM and Baskerville CF.

2.3. Statistical analysis

2.3.1. Model checking and selection criteria
To confirm the validity of tested models, we checked that there was

no heteroscedasticity through examination of probability and quantile
plots of the residuals. Then, the performance of valid models of lnBGB
(Eq. (2)) was quantified using five fit statistics: (i) standard errors of the
coefficients lna and b, (ii) residual mean square error, RMSE, (iii) ad-
justed coefficient of determination, R2, (iv) Akaike’s information cri-
terion (AIC, Burnham and Anderson, 2004), where the lowest AIC in-
dicated the most parsimonious model, and to further aid comparisons
among alternative models of differing numbers of parameters, (v) the
Mallows’ Cp statistics (Mallows, 1973), where a Cp higher than the
number of explanatory variables indicated poor model fit.

Using back-transformed BGB predictions, the predictive perfor-
mance was quantified by: (i) model efficiency, expressed as a propor-
tion (EF, Soares et al., 1995), where a model efficiency of 1.0 indicates
perfect fit, and a value of 0.0 indicates the predictions are no better
than simply using the mean of the observations, and (ii) average bias, or
mean of the residuals expressed in absolute terms and provided as a
proportion (%) of the observed value (i.e. mean absolute prediction
error, ‘MAPE’, using back-transformed BGB predictions) (Sileshi, 2014).

2.3.2. Alignment of plant functional groupings for BGB and AGB
allometries

To facilitate the application of allometric models of both AGB and
BGB to various stands across Australia, the sub-categories of plant
functional groupings used for BGB were consistent with those applied
for allometric models of AGB (Paul et al., 2016, see Fig. S1). General
linear modelling (GLM) was used to assess whether lnBGB prediction
from lnD was significantly influenced by species group, and if so, which
species groupings had statistically (P < 0.05) unique BGB allometry.
Although alternative statistical approaches are available for testing
whether species or groups of species have statistically-significant allo-
metry, these provided results consistent with GLM (Paul et al., 2018b).
Plant species typically measured at D10 (shrubs and multi-stemmed
trees) required separate allometric models to those typically measured
at D130 (single-stemmed trees), hence, analysis of unique functional
sub-categories was undertaken for both of these broad groups of spe-
cies. From the eight species groups, four categories of plant functional
types were required for BGB allometric models (FShrub&Ac, FMallee, FTree
and FRadiata) (Fig. 3).

2.3.3. Effect of level of generalisation on BGB prediction accuracy
Data from the seven tree species with N > 100 (E. polybractea, E.

loxophleba, and E. kochii, E. globulus, E. occidentalis, P. pinaster and P.
radiata) were used to assess whether the fit in BGB predictions (i.e.
prediction accuracy) improved as the specificity of the allometric
models increased (i.e. Alluniversal model cf. functional-type model cf.
species-specific model). Large samples sizes were required to target a
5% coefficient of variation prediction of biomass when applying allo-
metric models of relatively high variability, as anticipated for BGB (i.e.
residual standard deviations 0.47–0.50; Roxburgh et al., 2015). Further,
data for the shrub species Dodonaea viscosa subsp. angustissima and
Eremophila sturtii (N= 49–51, indicating a coefficient of variation of
prediction of about 7%, Roxburgh et al., 2015), were used to explore
whether the application of the generalised multi-species FShrub&Ac model
generated significant bias in BGB when compared to a species-specific
model.
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Fig. 3. Groupings of plant species into plant functional types as applied in AGB generic allometric models (Paul et al., 2016), and how these relate to the grouping of
plant species into the plant functional types used here for BGB generic allometric models.
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2.3.4. Effect of stand and site factors on BGB allometry
GLM was used to assess whether inclusion of stand or site factors

improved the performance of Eq. (2), as indicated by an improvement
in the fit statistics. The stand and site factors tested included: (i) stand
age (< 20 years or ≥20 years), (ii) management (natural or managed
vegetation), (iii) ecoregion (as per Fig. 2), (iv) MAT, and (v) MAR. In-
teractions of these site-factors with lnD were included in the model only
where these were significant (p < 0.05).

Within our data set (Table 1), data for the single-stemmed tree
species Eucalyptus populnea was the most suitable for comparison be-
tween ecoregions, because the sample sizes of 20–36 indicated coeffi-
cients of variation of allometry-predicted biomass of only 8–11%
(Roxburgh et al., 2015). These data provided a case study testing the
effect of ecoregion on the FTree model across: (i) ‘Temperate Grasslands,
Savannas and Shrublands’, where MAR was 400–460mm (N=20,
collated from two stands), and (ii) ‘Tropical and Subtropical Grasslands,
Savannas and Shrublands’ where MAR was 600–1 070mm (N=36,
collated from three stands).

2.4. Model validation using whole plot root excavation

Data from 11 stands of varying structure and from contrasting en-
vironments (Table 2) where whole plots were excavated to obtain ‘true’
and direct measurements of stand-scale BGB (Paul et al., 2014), were
used to test the accuracy of allometric models. We applied the generic
FShrub&Ac, FMallee and FTree models of best fit (Eq. (2), using D as the
predictor variable) to inventories of D obtained from each of these 11
stands. The allometry-predicted BGB of all individuals within the plots
was then summed to provide a predicted BGB at the stand-level. We
calculated the resulting prediction quality statistics of EF, MAPE and
RMSE. To determine whether there was any improvement in model
performance when less generalised models are applied, this analysis
was repeated with the use of species-specific models when they were
available (Table S1).

2.5. BGB:AGB

The allometric models developed for BGB, and those developed by
Paul et al. (2016) for AGB, were applied to predict the BGB:AGB ratio
for the different sub-categories of plant functional types (Fig. 3). For the
1 990 individuals in the data set where both AGB and BGB were mea-
sured, we compared predicted BGB:AGB ratio with that observed, and
the mean (± SD) allometry-predicted BGB:AGB between the different

species groups. We also explored the relationship between allometry-
predicted BGB:AGB and the D of an individual tree or shrub.

3. Results

3.1. Allometric models

The model (Eq. (2)) predicted BGB with good accuracy for four
categories of plant functional types: FShrub&Ac, FMallee, FTree, and FRadiata
(Fig. 4a, d, g, j). The models explained 90–97% of the variation in
lnBGB, with errors (RMSE) of 0.26–0.55 (Table 4). When lnBGB was
back-transformed and bias corrected, there was relatively high un-
certainty in the prediction of BGB for a given tree or shrub for a given D
(see 95% confidence intervals of prediction, Fig. 4b, e, h, k). However,
these individual errors tend to cancel out when predictions are made
across a large number of individuals. The generalised models provided
reasonable accuracy across the data sets, giving an efficiency of pre-
diction of BGB of 72–93%, with aMAPE range of 21–55% (Fig. 4c, f, i, l;
Table 3).

For FTree and FRadiata models, there was no consistent difference in fit
statistics when the model (Eq. (2)) used the explanatory variable D10

instead of D130 (Table 3). However, for FRadiata models using lnD130, it
was necessary to exclude trees with D130 < 5.0 cm to avoid positive
bias in predictions of larger (D130 > 30 cm) trees.

The performance of the AllUniversal model was relatively poor (effi-
ciency of prediction of BGB only 74%, Fig. S1a) because it generalises
across plant functional types with substantially different BGB allometry
(Fig. S1b and c). GLM demonstrated that allometry of mallee eucalypts
was significantly different (p < 0.001) to that of shrubs and other
multi-stemmed trees (e.g. Acacia species) (Fig. S1c and d), while allo-
metry of Pinus radiata was significantly different (p < 0.001) to that of
other single-stemmed trees (Fig. S1d, e). These results justify splitting
the universal model into four plant functional type models (Table 3,
Fig. 4).

The application of alternative models to the seven species that were
adequately sampled (N > 100, Table S1) showed that the predictive
performance generally increased with increasing model specificity:
universal cf. plant functional type cf. species-specific. When compared
to the application of the universal model, the application of more
specific models generally increased the efficiency of prediction of BGB
by up to 15–17%, and decreased the MAPE by up to 16–50% (Table 4).
There were some exceptions, with the application of the AllUniversal
model to P. radiata, or the application of FMallee to E. kochii, resulting in

Table 2
Summary of the main characteristics of 11 contrasting stands where whole-plot BGB excavation was used to test the accuracy of generalised allometric models based
on plant functional type. Modified from Paul et al. (2014). Abbreviations as follows: ‘MAR’, long-term (1970–2015) mean annual rainfall; ‘Tree N’, number of live
trees or shrubs measured; ‘Type of stand’, where A refers to ‘Belt monoculture planting of the mallee eucalypt species E. loxophleba subsp. lissophloia’, B refers to
‘Block monoculture planting of the mallee eucalypt species E. loxophleba subsp. lissophloia’, C refers to ‘Belt planting of mixed-species’, and D refers to ‘Block planting
of mixed-species’.

Site Location (decimal degrees) MAR (mm yr-1) Age (year) Tree N Stand-scale AGB (Mg DM ha-1) Stand-scale BGB (Mg DM ha-1) Type of stand

Strathearn −35.0485 S, 149.2325 E 637 15 371 38.9 25.30 C
Moir^ −34.2809 S, 118.1820 E 439 20 346 42.4 17.07 C
Jenharwill −36.3958 S, 144.4304 E 406 12 163 69.1 21.34 D
Gumbinnen −36.2447 S, 141.8148 E 347 10 305 19.1 4.48 C
McFall −33.7290 S, 117.3217 E 438 15–24 313 189.6 76.00 D
Leos −37.8381 S, 147.7582 E 626 16 96 113.6 44.94 D
Pepal# −33.4865 S, 117.7912 E 406 11 77 20.87 14.77 B
Bird# −32.8515 S, 117.5892 E 376 11 41 37.68 18.27 B
Quicke# −32.6736 S, 118.2361 E 339 14 29 77.63 37.79 B
Temby# −33.1457 S, 117.7187 E 353 16 44 22.61 12.32 A
Angel# −30.1970 S, 117.1160 E 297 16 34 9.93 9.78 A

# Species-specific allometric model for Eucalyptus loxophleba (Table S1) was applied as an alternative to the FMallee model.
^ Species-specific allometric model for E. occidentalis (Table S1) was applied as an alternative to the FTree model for this species, although within this mixed-species

stand, E. occidentalis only comprised 6% of the individuals sampled, or 16 individuals out of the 275 individual trees or shrubs excavated for direct measurement of
stand-level BGB.
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substantial bias (MAPE 100–226%) (Table 4). Investigation of BGB al-
lometry for two shrub species (Fig. 5), showed that one species had a
slight bias in prediction of BGB when the generic FShrub&Ac model was
applied (mean bias+ 2.3 kg for D. viscosa subsp. angustissima), but with
bias being negligible for the other species (< 0.5 kg, E. sturtii) (Fig. 5a
and b). Indeed, compared with application of the FShrub&Ac model to
predict BGB of D. viscosa subsp. angustissima, where prediction effi-
ciency was only 13% and MAPE was 73%, the performance was much
better for E. sturtii, where efficiency of prediction was 90% and MAPE
only 33%.

3.2. Inclusion of stand and site-factor predictor variables

When compared to using D alone, including stand-factors (age and
management) resulted in only minor model improvements, with the
increase in explained variation of lnBGB being consistently < 2%
(Table 5). Furthermore, for plant functional types where a majority of
the individuals were from planted stands (e.g. FMallee and FRadiata), there
were insufficient data from natural stands to statistically ascertain any
impact of management on BGB allometry. Accounting for ecoregion,
MAT or MAR also resulted in relatively small model improvements,
with the increase in explained variation being< 3% (Table 5). These
findings were reinforced by observed negligible difference in BGB al-
lometry for the one species (E. populnea) that was reasonably well
sampled from two contrasting climates and ecoregions (Fig. 5c, d).

3.3. Model validation using whole-plot root excavation

Comparison of allometry-predicted BGB to observed BGB from di-
rect whole-plot excavation across 11 contrasting stands (Table 2),
showed prediction of stand-level BGB was good overall (efficiency of
prediction 93%, MAPE 20.4%, Fig. 6). When this validation was re-
peated with application of species-specific models (where available),
there was negligible difference in the accuracy of stand-level BGB
prediction, with efficiency of prediction and MAPE both changing by
less than one percent (Fig. S2 cf. Fig. 6).

3.4. BGB:AGB

The ratio of BGB:AGB was predicted to differ between the seven
unique plant functional types, with the highest values for other low
wood density trees and mallee trees and the lowest values for multi-

Fig. 4. Generic allometric equations for prediction of BGB from stem diameter (D, cm) of (a–c) shrubs and acacia trees (FShrub&Ac, where D was at 10 cm, D10), (d–f)
multi-stemmed mallee eucalypt trees (FMallee where D was at 10 cm, D10), (g–i) single-stemmed trees (FTree, where D was at 130 cm, D130), and (j–l) Pinus radiata tree
species (FRadiata, where D was at 130 cm, D130). There were three plots for each plant functional type: (a, d, g, j) indicating Eq. (2) fitted to the lnBGB data set, (b, e, h,
k) indicating accuracy of the back-transformed and biased corrected model, and (c, f, i, l) indicating observed vs. predicted BGB. Black solid lines represent the model
of best fit, dotted lines the 95% prediction interval, and dashed lines the 1:1 line. Values in parentheses are the 95% prediction interval of the slope and intercept. NB:
To improve the clarity of the figure, panels (b) and (c) excluded three observations of the relatively large (D10 of 49–98 cm, and height of 17–20m) Acacia trees
sampled from the wet tropics.

Table 3
The fitted coefficient (and their standard errors) and fit statistics of generalised allometric models for BGB of the form given in Eq. (2), and using a predictor of D
measured at 10 cm height (D10) or 130 cm height (D130). Here RMSE, R2, CF, EF, MAPE, and N refer to the standard error of the linear regression, adjusted coefficient
of determination, bias correction factor, model efficiency (based on back-transformed BGB predictions), mean absolute percentage error (based on back-transformed
BGB predictions), and sample size, respectively. All models fitted were highly significant (P < 0.001). The diameter range relevant to each model is indicated in
brackets (assuming a minimum D10 of 0.6 cm, and a minimum D130 of 1.1 cm). Parameters and performance of the species-specific allometric models are provided in
the Table S1.

Model ln(a) b MM CF* Baskerville CF† RMSE R2 EF MAPE N

AllUniversal (D10 < 177 cm) −3.524 (0.045) 2.295 (0.017) 1.2373–1.2421 1.2426 0.659 0.896 0.735 78.9 2 054
FShrub&Ac (D10 < 98 cm) −3.553 (0.075) 2.185 (0.033) 1.0782–1.1508 1.1601 0.545 0.928 0.715 55.2 351
FMallee (D10 < 81 cm) −2.946 (0.071) 2.302 (0.031) 1.1047–1.1154 1.1160 0.469 0.899 0.926 44.4 644
FTree (D10 < 177 cm) −3.854 (0.046) 2.389 (0.016) 1.0913–1.0955 1.0959 0.428 0.965 0.703 40.5 810
FTree (D130 < 139 cm) −2.682 (0.039) 2.212 (0.015) 1.0923–1.0953 1.0958 0.428 0.966 0.840 40.4 810
FRadiata (D10 < 50 cm) −4.858 (0.067) 2.463 (0.027) 1.0259–1.0331 1.0575 0.257 0.972 0.902 21.3 249
FRadiata (D130 < 41 cm) −3.740 (0.152) 2.299 (0.058) 1.0272–1.0522 1.0534 0.322 0.915 0.906 26.8 147‡

* Recommended Minimize mean Square Error (MM) correction factor (CF).
† Simpler Baskerville correction factor (CF) for reference.
‡ 102 data sets with D130 < 5 cm excluded in this model.

Table 4
For the seven species that were well sampled (N > 100), comparison of pre-
diction performance of lnBGB (RMSE, R2, AIC), and of BGB when back-trans-
formed (EF and MAPE), following the application of AllUniversal and the less
generalised plant functional type (Table 3) and species-specific models (Table
S1). All models applied had, by necessity, D10 as the explanatory variable. N
indicates the number of individuals to which the models were applied. Note AIC
can only be compared across categories where N is the same.

Species Model N RMSE R2 AIC EF MAPE

AllUniversal 154 0.36 0.56 −114.5 0.59 30.3
E. polybractea FMallee 154 0.36 0.87 −304.3 0.57 35.1

E. polybractea 154 0.36 0.88 −309.2 0.74 30.5

AllUniversal 312 0.39 0.65 −101.7 0.80 40.1
E. loxophleba FMallee 312 0.39 0.91 −532.6 0.93 30.2

E. loxophleba 312 0.39 0.92 −581.9 0.93 34.5

AllUniversal 114 0.51 0.88 −134.2 0.78 43.8
E. kochii FMallee

# 114 0.51 0.82 −83.3 −0.15 100.9
E. kochii 114 0.51 0.90 −147.3 0.58 47.1

AllUniversal 221 0.33 0.94 −359.4 0.96 76.2
E. globulus FTree 221 0.32 0.96 −450.6 0.98 41.4

E. globulus 221 0.32 0.97 −502.5 0.99 25.8

AllUniversal 114 0.32 0.90 −235.2 0.97 28.9
E. occidentalis FTree 114 0.32 0.85 −191.0 0.94 26.0

E. occidentalis 114 0.32 0.91 −251.2 0.99 26.1

AllUniversal 114 0.41 0.96 −194.7 0.87 51.6
P. pinaster FTree 114 0.42 0.96 −187.6 0.84 36.9

P. pinaster 114 0.41 0.96 −195.7 0.79 38.3

P. radiata AllUniversal 249 0.28 0.60 −8.72 −0.45 226.0
FRadiata 249 0.26 0.97 −668.8 0.90 21.3

# FMallee model developed for 0.6–81 cm mallee eucalypt trees over-predicted
BGB for the 114 relatively small E. kochii trees (D10 of 1–28 cm); FMallee appli-
cation is not recommended for this species until further model validation is
possible.
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stemmed acacias (Fig. 7). With the exception of other high wood den-
sity trees, BGB:AGB was predicted to rapidly decline with increasing
size of the individual, with equilibrium values attained at D10 > 50 cm
(Fig. 7a, Fig. S3).

The size distribution of individuals sampled will influence the
average observed BGB:AGB ratios. Mallee eucalypts tended to have
relatively high BGB:AGB, while the softwood species Pinus radiata had
relatively low BGB:AGB (Fig. 7b). Comparison of the observed and
predicted mean (± SD) BGB:AGB showed no consistent significant bias
in predicted BGB:AGB (Fig. 7b). Due to the high accuracy of the generic
allometric models derived for AGB and BGB, predicted BGB:AGB ratios
were in agreement (by within±0.07) with those observed (Fig. 7b).

4. Discussion

4.1. Allometric models

Results suggest that across a wide range of individuals, BGB can be
predicted using generalised plant functional type allometric models
with reasonable accuracy and efficiency (72–93%, Fig. 4). Significantly,
this is achieved using the easily-measured predictor variable of D.

Although the BGB allometric models were based on datasets cov-
ering a broader range of vegetation types and site characteristics than
have previously been collated for Australia (including the previously
under-represented tropical ecoregions), the fit statistics obtained were
comparable to those for generalised allometric models previously de-
veloped for much smaller datasets covering smaller stem diameters
(Paul et al., 2014). Hence, increasing the domain of application of
generalised allometric models does not substantially reduce their pre-
diction accuracy. For example, considering single-stemmed trees with
D130 30–45 cm, the average (± SD) BGB of 265 ± 89 kg for trees of
various genera from tropical moist broadleaf forests (ca 2 000mm yr-1

MAR, N=17, Fig. S4a) was similar to the 266 ± 118 kg found for
eucalypt trees from the Mediterranean ecoregion (ca 430mmyr-1 MAR,
N=14, Fig. S4b). Interestingly, although BGB was similar among these
individuals of similar size, the area occupied by the root architecture
could vary substantially between ecoregions and/or soil types. In our
example above, the BGB densities differed between ecoregions (from
3–7 kgm-3 to 16–27 kgm-3 soil, respectively, for tropical moist broad-
leaf forests and sparse stands from Mediterranean ecoregions).

Of the plant functional type models developed, the model for rela-
tively small and heterogeneous multi-stemmed plants (FShrub&Ac) was

Fig. 5. Application of generic plant functional-type allometric equations for prediction of BGB from stem diameter (D, cm) of (a and b) two species of shrubs sampled
at the Meadows site (FShrub&Ac, D10), and (c and d) the single-stemmed tree species Eucalyptus populnea sampled across two different ecoregions (FTree, D130). Plots (a)
and (c) indicate Eq. (2) fitted to the lnBGB data set, and plots (b) and (d) indicate the accuracy of the back-transformed and biased corrected model. Thick black solid
lines represent the generic model of best fit, and dotted lines, the 95% prediction interval. The thin black and grey dashed lines represent the model of best fit for the
individual species (a and b), or ecoregions (c and d).
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the least precise, with a relatively high RMSE of 0.545 (Table 3).
Measurement of D for small multi-stemmed individuals is prone to re-
latively high measurement errors (Paul et al., 2017). Further research is
currently underway to explore if alternative predictor variables can
improve the precision of BGB prediction of such individuals. Further
work is also required to explore whether alternative models to the
simple power-law model may improve the prediction for BGB across the
full range of tree sizes of FRadiata, i.e. including trees with
D130 < 5.0 cm.

The data set used was a sub-set of that utilised by Paul et al. (2016)
to assess generalised allometry for AGB of trees and shrubs. Perfor-
mance of the AllUniversal model for BGB was much poorer than that for
AGB (Paul et al., 2016), with the MAPE being 78.9% cf. 40.7%. The
AllUniversal model is therefore relatively inaccurate for BGB prediction,
with a higher influence of plant functional type on allometry for BGB
than for AGB.

Application of more specific models generally increased the effi-
ciency of prediction of BGB, but only by up to 15–17% (Table 4). This is
largely consistent with previous work showing that application of
generic multi-species models does not result in loss of accuracy in al-
lometry-predicted AGB compared to species-specific models (Feller
1992; Williams et al., 2005; Montagu et al., 2005; Mugasha et al., 2013;
Mbow et al., 2014; Ali et al., 2015; Ishihara et al., 2015; Paul et al.,
2016). However, there are exceptions, with biased estimates of BGB for
some non-conforming species, which is of concern when applying
generalised allometric models to stands dominated by such species. For
example, if a woodland is composed of predominately E. kochii of
moderate size (D10 10–20 cm), and the generic FMallee model is applied,
stand-level BGB estimates are likely to be over-estimated, with bias
averaging +6.4 kg per tree (Table 4). Similarly, if a shrubland is
composed of predominately D. viscosa subsp. angustissima of moderate

Table 5
Fit statistics from general linear model analysis for assessing whether the al-
lometric model represented by Eq. (2) was improved by the inclusion of site-
factors (and their interactions with lnD) as supplementary predictor variables.
Factors tested included: (i) binary categorical variable [1,0] of stand age
(Age < 20[1,0]: relatively young at < 20 yrs, or older), (ii) binary categorical
variable [1,0] of stand management (Managed[1,0]: managed or ‘natural’), (iii)
categorical variable ecoregion (see Fig. 1), (iv) numerical variable of mean
annual temperature (MAT), and (v) numerical variable of mean annual rainfall
(MAR). Interactions of these site-factors with lnD were included in the model
only where they were significant. Numbers in parentheses are the number of
parameters in the model (Cp values greater than this number indicate models of
poor fit).‘NA’ refers to not applicable, and ‘n.s.’ refers to not statistically sig-
nificant, with P < 0.05. Note; AIC can only be compared across categories
where N is the same.

Model Variables RMSE R2 Cp AIC

FShrub&Ac lnD10 alone 0.547 0.928 2.00 (2) −422
N=351 +Age < 20[1,0] 0.503 0.939 4.00 (4) −478

+Managed[1,0] 0.505 0.939 4.00 (4) −475
+Ecoregion 0.492 0.943 8.00 (8) −490
+MAT 0.537 0.931 4.00 (4) −431
+MAR 0.511 0.937 4.00 (4) −467

FMallee lnD10 alone 0.469 0.899 2.00 (2) −972
N=644 +Age < 20[1,0] 0.466 0.900 3.00 (3) −980

+Managed[1,0] n.s. n.s. n.s. n.s.
+Ecoregion n.s. n.s. n.s. n.s.
+MAT 0.442 0.911 4.00 (4) −1049
+MAR n.s. n.s. n.s. n.s.

FTree lnD130 alone 0.428 0.965 2.00 (2) −1372
N=810 +Age < 20[1,0] 0.407 0.969 4.00 (4) −1451

+Managed[1,0] 0.412 0.968 4.00 (4) −1433
+Ecoregion 0.408 0.969 12.00 (12) −1423
+MAT 0.421 0.967 4.00 (4) −1399
+MAR 0.424 0.966 4.00 (4) −1386

FRadiata lnD130 alone 0.325 0.915 2.00 (2) −329
N=147 +Age < 20[1,0] 0.275 0.939 3.00 (3) −377

+Managed[1,0] NA NA NA NA
+Ecoregion 0.266 0.943 4.00 (4) −385
+MAT 0.257 0.947 4.00 (4) −395
+MAR 0.282 0.936 4.00 (4) −368

Fig. 6. Relationship between stand-level BGB from whole-plot harvesting at 11
contrasting stands (Table 2) and that predicted for those stands through the
application of the generic plant functional type allometric models (Table 3).
Values in parentheses are the 95% prediction interval of the slope and intercept.
Grey dashed line represents the 1:1 line.

Fig. 7. Predicted BGB:AGB from application of generic allometric equations of
BGB and AGB (Paul et al., 2016), in relation to: (a) the size of the individual
(D10) for contrasting sub-categories of plant functional types, and (b) the
average BGB:AGB observed among contrasting sub-categories of plant func-
tional types. Error bars represent standard deviations.
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size (D10 10–20 cm), and the generic FShrub&Ac model is applied, stand-
level BGB estimates are likely to be over-estimated, with bias averaging
+2.3 kg per tree (Fig. 5b).

Further research is required to ensure there is negligible bias in
prediction of BGB for specific species represented by each plant func-
tional type (Paul et al., 2018b). Only seven species were sampled suf-
ficiently to verify this. Based on the findings of Roxburgh et al. (2015),
an N of ca 50–110 individuals will be required to ascertain the true
allometry of a given species, i.e. to achieve a coefficient of variation of
BGB prediction of 5%. Even assuming consistency in the protocols used
to excavate roots, a larger inherent variability (and hence, larger re-
quired sample size) of BGB cf. AGB allometry is to be expected. Indeed
due to the difficulty in sampling BGB, uncertainty associated with
measurement errors of BGB average about± 16% (Paul et al., 2014).
Furthermore, BGB allometry may be influenced by factors such as the
presence of substantial root suckering, and the degree of senescence in
response to recent disturbance, e.g. fire, grazing. In the example shown
in Fig. 5b, BGB allometry of E. sturtii may be related to this species’
ability to form extensive colonies via root suckers, whereas BGB allo-
metry of the relatively fire- and grazing-sensitive D. viscosa subsp. an-
gustissima may be influenced by disturbance-induced cycles of senes-
cence and re-shooting (NSW LLS, 2014).

4.2. Inclusion of stand- or site-factor predictor variables

Including stand (age, management) and climate (MAR, MAT)
characteristics as predictor variables, even where statistically sig-
nificant, did not markedly improve the predictive ability of D-based
models, with increases in R2 of< 3% (Table 5). Even when the same
species was reasonably-well sampled across contrasting ecoregions,
negligible differences in BGB allometry were observed (Fig. 5d). For a
given species and size range, within-site variation is often as great as
between-site variation in BGB. Thus there is only a minor trade-off in
accuracy from application of simple power-law models based on D-
alone relative to more complex models that include multiple ex-
planatory variables (Sileshi, 2014; Picard et al., 2015; Paul et al., 2016).

Recent analysis of a global biomass data set which combined our
data set (Table 1) with similar data sets from other continents (Ledo
et al., 2018), showed that after D, the next most important factor in-
fluencing allometry (in this case, of BGB:AGB) was the deficit between
monthly rainfall and potential evapotranspiration. BGB:AGB increased
with increasing moisture deficit, which accounted for 17% of the var-
iance in BGB:AGB. Although BGB:AGB differed between different ve-
getation types, due to a correlation between vegetation type and cli-
mate, when the moisture deficit was accounted for, the vegetation type
ceased to be an important explanatory variable (Ledo et al., 2018).

In the present study, climate factors appeared to be inherently ac-
counted for in the grouping of species into plant functional types. The
inclusion of plant functional types greatly improved the performance of
the AllUniversal models for Australian trees and shrubs (Fig. S1, Table 4),
yet the inclusion of climate factors had marginal impact (Table 5).
Clearly, plant functional attributes often reflect coordinated adapta-
tions to environmental factors (Onoda et al., 2010; van Gelder et al.,
2006; Banin et al., 2012; Pfautsch et al., 2016), and such convergence
probably also accounts for differences in allometry between plant
functional types.

Despite plant functional types inherently accounting for some cli-
mate-related factors, for each of the four plant functional types, the
inclusion of ecoregion, MAR and/or MAT as explanatory variables re-
sulted in some (although minor) improvement to predictive perfor-
mance, with this being greater for BGB (Table 5) than for AGB (Paul
et al., 2016). It remains unclear whether the effect of such climate
variables would have been greater on BGB allometry of plant functional
types had our data set encompassed an even greater range of the
ecoregions. A next step is to evaluate the impact of climate, and hence
climate change, on BGB allometry through measurement of more

individuals from the relatively under-sampled combinations of various
plant functional types and ecoregions from different regions of the
world (e.g. tropical and subtropical regions, medium to high rainfall,
tall closed temperate forests, and arid shrublands, Fig. 2). Additional
data may also facilitate the assessment of more subtle influences (e.g.
soil type and topography) on BGB allometry.

Our assessment of the impacts of stand age and management on BGB
allometry included only broad categories of managed or unmanaged,
and younger or older than 20 years. This was a necessity given in-
sufficient observations in the data set to explore whether, across a range
of plant functional types and ecoregions, BGB allometry changes with
age, stand structure and management. Although relatively localised and
species-specific studies of BGB have explored some of these factors (e.g.
Ritson and Sochacki, 2003), further work is required to confirm their
significance more broadly.

4.3. Model validation at the stand-level using whole plot root excavation

Application of allometric models based on plant functional type
resulted in high efficiency of prediction of stand-level BGB across
contrasting direct-measurement stands (Fig. 6). Previously, Paul et al.
(2014) used these same whole-plot excavation data to validate BGB
allometric models developed using BGB of individuals covering a
smaller range of sizes, and sampled from mixed-species environmental
and mallee plantings. Despite the fact that allometric models developed
in this study included a broader range of vegetation types and site
characteristics compared to those developed by Paul et al. (2014), the
decline in efficiency of BGB prediction across these 11 direct stands was
only 6%. This provides further evidence that increased applicability of
allometric models does not result in significant loss of accuracy.

Application of species-specific models resulted in only a modest
improvement in the efficiency of prediction of stand-level BGB com-
pared to the application of more generalised models based on plant
functional types (Fig. S1 cf. Fig. 6). Furthermore, for mixed-species
stands, due to the smaller sample size and larger overall number of
model coefficients to parameterise, uncertainties associated with the
propagation of errors (including measurement, model-fitting and pre-
diction errors) may be larger following application of multiple species-
specific models compared to a single generalised multi-species model.
Additionally, large sample sizes are required for each species-specific
model (Roxburgh et al., 2015), resulting in significant costs associated
with development of models for each new species. These likely higher
uncertainties and costs would negate the small gain in average accuracy
of stand-level BGB prediction when applying multiple species-specific
models versus a generalised multi-species model in mixed-species
stands. Models generalised at the level of plant functional group (Eqs.
(3a)–(3d)), reported using the Baskerville CF) are recommended for
application in both Australia, and for validation in similar ecoregions in
other parts of the world.

BGB (kg) for species of:

= − + ×F Dexp[ 3.553 2.185 ln ] 1.160Shrub Ac& 10 (3a)

= − + ×F Dexp[ 2.946 2.302 ln ] 1.116Mallee 10 (3b)

= − + ×F Dexp[ 2.682 2.212 ln ] 1.096Tree 130 (3c)

= − + ×F Dexp[ 3.740 2.299 ln ] 1.053Radiata 130 (3d)

As with all allometric models, to avoid bias in BGB predictions,
recommended models should only be applied within their valid dia-
meter range as indicated by the maximum D sampled (e.g. Tables 3 and
S1). There are two exceptions to the recommendation of application of
Eq. (3) for stand-level prediction. First, where the trade-off between
accuracy and cost effectiveness is relatively high, e.g. for a given high-
biomass stand comprising only one or two dominant species. In such
instances, additional costs associated with obtaining species-specific
models may warrant the improved accuracy. Second, where BGB
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estimates are required for stands dominated by species suspected of not
conforming to the generalised plant functional groups models (e.g. poor
representation of E. kochii by the FMallee model, and D. viscosa subsp.
angustissima by the FShrub&Ac model, respectively). Recommended sta-
tistical approaches are provided by Paul et al. (2018b).

4.4. BGB:AGB

As outlined earlier, estimates of BGB based on D are preferable to
those based on a ratio to AGB, particularly when estimates of AGB are
only available at the stand-level. Indeed, predictions of BGB:AGB were
relatively uncertain as they include the uncertainty in both allometry-
predicted BGB and AGB (Fig. 7b, Fig. S3). Nonetheless, the results are of
interest in demonstrating how BGB:AGB of Australian woody plants
vary with size and functional type. As expected, predictions of BGB:AGB
decreased with increasing D (Fig. 7a). This is consistent with the un-
derstanding that saplings invest more biomass below ground for nu-
trient and water acquisition to facilitate rapid early growth and sur-
vival, and with non-conductive xylem accumulating in AGB as D
increases (Barton and Montagu, 2006; Poorter et al., 2012). Further,
BGB:AGB estimates were relatively high for mallee species that have
lignotubers and have evolved in relatively arid environments (Paul
et al., 2014), but relatively small for P. radiata trees that are established
in fast-growing and fertilised plantations, with presumably relatively
little investment BGB allocation (Ledo et al., 2018).
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