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a b s t r a c t

Forest management requires prediction of forest growth, but there is no general agreement about which
models best predict growth, how to quantify model parameters, and how to assess the uncertainty of
model predictions. In this paper, we show how Bayesian calibration (BC), Bayesian model comparison
(BMC) and Bayesian model averaging (BMA) can help address these issues.

We used six models, ranging from simple parameter-sparse models to complex process-based models:
3PG, 4C, ANAFORE, BASFOR, BRIDGING and FORMIND. For each model, the initial degree of uncertainty
about parameter values was expressed in a prior probability distribution. Inventory data for Scots pine
on tree height and diameter, with estimates of measurement uncertainty, were assembled for twelve
sites, from four countries: Austria, Belgium, Estonia and Finland. From each country, we used data from
two sites of the National Forest Inventories (NFIs), and one Permanent Sample Plot (PSP). The models
were calibrated using the NFI-data and tested against the PSP-data. Calibration was done both per coun-
try and for all countries simultaneously, thus yielding country-specific and generic parameter distribu-
tions. We assessed model performance by sampling from prior and posterior distributions and
comparing the growth predictions of these samples to the observations at the PSPs.

We found that BC reduced uncertainties strongly in all but the most complex model. Surprisingly,
country-specific BC did not lead to clearly better within-country predictions than generic BC. BMC iden-
tified the BRIDGING model, which is of intermediate complexity, as the most plausible model before cal-
ibration, with 4C taking its place after calibration. In this BMC, model plausibility was quantified as the
relative probability of a model being correct given the information in the PSP-data. We discuss how the
method of model initialisation affects model performance. Finally, we show how BMA affords a robust
way of predicting forest growth that accounts for both parametric and model structural uncertainty.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Ecological models are built for a variety of purposes. One gen-
eral motivation is trying to integrate our understanding of the pro-
cesses underlying natural phenomena. At a time when the earth
system is subject to substantial changes in land use and climate,
however, it also becomes of increasing importance to be able to
ll rights reserved.

: +44 131 4453943.
make quantitative predictions, supported by a quantification of
uncertainty, about the future of our ecosystems.

Forest ecosystems are a prominent example where quantitative
predictions are of particular ecological and economic importance,
but for which there is considerable uncertainty because different
modelling approaches, models and parameters are available
(Mäkelä et al., 2012). We focus here on weather-sensitive dynamic
models, which simulate the growth of forest stands over time. Dy-
namic models that have been considered for forest management
range from fairly simple, parameter-sparse empirical models to
complex models with many parameters (Fontes et al., 2010). None
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of these models has found widespread application across Europe,
which may be due to problems of parameterisation and a lack of
knowledge about the generalisability of the models. Given the
increasing availability of forest data from National Forest Invento-
ries (NFIs) and Permanent Sample Plots (PSPs), and other data
sources, however, it can be hoped that limitations of dynamic for-
est models with respect to data availability can be substantially re-
duced in the future (Hartig et al., 2012). These data can help in
parameterisation and evaluation of the models, if we can find ro-
bust ways of comparing models and accounting for measurement
and modelling uncertainties. In this paper, we use methods based
on probability theory, more specifically Bayesian calibration (BC),
Bayesian model comparison (BMC) and Bayesian model averaging
(BMA), to address these issues. A strength of these methods is that
they can be applied to any type of model. Although we do restrict
our focus here to dynamic, weather-sensitive models, we have in-
cluded models of widely differing structure, complexity and data
needs, providing a broad practical test of the methods.

Bayesian methods have been used before to calibrate the
parameter distributions of dynamic forest models, starting with
the work of Green et al. (1999), but application to parameter-rich
process-based models is still rare (Luo et al., 2009). The use of
BMC to compare and evaluate dynamic forest models – or any
other vegetation models – is a more recent application. Van Oijen
et al. (2011) included BMC in their analysis of four models for for-
est biogeochemistry and Fu et al. (2012) used BMC to identify the
most plausible models for predicting tree budburst. Here we pres-
ent, as far as we know, the first applications of BMC and BMA to dy-
namic forest growth models that include both parameter-sparse
semi-empirical models and complex process-based models with
many parameters. Using NFI- and PSP-data on Scots pine (Pinus syl-
vestris L.) from four European countries, we compared the results
of calibration and testing of these models using the combined data-
set with the results where the same methods were applied to with-
in-country data only. The purpose of this was to assess whether the
models would be most effectively calibrated and applied at smaller
or larger spatial scales. Similar comparisons of Bayesian ap-
proaches applied locally and generically have been made for a sim-
ple soil ionic concentration model by Reinds et al. (2008) and for a
model of N2O-emissions in crops by Lehuger et al. (2009).

We ask the following questions:

– How effective are local stand data in reducing uncertainties
about forest model parameters in a Bayesian framework?

– Are the considered dynamic models for Scots pine sufficiently
general to allow a generic calibration to data from across Eur-
ope, or should models be calibrated on a country-by-country
basis?
Table 1
Data. Each row represents one of the twelve measurement sites. If multiple values of st
rightmost column gives the total number of data points at the site, for tree height and dia

Country Site name Site code Site type Lat. (�) Long. (�) Plot size

Austria Point 1 A1 NFI 48.31� 14.79� 1200
Point 2 A2 NFI 48.51� 15.70� 1200
PSP A3 PSP 48.51� 15.70� 1500

Belgium Hechtel B1 NFI 51�170 5�310 1000
Pijnven B2 NFI 51�170 5�310 1000
Brasschaat B3 PSP 51�180 4�310 20000

Estonia EST-1 E1 PSP 57�510 25�550 1963
EST-2 E2 PSP 57�590 25�380 1257
EST-3 E3 PSP 57�350 25�170 1963

Finland NFI-1 F1 NFI 61�580 27�400 100–300
NFI-2 F2 NFI 63�500 24�390 100–300
Vesijako F3 PSP 61�200 25�20 1000
– How effective is Bayesian model comparison in identifying
plausible predictive models, and what are the main distinguish-
ing characteristics of forest models that are selected?

– Does Bayesian model averaging lead to improved predictions
compared to individually calibrated models?

Although these questions, as well as the models and data used,
are focused on forestry in Europe, our methodology is unrestrict-
edly general. BC, BMC and BMA, and the contrasts made between
within- and cross-country applications, can be applied to any other
combination of data sets and models in the environmental
sciences.

2. Materials and methods

2.1. Overview of methodology

Our study used six models and 12 data sets which originated
from forest measurements in four European countries (Table 1).
The data were from National Forest Inventory (NFI) sites and from
sites with Permanent Sample Plots (PSPs). From all sites we re-
trieved environmental data (weather, soil and management) and
tree growth data (height and diameter). These data were used by
all models to the extent of each model’s input data requirements
(Table 2). Fig. 1 is a flow chart that shows how the data were used
in the consecutive stages of the study. The environmental data from
the NFI-sites were used as drivers for model application to those
sites. Each model was run multiple times for each NFI-site, to assess
the impact of parameter uncertainty on model outputs. We refer to
this step as ‘prior uncertainty quantification’ (prior UQ) because no
data of tree growth had been used at this point for improvement of
parameter values. The distributions of model outputs generated by
this prior UQ were used in a Bayesian model comparison (prior
BMC) to quantify the relative plausibility of each model before cal-
ibration. These differences in model plausibility were then used as
weights in Bayesian model averaging (BMA), thus producing an
averaged prediction to which all six models contributed differently.
Next, the NFI-data were used for Bayesian calibration of the param-
eters of the different models. The calibration was carried out both
per country and generically using data from all NFI-sites. The cali-
brated models were then applied to the PSP-sites using local envi-
ronmental data. At this stage, we again carried out uncertainty
quantification, now termed ‘posterior UQ’ because the model
parameter distributions were already informed by the NFI-data. Fi-
nally, the results from the posterior UQ were compared with mea-
surements from the PSP-sites for a posterior Bayesian model
comparison, again accompanied by BMA. In the rest of this section,
we describe data, models and statistical methods in more detail.
em number are shown, they refer to changes over the period of measurement. The
meter combined.

(m2) Mean temp.
(�C)

Mean precip.
(mm y�1)

Age at last
obs. (y)

Stem number
(ha�1)

# Data

7.6 855 �64 554–526 4
9.2 466 �66 1772–1363 4
9.2 466 59 790–690 4

9.9 812 67 400–380 4
9.9 819 66 520–393 4
9.9 811 79 538–362 6

5.4 629 70 428–402 6
5.4 632 67 796–692 6
5.3 625 73 652–667 6

2.8 534 75 899 4
2.2 442 55 1067 4
3.5 521 79 8700–1710 14



Table 2
Models. Each row represents one of the six models. The weather variables driving the models include radiation, temperature, precipitation, wind speed and atmospheric humidity
(BASFOR), or a subset of those (3PG, 4C, ANAFORE, BRIDGING, FORMIND). The rightmost column shows whether models simulated forest growth from planting or were initialised
using the earliest measurements at each site. IBM = Individual-Based Model requiring specification of size and position of each tree.

Model Time step Environmental variables Number of state variables Number of parameters (# in calibration) Initialisation

3PG Monthly Weather 9 51 (48) Planting date
4C Daily–yearly Weather, soil conditions, N-deposition, CO2 15 46 (43) First measurement
ANAFORE Half-hourly Weather, soil conditions, N-deposition, CO2 26 146 (138) First measurement
BASFOR Daily Weather, N-deposition, CO2, soil conditions 14 48 (41) Planting date
BRIDGING Yearly Weather 5 38 (13) First measurement
FORMIND Yearly Weather IBM 42 (4) First measurement
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Fig. 1. Flow chart of the study. The numbers within icons (2.2–2.6) indicate in which paragraph of Section 2 further explanation can be found.
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2.2. Data

Data of twelve even-aged P. sylvestris stands were assembled
from four European countries (Table 1). From each country, two
NFI sites and one PSP-site were selected for this study. An
exception was Estonia, for which NFI-data were not available and
three PSPs were used. For ease of reference, we used a site-code
for each site consisting of the first letter of the country’s name,
followed by 1 or 2 for the NFI-sites and 3 for the PSP-site
(Table 1), except for Estonia where the numbers refer to the three
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PSPs. For model calibration, we only used data from the sites coded
1 or 2, whereas for model comparison and averaging the data from
sites with code number 3 were used. The data used were for mean
tree height and stem diameter at 1.3 m above ground, which were
available from all sites. Data on stem number and tree age were
used as uncalibrated inputs. All sites provided several measure-
ments for the different variables (between two and seven), sepa-
rated by intervals of at least 5 years (Fig. 2). We now briefly
describe the sites in each country.

2.2.1. Austria
The NFI-plots A1 and A2 are part of the Austrian Forest Inven-

tory grid consisting of �10,000 points. The plots are 100% P. sylves-
tris and the soils are classified as Semipodsol and Cambisol with
soil depths exceeding 0.3 m and field capacity around 36%. They
are located at different altitudes in the ‘‘Waldviertel’’, a region in
Lower Austria north of the Danube. A1 lies about 300 m higher
than A2 and is cooler and drier. On both sites, measurements were
taken in two years (1987 & 2000 and 1989 & 2002). The sample
consisted for each plot of a combined angle count measurement
(for trees >10.5 cm diameter) and a circle with a fixed radius (for
trees <10.5 cm). Height measurements were done for a subset of
trees of the angle count measurement; the other heights were cal-
culated. Nothing is known about management history or planting
time, except that no management occurred during the period of
measurements.

The selected PSP-site, A3, was established in 1970 and
measured every 5 years. The site is maintained by the Austrian
Federal Forest Office BWF (http://bfw.ac.at/) and is located
near A2 with similar soil properties. It is a pure P. sylvestris
stand with a size of 1500 m2 and a stem number of 790 ha�1 in
1980.

Climate data for the NFI- and PSP-sites were provided from
nearby weather stations of the Austrian weather service ZAMG
(Central Institute for Meteorology and Geodynamics).

All three stands reached heights of about 18 m at an age of
about 60 years. However, they differ significantly in diameter
(207–324 mm), with lower values at high stem number.
Fig. 2. (a) Mean tree height vs. stand age as observed at the twelve forest sites.
2.2.2. Belgium
The Belgian plots B1 and B2 are NFI’s of the ANB (Agentschap

Natuur en Bos, ‘Forest and Nature Agency’), situated in the Cam-
pine region of north-eastern Belgium, were established in 1937
and 1942 respectively and regularly thinned since then from the
original 12,500 trees ha�1. B1 is situated on loamy sand, and data
from 2000 and 2004 were available; thinning during this period re-
duced stem number from 400 to 380 ha�1. B2 is situated on sandy
soil close to B1 and data from 2000 and 2008 were available. Thin-
ning during this period reduced stem number from 520 to
393 ha�1. The data were obtained from 40 � 25 m sample plots.

The PSP-site, B3, ‘‘De Inslag’’, is a mixed patchy coniferous/
deciduous forest located in Brasschaat also in the Belgian Campine
region. The site is part of the European Carboeurope-IP network
and is a level-II observation plot of the European network program
(ICP-II forests) for intensive monitoring of forest ecosystems
(EC-UN/ECE, 1996), managed by the Flemish Research Institute
for Nature and Forest (INBO). Here we only focus on one particular
even-aged Scots pine stand planted in 1929 and described by Curi-
el Yuste et al. (2005). In this experimental stand, stem number was
556 ha�1 in 1997. In November 1999, a thinning was performed
reducing the stem number to 377 ha-1 and further thinned to
362 ha�1 in 2002. The soil is loamy sand, moderately wet, with a
distinct humus and iron B-horizon (Baeyens et al., 1993) and is
classified as Umbric Regosol. Although the Belgian plots are on
relatively sandy soils, soil water table is quite high (0.7–1.1 m)
and soil fertility is high due to high nitrogen deposition (30–
40 kg N ha�1 year�1).

Despite similar age (66–67 years) and stem number (380–
390 ha�1), the two NFI-plots had quite different heights (18.4 and
23.2 m) and diameter (271 and 293 mm) indicating differences in
site quality. The PSP-site was older and had lower tree number;
height was intermediate but diameter was greater than at the
NFI-plots.

2.2.3. Estonia
The Estonian plots E1, E2 and E3 belong to the Estonian Forest

Research Plots Network which consists of more than 700 PSP and
(b) Idem for stem diameter. Site-codes (A1 to F3) are explained in Table 1.

http://bfw.ac.at/
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are maintained by the Estonian University of Life Sciences (Sims
et al., 2009). These plots were established at the observation sites
of the European network programme ICP Forest Level I plots. The
plots, established in 2000, are circular with radii of 25, 20 and
25 m, respectively and were re-measured in 2005 and 2010. The
plots have not been thinned during that period, but earlier man-
agement history is unknown. On each plot, the diameter at breast
height was assessed for each tree. Tree height and height to crown
base were measured in every fifth tree. All three plots are domi-
nated by Scots pine (more than 90% of total volume), but there is
a small mixture of Silver birch (Betula pendula) and Norway spruce
(Picea abies). The plots are located in southern Estonia where mean
effective temperature sum is about 1650� days. The plots are on
sandy soils on glaciofluvial deposits with sufficient water availabil-
ity belonging to WRB 2006 soil units Gleyic Podzol, Histic Podzol
and Albic Podzol respectively. The vegetation types of the plots
are Rhodococcum, drained Polytrichum-Nyrtillus, and Rhodococ-
cum. The basal area of the plots reached 24.8, 33.7, and
31.8 m2 ha�1 at stand ages 70, 67, and 73 years, with average
heights of 25.2, 24.7, and 25.6 m and volumes of 285, 384, and
374 m3 ha�1. Differences in diameter (237–274 mm) were larger
than height differences, with largest values reached at the lowest
stem number.

2.2.4. Finland
The Finnish plots F1 and F2 are permanent NFI sample plots lo-

cated in Southern Finland established by the Finnish Forest Re-
search Institute. They have been measured in 1985 and 1995.
The plots have not been thinned during that period. The earlier
treatment history is unknown. The plot size varied according to
the stem diameter at breast height, being 100 m2 when the diam-
eter was under 10.5 cm, and otherwise 300 m2. The trees with
diameter smaller than 4.5 cm were measured only if they were ex-
pected to survive until the next measuring date. Diameter at breast
height and tree species were recorded from all the tally trees.
Heights, crown base heights and crown widths were measured
from the sample trees, which include the trees that were located
in a circular area around the sample plot mid-point, where the cir-
cle radius is half of the original sample plot radius.

The Finnish plot F3 is a control plot with no thinnings in a per-
manent thinning experiment of the Forest Research Institute at
Vesijako in southern Finland. The experiment was established in
1948 in a pine stand sown in 1918, and it was followed until
1997. The site is fairly fertile with adequate moisture for pine.
The plot has a small mixture of birch (Betula spp.), less than 10%
of basal area. Plot size was 1000 m2, and all trees were numbered
on this plot and measured for breast height diameter in a total of
seven measurements. For height (and crown base height in the
two most recent measurements), 21–67 trees were chosen as sam-
ple trees. The final heights of 17.8 m (75 years, NFI 1), 10.1 m
(55 years, NFI 2) and 21.8 m (79 years, PSP) indicate that despite
the age difference, the site conditions at NFI 2 were probably less
favourable (cf. Fig. 2a). The comparatively low stem number and
the high diameter, and the fact that no mortality occurred, suggest
that the NFI plots were thinned at some point before the surveys.
In contrast, at the PSP-site only self-thinning occurred leading to
high stem numbers and low diameters.

2.3. Models

We used six different forest models in the assessment, ranging
from simple semi-empirical models to parameter-rich process-
based models (Table 2). All models are able to predict mean tree
height and mean stem diameter. Some of the models are able to
simulate variation between individual trees as well, but the corre-
sponding predictions were not tested against data. Four of the
models are initialised at the first measurement date, i.e. they re-
quire the earliest observed values of mean tree height and/or diam-
eter to quantify the model’s initial constants (Table 2). This reduces
the number of data available for Bayesian calibration. The remain-
ing two models, 3PG and BASFOR, include state variables that are
difficult to estimate from mean height and stem diameter only,
such as nitrogen pools in soil and trees, and it was therefore
decided to initialise them from planting. These two models there-
fore have more data available for calibration, but their predictions
of forest growth may already start deviating from observations be-
fore the first measurement date. We shall now briefly describe
each model, referring to earlier publications for more detail. Each
model description finishes with an account of how the prior prob-
ability distribution for the model’s parameters was set by the
respective modellers. The role of these probability distributions
in uncertainty quantification and Bayesian calibration is explained
in Sections 2.4–2.5.

2.3.1. 3PG
3PG calculates the dynamics of biomass in different organs (fo-

liage, roots and stem) and simulates the soil water balance and
variables of interest to forest managers, such as stand timber vol-
ume, mean diameter at breast height, stand basal area and mean
annual growth increment. Gross primary production (GPP) is cal-
culated by multiplying photosynthetically active radiation ab-
sorbed by the stand with a light-use efficiency that changes with
environmental conditions. Light absorption is calculated using
Beer’s law, while the light-use efficiency varies in dependence of
atmospheric vapour pressure deficit, air temperature, the presence
of frost, soil water balance, tree age and site fertility. Net primary
productivity (NPP) is calculated as a constant fraction of GPP
(Law et al., 2000; Waring et al., 1998). Carbon allocation is based
on allometric equations, applied on a single-tree basis. The fraction
of NPP allocated below-ground decreases with soil fertility. Site
fertility is expressed through a site specific reduction factor (FR)
that varies between 0 (for the least fertile sites) and 1 (for sites that
do not have nutrient limitations). The remaining NPP is partitioned
between the aboveground organs as a function of stem diameter at
breast height. The diameter at breast height and the average stand
height are calculated through allometric functions of average
aboveground biomass per tree. 3PG has been applied to various dif-
ferent species and sites and is widely used in research as well as by
companies to assess forest growth and site productivity. Detailed
descriptions of 3PG were provided by Landsberg and Waring
(1997) and Sands and Landsberg (2002).

Before this study, Landsberg et al. (2005) tested the perfor-
mance of 3PG for Scots pine in Finland, using a modified carbon
allocation routine. Xenakis et al. (2008) coupled 3PG with ICBM/
2N (Introductory Carbon Balance Model (Andren and Katterer,
1997)) a soil matter decomposition model. The new model,
3PGN, was calibrated and tested for Scots pine plantations in Scot-
land. The information from these two previous studies was utilised
to construct the prior, using truncated Gaussian distributions. For
each parameter, the prior mean was set to the average of the values
used in Landsberg et al. (2005) and Xenakis et al. (2008). The
bounds of the prior were set at ±30% of the mean value. The site
fertility parameters were also included in the BCs and BMCs; the
FRs ranged between 0 and 1, while the prior mean was 0.5. For
all parameters, the prior was kept quite uninformative (i.e. high
variance and wide ranges), reflecting the fact that the 3PG-model-
ler in the current study did not have previous experience with
Scots pine.

2.3.2. 4C
The forest model 4C (FORESEE–FORESt Ecosystems in a chang-

ing Environment) has been developed to simulate the impact of
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changing environmental conditions on forest ecosystems. It is cli-
mate sensitive and calculates physiological processes on the tree
and stand level depending on the process in question in daily to
yearly time steps (Bugmann et al., 1997; Suckow et al., 2001).
Establishment, growth and mortality of tree cohorts are explicitly
modelled at the patch scale on which horizontal homogeneity is
assumed. Cohorts of trees compete for light, water and nutrients
(Bugmann et al., 1997). Every cohort develops specific values for
fine root, foliage, stem biomass, etc. and species-specific parame-
ters steer the physiological processes for each species. Photosyn-
thetic rate is calculated after Haxeltine and Prentice (1996) and a
constant fraction of GPP is lost to respiration (Landsberg and
Waring, 1997). The resulting NPP thus depends on environmental
conditions and is allocated according to the principles of the pipe
model (Shinozaki et al., 1964) and of the functional balance
(Davidson, 1969) and organ-specific, constant senescence rates.
In this allocation model, height growth is decoupled from diameter
growth, with high degrees of intra-canopy shading leading to extra
height growth. Nitrogen limitation has been calculated dynami-
cally. When the tree water demand of a cohort exceeds the plant
available water in the soil, the canopy conductance and ultimately
NPP of that cohort is reduced. 4C requires daily meteorological
variables, a soil description including physical and chemical
parameters as well as a forest stand description. For further details
of model processes and recent model applications, see Suckow
et al. (2001), Lasch et al. (2005), Seidl et al. (2008) and Reyer
et al. (2010).

The prior distribution for all parameters of 4C was uniform with
boundaries at ±50% of the initial (standard 4C) value, reflecting
large uncertainty about parameter values. The selection of the
parameters to be calibrated was restricted to species-specific
parameters that could be informed by Scots Pine data, giving a to-
tal of 43 parameters amenable to calibration.

2.3.3. ANAFORE
ANAFORE (ANAlysing FORest Ecosystems) is a stand-scale,

mechanistic forest model that dynamically simulates the fluxes
of carbon, water and nitrogen through the ecosystem (Deckmyn
et al., 2008). The forest stand is described as consisting of trees
of different size cohorts (e.g. dominant, co-dominant and sup-
pressed trees), either of the same or of different species (deciduous
or coniferous). Half-hourly carbon and water fluxes are modelled
at the leaf, tree and stand level from half-hourly, daily or monthly
climate data. In addition to total growth and yield, the model sim-
ulates allocation changes in crown size, DBH-height ratio, root-
shoot ratio and even the daily evolution of tracheid or vessel bio-
mass and radius, parenchyma and branch development. From
these data, early and late wood biomass, wood tissue composition
and density are calculated to allow wood quality estimation. Sim-
ulation of the labile carbon stored in the living tissues allows for
simulation of trans-seasonal and trans-yearly effects, and simula-
tion of the long-term effects of environmental stresses on growth.
A detailed soil model including fungal, bacterial and mycorrhizal
effects on SOM degradation and aggregate formation is included
(Deckmyn et al., 2009). Model initialisation was at the first mea-
suring point. Because ANAFORE needs a detailed tree description
– not available for most sites – allocation as observed at the Belgian
sites was used throughout (% heartwood, branch biomass, crown
length). Crown width was set to fill the site.

The prior distribution for the parameters was uniform with
boundaries at ±10% of the initial value, reflecting measured data
(mainly on the Belgian Brasschaat site) and data from literature
as described in Deckmyn et al. (2008). Although ANAFORE was cal-
ibrated for Scots pine before this study, this was only for Belgian
stands and the uncertainty concerning parameterisation across
Europe is large, so the same prior was used.
2.3.4. BASFOR
The BASic FORest simulator, BASFOR, is a deterministic daily

time step forest model used for simulating coniferous or deciduous
forests. The model simulates carbon and nitrogen cycling in trees,
soil organic matter and litter. It simulates the response of trees and
soil to radiation, temperature, precipitation, humidity, wind speed,
atmospheric CO2 and N-deposition, and thinning regime. The mod-
el has 14 state variables, representing carbon and nitrogen pools in
trees and soil, and 48 parameters which include the initial con-
stants of the state variables. Besides time series for the state vari-
ables, output may be produced of NPP, tree height, stem diameter,
ground cover, LAI, N-mineralisation and other tree and soil vari-
ables. BASFOR is built from well known process representations.
Light absorption is calculated by Beer’s law. GPP is calculated as
light absorption times a light-use efficiency (LUE). NPP is calcu-
lated as a fixed ratio of GPP. LUE is temperature-, CO2- and
water-dependent and may be reduced if insufficient nitrogen is ta-
ken up by the plants. Potential nitrogen uptake scales with root
system surface area. Actual nitrogen uptake is the minimum of de-
mand, determined by tissue N-concentration, and potential uptake.
Allocation of assimilates follows allometric rules, but water stress
may limit leaf area index (LAI). Turnover of tree and soil compo-
nents proceeds at temperature-dependent relative rates.

The model structure was described by Van Oijen et al. (2005),
more recent model applications are reported by Van Oijen and
Thomson (2010) and Van Oijen et al. (2011), and the model is
now also in use as the tree component of an agroforestry model
(Van Oijen et al., 2010). The prior for BASFOR was constructed from
beta-distributions for the individual parameters, with ranges and
modes based on literature as described before (Levy et al., 2004;
Van Oijen et al., 2005, 2011).

2.3.5. BRIDGING
The BRIDGING model (Valentine and Mäkelä, 2005) was devel-

oped to bridge the gap between process-based and empirical ap-
proaches to modelling tree growth by formulating a process-
based model that can be fitted and applied in an empirical mode.
Tree growth in the model is based on carbon balance, and its allo-
cation is consistent with pipe model theory and an optimal control
model of crown development (Mäkelä and Sievanen, 1992). These
provide a framework for expressing the components of tree bio-
mass in terms of tree height, crown height and stem cross-
sectional area, the growth of which is regulated by photosynthesis
and respiration. The parameters of the model comprise physiolog-
ical rates and morphological ratios and can be estimated from low-
er-level process models or direct measurements. In the empirical
mode, the original parameters are combined into a set of fewer,
aggregate parameters which can be estimated from inventory type
data using statistical procedures. Here, we calculate the photosyn-
thesis and respiration parameters from lower-level models of
stand productivity (Mäkelä et al., 2008) and canopy structure
(Duursma and Makela, 2007) using a procedure proposed by
Härkönen et al. (2010). The productivity model is driven by daily
data of global radiation, vapour pressure deficit and air tempera-
ture, while field data on inventory variables (stand-level mean val-
ues of height, diameter, crown base height and crown width,
stocking density or basal area, and site fertility) are used for para-
meterising canopy structure. These parameters are given fixed,
deterministic values. The parameters related to growth of tree
height and basal area are employed in their aggregate form and
estimated using the Bayesian approach with the given inventory
data.

The BRIDGING model has 38 different parameters, of which the
13 parameters relating to the dynamic growth of tree height and
basal area were used in the calibration. Uniform distributions were
used throughout. Parameters left out of the calibration included
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structural relationships, which were calculated directly based on
the measured stand data, biomass estimates, and light-use effi-
ciency estimates. The uniform distributions were mainly quanti-
fied based on earlier pipe model studies (Mäkelä, 1997; Mäkelä
and Vanninen, 2001; Vanninen and Mäkelä, 2005; Valentine and
Mäkelä, 2005; Palmroth et al., 1999; Duursma and Makela, 2007).

2.3.6. FORMIND
FORMIND is an individual-based, spatially semi-explicit gap-

type model (Köhler and Huth, 1998; Ruger et al., 2007). Spatially
semi-explicit means that the modelled plot (in this case 1 ha) is di-
vided into 20 � 20 m gaps. Tree individuals are assigned to one of
these gaps, but do not have an explicit position within gaps. As in
classical gap models, tree crowns are assumed to cover the gap
uniformly in horizontal direction at a certain height, depending
on the size of the trees. The vertical stratification through the dif-
ferent crown heights of the trees and the differences in light cli-
mate that result from that for each individual tree are important
determinants of the predicted community dynamics. NPP is calcu-
lated as the difference between GPP and respiration. GPP of each
individual tree depends on the available light at crown top, tem-
perature and soil water content. The temperature dependence fol-
lows a hump shape. A reduction due to insufficient soil water
occurs below a threshold and GPP is completely reduced if soil
water content falls below the permanent wilting point. Addition-
ally, maintenance respiration has a temperature dependence fol-
lowing the Q10-approach (Gutiérrez and Huth, 2012). The model
was initialised for each site at the first recorded year with the ob-
served number of trees, all of the same observed average diameter,
randomly distributed over the modelled area of one hectare.

The marginal prior probability distributions for FORMIND were
all uniform. Parameters were excluded from the calibration that
were either unrelated to those model outputs that were compared
to calibration data, or for which there were other parameters al-
ready under calibration that acted on the model outputs in a sim-
ilar way. Based on this premise, four parameters were selected for
calibration. These included the two parameters that determine the
diameter-height relationship, the main growth parameter that
determines the maximum growth rate under full light, and the
wilting point, which is the determinant of how strongly the plants
react to water stress. The other parameters were fixed according to
literature data. For each of the calibration parameters, flat and rel-
atively wide priors were chosen reflecting large uncertainty about
parameter values.

2.4. Uncertainty quantification (UQ)

Predictive uncertainty (i.e. uncertainty regarding model out-
puts) was quantified for each model at three stages in our study:
before any parameter calibration had been carried out (prior UQ),
and after country-specific and generic calibration (posterior UQ)
(Fig. 1). In each case, the UQ consisted of running the model
1001 times, using a sample of that length from the parameter dis-
tribution for the model.

For each model, the prior parameter uncertainty – before any of
the NFI- or PSP-data had been used for calibration – was expressed
in the form of a probability distribution. This was done by each
modelling group separately, no standardisation of priors being at-
tempted (see Section 2.3). To derive from that the prior predictive
uncertainty, we used a sample consisting of the mode of this
parameter distribution plus 1000 other parameter vectors sampled
from the prior distribution using Latin Hypercube Sampling to en-
sure good coverage of parameter space. This prior UQ was carried
out for all 12 sites.

To assess the posterior predictive uncertainty, i.e. the uncer-
tainty resulting from the reduced parameter uncertainty after
country-specific or generic Bayesian calibration (see Section 2.5),
we used the mode of the posterior parameter distribution, i.e.
the Maximum A Posteriori (MAP) parameter vector, and again
1000 other parameter vectors that were selected by equidistant
subsampling from the parameter chains generated in the calibra-
tion. Posterior UQ was carried out only for PSP-sites because the
data from those sites had not been used in the calibration.

2.5. Bayesian calibration (BC)

Bayesian calibration was carried out as documented in other re-
cent forest model studies (Van Oijen et al., 2005, 2011) and we
shall give only a brief outline here. The method starts by express-
ing uncertainty about the model’s parameter values in a so-called
prior parameter distribution, P(h). In this notation, h represents the
full parameter vector of a model, so P(h) is a multivariate distribu-
tion. All modellers in this study assigned prior distributions with-
out any correlations between different parameters, so P(h) could be
written as the product of independent distributions for the individ-
ual parameters. By comparing model predictions with NFI-data, D,
we can derive a likelihood value P(D|h) for each possible parameter
value (see Section 2.6), which can be interpreted as a relative
‘‘goodness-of-fit’’ measure for this parameter (Hartig et al., 2012).
Bayes’ formula then allows us to combine both pieces of informa-
tion (prior and likelihood) into one posterior parameter distribu-
tion. The formula states that:

PðhjDÞ / PðhÞ � PðDjhÞ;

i.e. that posterior probability is proportional to prior times likeli-
hood P(D|h). To derive a likelihood function, we made the assump-
tion, for all models and measurements, that measurement errors
were normally distributed with a coefficient of variation of 20%.
The fairly high value of 20% was chosen to account for multiple fac-
tors affecting the measurements, including instrument error, demo-
graphic stochasticity of the tree populations, and environmental
heterogeneity. No correlations between measurement errors were
assumed, so our likelihood function could be written as the product
of independent Gaussian functions of the difference between data D
and model output M(h):

PðDjhÞ ¼ Probability of measurement error equal to D�MðhÞ

¼
Yn

i¼1

uðDi �MiðhÞ; 0; ð0:2DiÞ2Þ;

where the i-subscripts index the n data points and the correspond-
ing model outputs, and where u denotes a Gaussian probability
density function with given mean and variance.

To estimate the posterior distributions, we used a Markov Chain
Monte Carlo (MCMC) algorithm (Metropolis et al., 1953; Van Oijen
et al., 2005). Convergence of the MCMC was verified both visually –
by inspection of the parameter trace plots – and by calculation of
the Gelman-Rubin statistic (Gelman and Rubin, 1992).

2.6. Bayesian model comparison (BMC) and calculation of NRMSE

Bayesian model comparison relies on the same probabilistic
ideas as BC, but now the probability distribution to be informed
by the data is not that for the parameters but for the models them-
selves (Kass and Raftery, 1995). A key strength of BMC is that it
evaluates models not at one single parameter vector value but
takes into account parameter uncertainty (Tuomi et al., 2008).
The formal need for this coverage of parameter uncertainty is seen
when we write out Bayes’ Theorem as applied to model
comparison:

PðMjDÞ / PðMÞ � PðDjMÞ;
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where following the law of total probability:

PðDjMÞ ¼
Z

PðDjMðhÞÞPðhÞd#:

So each model’s parameter uncertainty, and not only the best
value, determines how much support a model receives. Among
other things, this provides a natural safeguard against overfitting
using overly flexible models. P(D|M) is referred to as the ‘integrated
likelihood’, or also the ‘marginal likelihood’ as it is calculated by
marginalizing out the uncertain influence of the model’s parame-
ters. We assumed that each model had the same prior probability
of 1/6 before any data were used. Application of the models to the
NFI-sites, in the prior UQ, provided 1000 model results which were
used to derive each model’s integrated likelihood for those data.
The posterior probability for each model was then calculated as
the model’s integrated likelihood divided by the sum of the inte-
grated likelihoods for all models (Kass and Raftery, 1995). A similar
procedure was applied at the next applications of BMC, where the
integrated likelihoods of the models were calculated for the PSP-
data after the models had been calibrated on the NFI-data. These
posterior BMC’s were carried out after both country-specific and
generic BC.

Additionally, we calculated a standard goodness-of-fit measure,
the normalised root mean squared error (NRMSE), for model pre-
dictions at PSP-sites. This was done for both the prior and posterior
parameter distributions. In contrast to the calculation of the inte-
grated likelihood, the NRMSE had to be calculated separately for
height and diameter as its calculation involves a normalisation
by the average of the measurements:

NRMSE ¼ 1
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc � 1000

Xnc

c¼1

X1000

h¼1
ðMcðhÞ � DcÞ2

s
;

where nc is the number of countries from which PSP-data were
used, Dc are the measured values, �D is the average of the measure-
ments across the nc countries, h indexes the 1000 parameter vectors
sampled from prior or posterior distribution and Mc(h) is model pre-
diction for country c using parameter vector h. In the case of the
prior and generic posterior parameter distribution, the calculation
of NRMSE uses nc = 4, but in the case of country-specific posteriors,
NRMSE is calculated first per country (nc = 1) followed by averaging
of the four errors to arrive at an estimate of overall NRMSE.

2.7. Bayesian model averaging (BMA)

Bayesian model averaging uses the different model probabilities
P(M), derived in preceding BMC, to calculate a weighted probabil-
ity distribution for model outputs (Hoeting et al., 1999; Kass and
Raftery, 1995):

PðyÞ ¼
X6

m¼1

PðMðmÞÞPðyjMðmÞÞ;

where P(y) is the averaged output distribution, P(M(m)) is the prob-
ability for model m as derived from the BMC, and P (y|M(m)) is the
output distribution for model M(m). Expanding the last term gives:

PðyÞ ¼
X6

m¼1
PðMðmÞÞ

Z
PðyjMðmÞ; hðmÞÞPðhðmÞÞdhðmÞ;

which shows that the BMA accounts for both overall model struc-
tural uncertainty, P(M(m)), and each individual model’s parameter
uncertainty, P(h(m)). In this study, BMA was applied after both prior
and posterior BMC, with P(h(m)) representing prior and posterior
parameter uncertainty, respectively. The same model output sam-
ples used in BMC were used for BMA as well, but subsampled with
sample size proportional to P(M(m)). The BMA-forecasts thus pro-
duced were compared against the measurements at the PSP-sites.
Note that in this procedure only the prior BMA was subjected to a
fully out-of-sample test of predictive capacity of the model
averaging.
3. Results

3.1. Uncertainty quantification before and after Bayesian calibration

The first quantity calculated was the prior predictive uncer-
tainty, that is, the model uncertainty before any data were used
for calibration. Table 3 shows summary statistics of the prior pre-
dictive distributions for the NFI-sites: the value of mode of the
prior plus the 5% and 95% quantiles. Figs. 3 and 4 depict the ranges
between the 5% and 95% quantiles for the PSP-sites. The prior out-
put ranges – delimited by the 5% and 95% quantiles – were gener-
ally widest for the three most parameter-rich models, i.e.
ANAFORE, BASFOR and 3PG.

Bayesian calibration (BC) was carried out both per individual
country and generically, so samples from five different posterior
parameter distributions were produced for each model. Our re-
sults show that generic Bayesian calibration reduced parameter
uncertainty in all models except ANAFORE, with average reduc-
tions in the standard deviation of marginal parameter distribu-
tions (i.e. for individual parameters) ranging from 1% to 13%.
These averages were invariably the result of a majority of param-
eters being hardly affected by the BC and a small number with
strongly reduced uncertainty, with maximum reductions in stan-
dard deviation for individual parameters ranging from 6% to 83%
across all models (data not shown). The results of country-specific
BC were similar but with generally lower reductions in
uncertainty.

Figs. 3 and 4 show predictive uncertainty after calibration for
mean height and diameter. With respect to output uncertainty,
measured as the distance between the 5% and 95% quantiles, the
results for country-specific and generic BC were quite similar
(Figs. 3 and 4). BC reduced tree height uncertainty in all models,
but most in 3PG and BASFOR and least in BRIDGING. For stem
diameter, 3PG and BASFOR again saw large uncertainty reductions
but otherwise the results differed markedly from those for tree
height, with ANAFORE and BRIDGING seeing no clear reductions
in predictive uncertainty and FORMIND even becoming worse at
B3, E3 and F3.
3.2. Bayesian model comparison before and after calibration

The predictions of the uncalibrated models for the NFI-sites,
generated as part of the prior UQ reported in the previous para-
graph, were compared against the corresponding NFI-data in a
prior Bayesian model comparison (BMC) (Fig. 5). Despite the fact
that the data tended to fall between the 5% and 95% quantiles of
each model’s prior uncertainty ranges (Table 3), the Bayesian mod-
el comparison still assigned very different prior probabilities to the
different models. The most parameter-rich model, ANAFORE, and
the two models initialised at planting, 3PG and BASFOR, had prior
probabilities orders of magnitude lower than the other three mod-
els. BRIDGING and, to slightly lesser extent, 4C achieved the high-
est integrated likelihoods (Fig. 5).

The posterior BMC, in which models outputs after calibration
were compared with measurements at PSP-sites, showed smaller
differences between model probabilities and slightly altered the
ranking of the models (Fig. 5). The posterior BMC assigned the
highest probability to 4C, followed by BRIDGING and FORMIND
with 3PG thereafter.

Similar ranking can be observed in the values of NRMSE (Fig. 6),
which like the integrated likelihoods of the models were calculated



Table 3
Prior predictions by six models of final tree height (m) and stem diameter (mm) on twelve sites. Site-codes (A1, A2, etc.) are explained in Table 1. For each combination of model
and variable, the first row shows the predictions using the mode of the prior parameter distribution, and the second gives the range (5–95% quantiles). The upper two rows show
the measured values for comparison.

Source Variable A1 A2 A3 B1 B2 B3 E1 E2 E3 F1 F2 F3

Data Height 18.5 17.7 18.1 18.4 23.2 21.3 25.0 24.9 25.6 17.8 10.1 21.8
Diameter 324 207 239 271 293 319 274 237 245 191 146 170

3PG Height 52.4 21.0 28.4 28.6 28.8 32.8 40.7 32.7 36.0 30.2 23.5 19.5
21.3–145 10.7–45.0 13.5–62.1 13.1–66.9 13.5–67.6 14.3–82.2 17.7–102 15.4–78.9 16.3–88.5 14.1–68.0 11.5–47.6 9.3–43.6

Diameter 622 211 303 301 305 356 462 357 400 325 241 194
337–1476 140–403 195–568 178–607 188–599 201–760 287–960 227–749 248–865 205–646 156–430 110–407

4C Height 21.6 20.9 20.7 19.6 23.1 24.5 22.5 20.7 21.8 16.7 12.5 26.0
15.9–29.1 15.6–27.2 14.3–29.9 17.8–25.0 20.0–30.1 19.2–32.6 20.0–29.3 19.0–25.4 21.3–26.0 14.4–22.2 7.6–20.9 10.2–45.3

Diameter 381 267 284 287 297 352 288 254 244 205 161 340
291–430 191–298 191–344 267–305 250–322 263–398 243–320 211–271 224–271 170–233 120–201 139–495

ANAFORE Height 30.2 27.6 28.5 19.4 25.4 46.9 29.0 28.7 24.7 26.7 20.5 48.0
23.9–59.2 17.4–59.1 18.3–59.2 18.9–23.1 23.3–33.6 31.4–59.0 18.8–52.0 20.5–51.6 18.5–59.2 20.3–49.5 10.0–46.6 22.4–59.3

Diameter 457 185 330 309 323 457 471 355 376 280 238 219
335–481 182–195 222–331 299–323 303–344 417–516 277–426 210–326 241–364 245–314 206–436 89–237

BASFOR Height 25.9 14.6 18.9 22.5 18.9 21.2 18.0 17.9 19.0 16.4 14.6 13.1
12.6–48.1 1.4–36.2 1.7–40.2 10.8–41.6 1.4–36.9 5.8–39.9 7.8–33.9 7.8–33.4 8.3–35.6 2.5–31.1 2.2–27.9 3.1–24.7

Diameter 229 98 144 186 144 170 133 132 145 115 97 82
131–319 3–221 3–261 103–259 3–220 31–244 52–190 49–189 62–208 6–170 4–143 9–119

BRIDGING Height 18.2 17.5 18.2 19.2 21.8 22.6 22.7 21.4 23.9 17.5 11.5 12.9
17.5–18.8 17.0–18.1 17.0–19.4 18.9–19.6 21.5–22.2 22.0–23.2 22.1–23.3 20.9–22.0 23.3–24.5 16.6–18.4 10.0–13.0 12.1–16.8

Diameter 423 261 305 312 331 353 320 271 279 226 210 265
375–442 229–273 261–321 296–321 302–349 327–363 290–334 245–282 255–289 200–237 175–225 233–388

FORMIND Height 26.6 21.0 22.1 22.0 20.9 22.1 20.9 18.5 19.8 16.0 11.0 8.0
16.0–32.4 12.0–26.3 12.5–29.1 14.8–26.4 15.1–26.0 16.0–27.6 14.3–25.9 13.0–22.7 13.5–24.5 11.2–19.6 8.2–13.1 6.3–9.1

Diameter 352 251 270 268 250 270 250 210 230 170 100 63
302–362 190–264 201–288 260–273 250–273 270–305 250–251 210–212 230–232 170–170 100–102 56–78
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as averages for the whole parameter distribution. For all models
except ANAFORE, the values of NRMSE for mean height and diam-
eter were markedly reduced by BC but with little difference be-
tween country-specific and generic BC.

3.3. Bayesian model averaging before and after calibration

The weighted average predictions of the models for the PSP-
sites, using prior and posterior model probabilities as weights,
are included in Figs. 3, 4 and 6. The prior BMA, which was based
on model probabilities derived from NFI-data without any model
calibration, showed robust out-of-sample predictive capacity for
the PSP-sites, as shown by low NRMSE-values for both output vari-
ables (Fig. 6). In the case of tree height, only the BRIDGING model
had lower NRMSE, whereas for stem diameter only 4C had clearly
lower error. Also, predictive uncertainty from the prior BMA was
moderate, with at least half of the models showing larger uncer-
tainty ranges for all combinations of variable and site except stem
diameter at F3.

Predictions from posterior BMA were also compared against the
measurements at PSP-sites (Figs. 3, 4 and 6). In contrast to the tests
of prior BMA, and despite the fact that only NFI-data were used in
model calibration, these were in-sample tests of predictive capac-
ity because PSP-data had been used to calculate the model proba-
bilities. Prediction using posterior BMA was less of an
improvement compared to most individual models than was the
case for prior BMA (Figs. 3, 4 and 6).

4. Discussion

4.1. Model performance before and after Bayesian calibration on NFI-
data

If forest models are to be useful in management, their predic-
tions must be sufficiently accurate and precise. A quantification
of model accuracy for growth is given in Table 3, where the predic-
tions for the modes of prior parameter distributions can be com-
pared against measurements. The same table also provides
information about predictive uncertainty, in the form of the 5%
and 95% quantiles of model predictions. The results show that only
the BRIDGING model had high a priori predictive accuracy for mean
tree height with low accompanying uncertainty at all sites except
F3. For stem diameter, none of the uncalibrated models was very
precise – BRIDGING, 4C and FORMIND did best – and only BRIDG-
ING and FORMIND had low uncertainties throughout. The balance
of accuracy and precision for the NFI-sites was such that the prior
Bayesian model comparison assigned 55% prior probability to
BRIDGING and 42% to 4C.

One reason for the prior success of BRIDGING and 4C, and to les-
ser extent FORMIND, was that these models were initialised for
each site at the first date of measurement. The models were thus
started off with values of mean tree height and stem diameter cor-
rect for the site, and with fewer years of growth remaining to be
predicted than what was asked from models initialised at planting,
such as 3PG and BASFOR. The advantage of late model initialisation
– having less time to deviate from true on-site growth patterns –
apparently weighed heavier than that of 3PG and BASFOR being
able to process more detailed information about the site condi-
tions. Furthermore, information about the early management his-
tory of sites, such as the tree thinning regime, tends to be less
reliable than information for the measurement periods. Late ini-
tialisation, however, does not always improve predictive perfor-
mance, as demonstrated by the results for ANAFORE. In the case
of ANAFORE, a highly detailed model, there was a large suite of
other state variables besides mean height and diameter that
needed to be initialised, and for which no good information was
available for most sites so default model settings could not be
adjusted. While some models may be designed to run with
stand-level information such as typically provided by NFIs, other
models may perform better if more detailed initialisation data



Fig. 3. Model output uncertainty for final mean tree height at the PSP-sites A3, B3, E3 and F3. Vertical bars show the central 90% of distributions. For each country, the three
clusters of bars show prior and posterior (country-specific, generic) predictions. The seven bars in each cluster are for the six models plus the Bayesian Model Averaging
result, in the order indicated in the bottom-left panel. The dashed horizontal lines indicate observed values, which were not used for model calibration.
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are available. In this study, the most complex model, ANAFORE was
clearly overparameterised in relation to the very limited data. We
also note that BRIDGING and 4C might have been rated best if ini-
tialisation values would have been estimated rather than being set
a priori – but that was not investigated in this study.

These comparisons of the prior performance of the different
models were inevitably also affected by how the prior parameter
distributions were defined. Different methods for quantifying prior
parameter distribution of a process-based forest model, PnET-II,
were discussed by Radtke et al. (2001). The prior distributions in
our study were set independently by each modelling group, using
the information available to them from literature and from previ-
ous experience with their model. This partly explains why some
models, such as 3PG, showed wider prior output ranges than other
models.

To restrict the influence of subjective prior parameterisation, it
is therefore important to compare differences in model perfor-
mance after all models have been calibrated for the tree species
under study. Both country-specific and generic Bayesian calibra-
tion on NFI-data markedly increased the accuracy and precision
of prediction for the PSP-sites by all models except the most com-
plex and parameter-rich model, ANAFORE (Figs. 3 and 4). After
these general improvements, the 4C model performed best
(Fig. 5), but note that the differences in model initialisation method
again affected the results, and that the strength of the data was
probably still not sufficient to completely overrule the effect of
prior choice after calibration. Also note that the assessments of
model performance and plausibility in this study are restricted to
predictions for mean tree height and stem diameter. If data from
other variables, such as above-and belowground biomass and
wood quality, had been used, model evaluation would likely have
yielded different results.

4.2. Spatial differences in model performance

All models had the poorest predictions of mean tree height for
the Finnish PSP-site. That site, F3, had an atypically high stem
number (Table 1), which may have contributed to comparatively
strong height growth at relatively small diameter despite advanced
age (Fig. 2). Most models apparently struggled to simulate this
growth pattern, irrespective of model complexity. The problems
with this site largely persisted after calibration.

Sites within a single country are likely to be more similar in tree
provenance, soil type and climate than sites in different parts of
Europe. Therefore, the performance of models at a given PSP-site
was expected to be best after calibration exclusively on the two
NFI-sites from the same country, as opposed to model performance
after generic calibration on all NFI-sites. However, the two types of
calibration led to predictions of similar integrated likelihood and
NRMSE (Figs. 5 and 6). It should be noted that this somewhat sur-
prising result is partly explained by the fact that we had fewer data
available per country, so the likely greater relevance of data used in
within-country calibration was offset by the low weight of evi-
dence from using data from 2 NFI-sites as compared to 8 in generic



Fig. 4. Model output uncertainty for final mean stem diameter at the PSP-sites A3, B3, E3 and F3. The lay-out of the figure is the same as for Fig. 3.

Fig. 5. Prior and posterior model probabilities, derived from the integrated likelihoods of NFI and PSP-measurements. Left: logarithmic scale; right: absolute scale.
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BC. Still, it can be conjectured that the considered models are suf-
ficiently general to provide a useful generic parameterisation for
Scots pine in Europe, although a future study with larger numbers
of NFI-sites per country would be needed to test this hypothesis
rigorously. The extra sites should be chosen to cover spatial varia-
tion in tree genotypes and geographical conditions. Such increased
spatial coverage would also be needed if we want to move from
assessing model predictive capacity at site-level to country-wide
upscaling.
4.3. Quantifying and reducing uncertainties

The extent to which Bayesian calibration can reduce parameter
uncertainties of a model depends both on the structure of the mod-
el and on the prior distribution assigned by the modeller. In the
present study, Bayesian calibration reduced parameter and output
uncertainty of all models except the parameter-richest one, ANA-
FORE. Likewise, the Bayesian model comparison was able to iden-
tify which models were most plausible by calculating the



Fig. 6. Normalised RMSE, derived from simulations at PSP-sites using samples from prior and posterior parameter distributions. Left: tree height, right: diameter at breast
height. The rightmost three bars in both panels are the result of Bayesian Model Averaging (BMA).
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integrated likelihood for each model at different stages in the
study. The integrated likelihood accounts for parameter uncer-
tainty (by integrating over its distribution) and is a natural way
of combining diverse measurements in one model comparison cri-
terion. This is in contrast to the commonly used NRMSE, which has
to be calculated for every variable separately. Another potential
advantage of the integrated likelihood over other measures, such
as NRMSE and squared correlation coefficient, r2, is that the inte-
grated likelihood can account for different levels of uncertainty
about measurement error for different data points. However, that
did not play a role in the present study because all height and
diameter data were assumed to have the same degree of
uncertainty.

4.4. Impact of the choices of prior distribution

As discussed in Sections 4.2–4.4, the choices made to set the
prior probability distributions for the parameters of the different
models affected our results to some degree, in particular in the
early stages of the analysis where the prior predictive performance
of the models was quantified and compared. Because prior distri-
butions for structurally different models cannot be set in a stand-
ardised way, and were based on the expertise of the responsible
modellers, this introduced a subjective element in the study. This
included model-specific choices about parameter-screening, i.e.
which of a model’s parameters to include in the Bayesian calibra-
tion. This subjectivity concerning the prior parameter distribution
is unavoidable, to some extent, in any application of Bayesian
methodology. However, the procedure we applied here, where all
models were calibrated on the same data (NFI) and were subse-
quently compared against the same independent data (PSP) re-
moved much of the effect of the choice of prior (Figs. 3 and 4).
We therefore suggest that Bayesian model comparisons are most
useful after such standardisation.

4.5. On the use of multiple models

The use of BMC is formally conditional on one of the models
being ‘correct’ – which is never truly the case in environmental
modelling – so we should use the results from the BMC as a guide
towards finding the most plausible model in the set of six rather
than as formal model probabilities. The results suggest that the
4C model should be recommended as the model of choice for a for-
est manager who wants to select a single model to help estimate
future productivity out of the six models in this study. We believe
that for the forest scientist the results are less clear-cut because the
Bayesian probabilities do not by themselves explain what makes
one model structure more plausible than another. The Bayesian
model comparison largely treats the models as black boxes charac-
terised by their input–output relationships. In a previous Bayesian
forest model comparison (Van Oijen et al., 2011) it was therefore
recommended that after the BC of all models, and their BMC, a de-
tailed analysis should be carried out of the model-data mismatch
remaining after calibration. It was recommended in particular to
decompose likelihoods into terms for individual output variables
and to decompose mean squared errors (MSEs) into terms for bias,
variance mismatch and phase-shift (Kobayashi and Salam, 2000).
However, in our study with only two output variables and extre-
mely short time-series, these decompositions are not informative.
To allow such detailed study of model-data mismatch – and there-
fore to help explain the results presented here – we would need
more detailed data sets, e.g. long time-series of annual data.

Another natural follow-up to BMC, and one that was carried out
in this study, is calculating forecasts using Bayesian model averag-
ing (BMA, e.g. Kass and Raftery, 1995). In BMA, no single model is
selected for making predictions; instead the probability distribu-
tions for the individual model predictions are averaged using as
weights the model probabilities determined by the BMC. Because
BMA integrates parameter and model structural uncertainty, it is
less prone to underestimation of predictive uncertainty than the
common practice of selecting and using only a single ‘best’ model.
In the present study, the out-of-sample predictive capacity of BMA
was very good, as shown by the NRMSE-values for both output
variables in the prior BMA. This is not exceptional; BMA has been
reported to have higher forecasting skill than each individual mod-
el in other fields, such as medical prognosis (Hoeting et al., 1999)
and climate prediction (Min and Hense, 2006). We found that the
predictive performance of posterior BMA was only average. How-
ever, this was a partly within-sample test - with model probabili-
ties (but not parameters) informed by the PSP-data - so this should
be repeated with independent data.

5. Conclusions

– Bayesian calibration successfully reduced uncertainties in
parameters and predictions of five out of six forest models.

– Calibrating models separately for each country did not clearly
improve within-country predictive capacity compared to gen-
eric calibration. This might change when more data become
available per country.
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– Bayesian model comparison using NFI- and PSP-data identified
the 4C model, which is of moderate complexity but mechanistic,
as the most plausible forest model after calibration.

– The main caveat to the results is the issue of model initialisa-
tion: how it is carried out and which data are available for it.
This study suggests that models are favoured that are initialised
using on-site measurements of tree growth, unless model com-
plexity requires more data for such initialisation than are avail-
able. But model ranking might have been different if more data,
or data from other variables than mean tree height and stem
diameter, would have been available for use.

– For a detailed analysis of model-data mismatch, NFI-data are
insufficient, but information from PSPs not used in this study,
such as single tree data, could be used.

– BMA afforded good out-of-sample forecasts of forest productiv-
ity and may be a promising tool for forest management, of suf-
ficient accuracy and precision whilst not underestimating
uncertainties.
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