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Much of California, U.S. experienced a severe drought in 2012-2015 inciting a large tree mortality event in the
central and southern Sierra Nevada. We assessed causal agents and rates of tree mortality, and short-term im-
pacts to forest structure and composition based on a network of 11.3-m fixed-radius plots installed within three
elevation bands on the Eldorado, Stanislaus, Sierra and Sequoia National Forests (914-1219, 1219-1524 and
1524-1829 m on the Eldorado, Stanislaus, Sierra; 1219-1524, 1524-1829, and 1829-2134 m on the Sequoia),
where tree mortality was most severe. About 48.9% of trees died between 2014 and 2017. Tree mortality ranged
from 46.1 = 3.3% on the Eldorado National Forest to 58.7 + 3.7% on the Sierra National Forest. Significantly
higher levels of tree mortality occurred in the low elevation band (60.4 + 3.0%) compared to the high elevation
band (46.1 + 2.9%). Ponderosa pine, Pinus ponderosa Dougl. ex Laws., exhibited the highest levels of tree
mortality (89.6%), with 39.4% of plots losing all P. ponderosa. Mortality of P. ponderosa was highest at the lowest
elevations, concentrated in larger-diameter trees, and attributed primarily to colonization by western pine
beetle, Dendroctonus brevicomis LeConte. About 89% of P. ponderosa in the three largest diameter classes were
killed, representing loss of an important structural component of these forests with implications to wildlife
species of conservation concern. Sugar pine, P. lambertiana Dougl., exhibited the second highest levels of tree
mortality (48.1%). Mortality of P. lambertiana was concentrated in the mid-diameter classes and attributed
primarily to colonization by mountain pine beetle, D. ponderosae Hopkins. White fir, Abies concolor (Gord. &
Glend.) Lindl. ex Hildebr., and incense cedar, Calocedrus decurrens (Torr.) Florin, exhibited 26.3% and 23.2%
mortality, respectively. Only one Quercus died. Tree mortality (numbers of trees killed) was positively correlated
with tree density and slope. A time lag was observed between the occurrence of drought and the majority of tree
mortality. Tree regeneration (seedlings and saplings) was dominated by C. decurrens and Quercus spp., re-
presenting a potential long-term shift in composition from forests that were dominated by P. ponderosa. About
22.2% of plots contained plant species considered invasive, including cheatgrass, Bromus tectorum L., ripgut
brome, Bromus diandrus Roth, bull thistle, Cirsium vulgare (Savi) Ten., and yellow star-thistle, Centaura solstitalis
L. The implications of these and other results to recovery and management of drought-impacted forests in the
central and southern Sierra Nevada are discussed.

1. Introduction most recent drought (2012-2015) was characterized by large pre-

cipitation deficits and abnormally high temperatures during both the

Much of the western slope of the Sierra Nevada experiences a
“Mediterranean-type climate”, indicative of an annual dry period
characterized by hot, dry summers followed by an annual wet period
characterized by cool, moist winters. While droughts have had an im-
portant influence on this region for millennia (Cook et al., 2007), the

wet and dry seasons (Aghakouchak et al., 2014; Williams et al., 2015),
and in some areas is thought to be the most severe in 1200 years (Griffin
and Anchukaitis, 2014). In particular, 2014 is noted for the lowest
Palmer Drought Severity Index recorded for 1895-2017, when instru-
mental records were widely available (www.ncdc.noaa.gov/cag/). The
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2012-2015 drought resulted in progressive canopy water stress of at
least 888 million trees and severe canopy water stress of at least 58
million trees (Asner et al., 2016), substantial mortality of dominant and
co-dominant trees (Brodrick and Asner, 2017), and impacts to many
ecological goods and services. The level of tree mortality observed is
considered by some to be unprecedented (Stephens et al., 2018), and
over time will influence the frequency and severity of other dis-
turbances. For example, Stephens et al. (2018) concluded that a greater
potential for “mass fires” exists in future decades driven by the amount,
size and continuity of dry combustible woody fuels, which could pro-
duce large, severe and uncontrollable wildfires.

In 2015, the USDA Forest Service Aerial Detection Survey (ADS), the
group responsible for conducting annually surveys of insect and disease
conditions, first reported extensive tree mortality in the central and
southern Sierra Nevada, and estimated 29 million trees died in
California due to drought and outbreaks of native bark beetles. Winter
2015-2016 brought near normal precipitation to much of central and
northern California, but drought stress remained high in many areas of
the central and southern Sierra Nevada (U.S. Drought Monitor-
California, 3 May 2016, extreme and exceptional categories; http://
droughtmonitor.unl.edu). ADS estimated an additional 62 million trees
died in 2016 and 27 million trees in 2017, bringing the total to at least
129 million trees since 2010 (California Department of Forestry and
Fire Protection, 2018) (Fig. 1). Much of the mortality occurred in and
around the wildland urban interface, putting significant infrastructure
and lives at risk (California Tree Mortality Task Force, 2018).

While ~200 species of bark beetles are native to California only a
handful is capable of causing tree mortality (Fettig, 2016). Trees of all
species, ages and size classes may be colonized and killed, but each bark
beetle species exhibits unique host preferences, life history traits, and
impacts. In most cases, the resultant tree mortality goes unnoticed until
an outbreak occurs, which generally requires several years of favorable
weather conducive to beetle survival and population growth, and an
abundance of susceptible hosts (Bentz et al., 2010). In particular,
drought is an important factor inciting outbreaks of several notable
species, including fir engraver, Scolytus ventralis LeConte, Jeffrey pine
beetle, Dendroctonus jeffreyi Hopkins, mountain pine beetle, D. ponder-
osae Hopkins, western pine beetle, D. brevicomis LeConte, and several
engraver beetles, Ips spp. A recent synthesis reported a non-linear re-
lationship between drought intensity and outbreaks of aggressive bark
beetles (i.e., those species capable of causing extensive levels of tree
mortality) where moderate drought reduces bark beetle population
performance and subsequent tree mortality, and severe drought in-
creases bark beetle performance and tree mortality (Kolb et al., 2016).

The primary objective of our research was to determine causes and
rates of tree mortality within three elevation bands on the Eldorado,
Stanislaus, Sierra and Sequoia National Forests (Fig. 2), and to describe
short-term impacts to forest structure and composition. These national

Fig. 1. Tree mortality on the Sequoia National Forest, California, U.S., 12 April
2017. (Photo: C. Fettig, USDA Forest Service).
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forests are the four most southerly on the western slope of the Sierra
Nevada, and experienced the highest levels of tree mortality (California
Department of Forestry and Fire Protection, 2018). Herein, we con-
centrate on impacts to tree size, density and species diversity, and
provide baseline data on tree regeneration and invasive weeds. The
network of plots created provides opportunities for monitoring other
changes over time (e.g., fuels and snag demography).

2. Materials and methods
2.1. Study area and plot selection

A network of 180 11.3-m fixed-radius plots (0.041-ha) was estab-
lished on the Eldorado, Stanislaus, Sierra and Sequoia National Forests,
California, 2016-2017 (Fig. 2). Fifteen plots (three groups of five plots)
were distributed in each of three elevation bands on each national
forest: 914-1219m, 1219-1524 m and 1524-1829 m on the Eldorado,
Stanislaus, and Sierra, and 1219-1524m, 1524-1829m, and
1829-2134 m on the Sequoia. The Sequoia National Forest is the most
southerly in our network, and ponderosa pine, Pinus ponderosa Dougl.
ex. Laws., seldom grows there below ~1524m elevation, which ex-
plains the increase in elevation bands. Individual plots ranged from
929 m elevation on the Georgetown Ranger District, Eldorado National
Forest (UTM: 10S 693967 4307517) to 2006 m elevation on the Wes-
tern Divide Ranger District, Sequoia National Forest (UTM: 11S 358511
3988017). For inclusion in the network, plots were required to be
>35% P. ponderosa by basal area, to contain =10% P. ponderosa
mortality in the last two years (as determine by presence of crown fade,
Section 2.2), and unburned in the last decade. Plots meeting these
criteria were randomly selected within groups, but separated by
=100 m. Groups within elevation bands were separated by > 1.6 km.

2.2. Data collection and analyses

On each plot, trees =6.35 cm dbh (diameter at breast height, 1.37 m
in height) were numbered, geo-referenced to plot center, and the spe-
cies, dbh, condition (live or dead, based on the presence or absence of
crown fade), cause of death (if applicable), and year of death (if ap-
plicable) were recorded. For trees that died prior to plot establishment,
year of death was estimated based on the color of faded needles in the
crown and degree of needle retention (i.e., 1 year prior, > 90% reten-
tion of yellow and/or red needles; 2 years prior, =50-90% retention of
red needles; =3 years prior, < 50% retention of red and/or gray nee-
dles) (Miller and Keen, 1960; Fettig et al., 2008). Very few trees (< 50,
across the network) died =3 years prior to plot establishment, and were
ignored. For trees that died after plot establishment, year of death was
recorded as the year before crown fade was observed (e.g., in 2016 for
trees colonized by bark beetles that year, but that first exhibited crown
fade in early 2017). Each plot was surveyed once annually, usually in
April-June.

For dead trees, a section of bark ~625cm? was removed with a
hatchet at ~2m in height on the north and south aspects to determine
if bark beetle galleries were present. The shape, distribution and or-
ientation of galleries are commonly used to distinguish among bark
beetle species (Furniss and Carolin, 1977). In some cases, deceased bark
beetles were present beneath the bark to supplement identifications
based on gallery formation. The precise role of each bark beetle species
in contributing to tree mortality is generally unknown. In some cases
(e.g., D. brevicomis), trees must have enough green phloem for suc-
cessful colonization and brood production to occur (Miller and Keen,
1960). In other cases (e.g., Ips and Scolytus), successful brood produc-
tion may also occur in dead and dying trees (Furniss and Carolin, 1977).
We attributed tree mortality to colonization by D. brevicomis, D. pon-
derosae, California fivespined ips, Ips paraconfusus Lanier, pine en-
graver, I. pini (Say), S. ventralis, and cedar bark beetles, Phloeosinus spp.,
only when parental and brood galleries were observed in or beneath the
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Fig. 2. Distribution of experimental plots on the Eldorado (green points), Stanislaus (black points), Sierra (orange points), and Sequoia (red points) National Forests,
California, U.S. Several points overlap due to spatial scale (n = 45 per national forest). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

sections of bark removed despite the presence of other potential diag-
nostic characteristics (e.g., pitch tubes higher on the tree bole). As such,
our estimates of levels of tree mortality attributed to bark beetles are
conservative. Dendroctonus brevicomis and D. ponderosae were observed
infesting the same P. ponderosa on 22 occasions, and in these cases we
attributed tree mortality to D. brevicomis (Fettig et al., 2008). Tree
mortality was attributed to Ips spp. only when evidence of D. brevicomis
and D. ponderosae was absent and Ips spp. were present. Suppression
was assigned as the cause of death when evidence of other contributing
factors (e.g., bark beetles, pathogens, and mechanical damage) was
absent, and if little or no direct sunlight was received from above or on
the sides of the crown (USDA Forest Service, 2018). In some cases, a
contributing factor could not be identified, and cause of death was re-
corded as unknown.

A 0.004-ha (3.6-m radius) subplot was established at the center of
each plot to estimate seedling (<0.3m tall) and sapling (> 0.3 m tall
to < 6.35 cm dbh) abundance by species, and ground and shrub cover.
A complete census of each plot (0.041-ha) was conducted for invasive
plants listed as “currently causing damage in California” (California
Invasive Plant Inventory, 2016). The primary variables of interest were
the causes and mean percentages of trees killed within 12.7-cm dia-
meter classes (mid-points = 12.7, 25.4, 38.1, 50.8, 63.5, and > 69.9
cm). When appropriate, we used a two-way analysis of variance
(ANOVA) to test for significance, but transformed data rarely met as-
sumptions of normality and homoscedasticity. As such, the non-para-
metric Kruskal-Wallis test on ranks was used. On occasion, linear re-
gressions were used to study the relationship between levels of tree
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mortality and predictor (independent) variables.

3. Results and discussion
3.1. Conditions in 2014

At the beginning of this study, a total of 3909 trees occurred across
the network including 1891 P. ponderosa, 1370 incense cedar,
Calocedrus decurrens (Torr.) Florin, 247 Abies concolor (Gord. & Glend.)
Lindl. ex Hildebr., 162 sugar pine, P. lambertiana Dougl., 139 California
black oak, Quercus kelloggii (Newb.), 64 canyon live oak, Quercus
chrysolepis (Liebm.), 17 Douglas-fir, Pseudotsuga mengziesii (Mirb.)
Franco, nine gray pine, P. sabiniana Douglas ex D. Don, eight Jeffrey
pine, P. jeffreyi Balf., one Pacific madrone, Arbutus menziesii Pursh, and
one interior live oak, Quercus wislizeni A. DC. No significant differences
were observed for measures of tree size or stand density among national
forests (P > 0.05, all cases) (Table 1, 2014). A significantly higher
proportion of A. concolor occurred on the Sequoia compared to the
Stanislaus and Sierra (H = 14.8, df = 3, P = 0.002), and of Q. chryso-
lepis on the Sierra compared to the Eldorado and Sequoia (H = 15.2,
df = 3, P =0.002) (Table 1, 2014). No other significant differences
were observed among national forests. All national forests were domi-
nated by P. ponderosa.

Among elevation bands, mean QMD was higher in the mid-elevation
band than the low elevation band (H = 7.1, df = 2, P = 0.029), and
more trees occurred in the high elevation band than the low elevation
band (H = 6.8, df =2, P =0.034). Basal area (H = 14.4, df =2,
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Table 1
Conditions on four national forests in the central and southern Sierra Nevada, California, U.S.
Eldorado Stanislaus Sierra Sequoia All
Elevation (m) 1369 + 35 1324 + 32 1398 + 33 1716 * 31 1452 += 20
Aspect (°) 187 = 10 186 * 15 178 = 13 163 += 13 179 £ 6
Slope () 17 = 1 15 1 20 = 2 16 = 1 17 £ 1
2014
Mean dbh (cm) 364 £ 1.7 a 359 + 1.7a 328 £ 14a 331 +14a 34.5 £ 0.8
Quadratic mean diameter (cm) 417 =+ 1.8a 399 + 1.7 a 37.2 £+ 1.3a 375 + 14a 39.1 + 0.8
Trees per ha 539.8 + 52.0a 5299 *+ 46.1 a 556.8 + 46.8 a 520.0 = 38.8a 536.6 + 22.9
Basal area (m2 per ha) 63.7 = 46 a 58.2 = 38a 53.1 £ 3.2a 52.6 = 3.6a 56.9 £ 1.9
Stand density index 418.6 = 28.1 a 390.0 + 244 a 367.4 + 20.5a 359.6 + 21.7 a 383.9 * 12.0
% Pinus ponderosa 60.3 = 42a 53.3 = 33a 57.0 £ 39a 489 *+ 36 a 549 + 1.9
% Calocedrus decurrens 26.0 = 3.4a 309 = 31la 288 = 35a 30.7 = 34a 29.1 £ 1.9
% Abies concolor 7.4 = 1.8 ab 4.0 = 14D 31 +£14b 93 = 16a 6.0 = 0.8
% Pinus lambertiana 32 *09a 55 * 12a 57 £ 15a 24 = 08a 4.2 = 0.6
% Quercus kelloggii 14 = 06a 33 +08a 1.8 + 0.5a 55 + 1.8a 3.0 = 0.5
% Quercus chrysolepis 01 *01b 2.5 = 0.9 ab 37 £15a 0.4 = 03D 1.7 = 0.5
2017'
Mean dbh (cm) 28.0 = 2.0a 255 = 1.6 ab 198 = 1.6b 233 = 1.7 ab 241 = 0.9
Quadratic mean diameter (cm) 315 + 2.1a 29.0 + 1.8 ab 222 £+ 1.8b 26.0 + 1.8 ab 27.2 = 1.0
Trees per ha 325.1 + 42.7 a 253.1 + 29.7 a 262.5 * 373 a 260.8 = 30.8 a 275.4 * 17.7
Basal area (m? per ha) 238 £ 32a 16.3 = 2.0 ab 10.7 = 1.6b 15.2 = 1.7 ab 16.5 = 1.5
Stand density index 170.1 = 21.3a 120.4 = 14.1 ab 86.4 = 11.9b 115.4 = 12.6 ab 123.1 = 8.0
% Pinus ponderosa 39.5 =+ 58a 22.2 + 4.0 ab 20.0 = 4.2 ab 159 + 3.1b 244 + 2.3
% Calocedrus decurrens 388 = 49a 47.0 + 48 a 447 £ 49 a 388 + 49a 445 = 2.4
% Abies concolor 91 + 24a 6.6 + 22a 37 x16a 10.7 = 24 a 75 £ 11
% Pinus lambertiana 57 = 20a 6.3 = 19a 34 *17a 1.5 £ 05a 4.2 = 0.8
% Quercus kelloggii 21 =+ 09a 9.7 + 32a 51 +1.7a 11.6 + 36 a 7.2 £ 13
% Quercus chrysolepis 01 =£0.1b 7.3 £29a 78 £ 3.0a 1.2 = 0.8b 41 = 1.1

Values are mean = SEM based on 45 11.3-m fixed-radius plots per national forest, live trees =6.35 cm dbh (diameter at breast height, 1.37 m). Means = SEM

followed by the same letter within rows are not significantly different (P > 0.05).

! Only species with =25 individuals are represented (based on numbers of trees).

P < 0.001) and SDI (H = 13.5, df = 2, P = 0.001) were higher in the
mid- and high elevation bands compared to the low elevation band
(Table 2, 2014). Elevation has long been recognized as a driver of plant
composition, and in the Sierra Nevada results in greater Pinus and
Quercus dominance at lower elevations and greater Abies dominance at
higher elevations (Show and Kotok, 1929). We observed significantly
higher proportions of A. concolor in the mid- and high elevation bands
compared to the low elevation band (H = 17.1, df = 2, P < 0.001),
and of Q. chrysolepis at the low elevation band compared to the mid-
and high elevation bands (H = 14.3, df = 2, P < 0.001) (Table 2,
2014). No other significant differences were observed among elevation
bands. All elevation bands were dominated by P. ponderosa.

Several reconstructions of historic forest conditions have been
completed for mixed-conifer forests in the central and southern Sierra
Nevada (e.g., Collins et al., 2011, 2015; Lydersen et al., 2013). Collins
et al. (2015) reconstructed portions of Stanislaus National Forest and
Yosemite National Park (776-2140 m elevation) from historic timber
inventories, and reported forests in the early 20™ century were of low
density containing 25-79 trees per ha and 8-30 m? per ha of basal area.
Safford and Stevens (2017) reported mixed-conifer forests in California
averaged 159 stems per ha and 35 m? per ha of basal area. Our plots
were heavily departed from these historic conditions (e.g., mean
numbers of live trees ranged from 520.0 + 38.8 per ha on the Sequoia
to 556.8 = 46.8 per ha on the Sierra; Table 1, 2014), which is usually
attributed to suppression of wildfires in the modern era. For millennia,
frequent, low-moderate intensity wildfires sculpted these landscapes
reducing the quantity and continuity of surface and ladder fuels and the
proportion of shade tolerant and fire intolerant tree species, such as A.
concolor (Scholl and Taylor, 2010). Variability that provided diverse
habitats and microclimates and fostered resilience to a variety of
stressors and disturbances has also been lost (Lydersen et al., 2013).

3.2. Conditions in 2017

About 48.9% of trees (1912 trees) died between 2014 and 2017
(Fig. 3). Most tree mortality occurred in 2015 and 2016 after the
drought subsided (H =119.1, df =3, P < 0.001) (Fig. 3), a trend
observed in other drought-impacted forests in the region. For example,
Kane et al. (2014) reported relationships between tree mortality and
most climatic variables (e.g., temperature, precipitation, Palmer
Drought Severity Index) were lagged 1-4 years in northern Arizona,
U.S. Tree mortality (numbers of trees killed) was positively correlated
with stand density (Section 3.3) and slope (Fy, 175 = 10.5, P = 0.001,
R? = 0.06), but not aspect (F1, 178 = 0.6, P = 0.44). Tree mortality
among national forests ranged from 46.1 + 3.3% on the Eldorado to
58.7 = 3.7% on the Sierra, but no significant differences were ob-
served among national forests (H = 7.5, df = 3, P = 0.06). Significantly
higher levels of tree mortality occurred in the low elevation band
(60.4 = 3.0%) compared to the high elevation band (46.1 = 2.9%)
(H = 11.5, df = 2, P = 0.003). No other significant differences were
observed among elevation bands (mid- = 54.4 * 2.5%). Paz-Kagan
et al., (2017) used high-fidelity imaging spectroscopy and light detec-
tion and ranging (LiDAR) to estimate levels of tree mortality in response
to recent drought stress in Sequoia National Park. Higher levels of tree
mortality were observed at lower elevations, and on southwest and
west-facing slopes. In our study, 10 plots suffered 100% tree mortality
and only one of these occurred in the high elevation band.

Significant declines in tree size (dbh, H = 69.4, df = 1, P < 0.001;
QMD, H=75.2, df =1, P < 0.001) and stand density (trees per ha,
H=281.8, df=1, P < 0.001; basal area, H=198.4, df=1,
P < 0.001; SDI, H=193.7, df =1, P < 0.001) were observed be-
tween 2014 and 2017 (Table 1, 2017). Mean dbh (H = 9.5, df = 3,
P = 0.024), mean QMD (H = 11.1, df = 3, P = 0.011), mean basal area
(H=13.5, df =3, P=0.004), and mean SDI (H =10.1, df =3,
P = 0.018) were higher on the Eldorado than the Sierra (Table 1,
2017). A higher proportion of P. ponderosa occurred on the Eldorado
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Table 2
Conditions within three elevation bands on four national forests in the central
and southern Sierra Nevada, California, U.S.

Low Mid High
Elevation (m) 1184 + 23 1477 + 22 1694 + 20
Aspect () 148 = 15 207 = 8 181 = 6
Slope () 18 =+ 1 16 = 1 17 = 1
2014'
Mean dbh (cm) 334 + 1.3a 37.0 £+ 14 a 33.3 £ 1.3a
Quadratic mean 376 + 1.3b 417 + 1.3 a 38.0 = 1.4 ab
diameter (cm)
Trees per ha 496.3 + 43.1b 513.2 * 35.0ab 600.5 + 40.0 a
Basal area (m? per ha) 474 =+ 3.0b 62.8 + 35a 62.8 + 35a
Stand density index 327.5 £ 20.7b 4124 = 20.8 a 411.8 £ 19.1a
% Pinus ponderosa’ 57.2 = 35a 541 * 34a 53.3 £ 29a
% Calocedrus decurrens' 26.5 + 3.3 a 323 = 29a 284 + 25a
% Abies concolor’ 29 = 1.2b 6.4 = 13a 85 *15a
% Pinus lambertiana' 34 *10a 42 +* 09a 50 x11a
% Quercus kelloggii" 35 *12a 1.6 + 0.4 a 39 £ 10a
% Quercus chrysolepis" 39 +13a 0.7 £ 04D 04 £ 02b
2017'
Mean dbh (cm) 21.7 + 1.7 a 263 + 1.6a 244 + 1.2a
Quadratic mean 23.7 =+ 1.8b 30.1 + 1.8a 27.8 = 1.3 ab
diameter (cm)
Trees per ha 224.0 = 31.2b 251.6 * 245ab 350.5 * 33.7 a
Basal area (m? per ha) 108 = 15b 173 £ 1.7 a 214 =+ 24a
Stand density index 83.8 £ 109b 1254 = 11.8a 160.0 = 16.4 a
% Pinus ponderosa’ 232 + 44a 256 + 40a 244 = 3.4a
% Calocedrus decurrens' 352 + 48b 50.3 = 41a 47.9 = 3.7 ab
% Abies concolor’ 25 * 1.4b 71 *15a 13.0 = 2.4 a
% Pinus lambertiana' 43 £ 14a 57 £ 16a 26 £ 13a
% Quercus kelloggii" 109 = 34a 32 *09a 109 = 29a
% Quercus chrysolepis' 89 + 28a 25+ 15b 1.9 + 0.8b

Values are mean + SEM, based on 60 11.3-m fixed-radius plots per elevation
band, live trees =6.35cm dbh (diameter at breast height, 1.37m).
Means + SEM followed by the same letter within rows are not significantly
different (P > 0.05).
Low = 914-1218m on all national forests, except Sequoia (1219-1524 m);
mid- = 1219-1524 m, except Sequoia (1524-1829m); high = 1524-1829m,
except Sequoia (1829-2134 m).

1 Only species with =25 individuals are represented (based on numbers of
trees).
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than the Sequoia (H = 9.9, df = 3, P = 0.02), and of Q. chrysolepis on
the Stanislaus and Sierra compared to the Eldorado and Sequoia
(H = 15.4, df = 3, P = 0.002) (Table 1, 2017). No other significant
differences were observed among national forests. Since mortality was
concentrated in P. ponderosa, P. lambertiana and A. concolor (Sections
3.2.1, 3.2.2, 3.2.3), substantial increases in the proportion of C. de-
currens and Quercus spp. were observed. All national forests were
dominated by C. decurrens, except Eldorado.

Among elevation bands, mean QMD was higher in the mid-elevation
band than the low elevation band (H = 7.9, df = 2, P = 0.002); more
trees occurred in the high elevation band than the low elevation band
(H=11.9, df =2, P =0.003); and basal area (H=17.2, df =2,
P < 0.001) and SDI (H = 17.5, df = 2, P < 0.001) were higher in the
mid- and high elevation bands compared to the low elevation band
(Table 2, 2017). We also observed higher proportions of A. concolor in
the mid- and high elevation bands compared to the low elevation band
(H=21.9,df =2, P < 0.001), and of Q. chrysolepis at the low eleva-
tion band compared to the mid- and high elevation bands (H = 14.4,
df = 2, P < 0.001) (Table 2, 2017). These relationships are similar to
those observed in 2014. About 50% of trees in the mid-elevation band
was represented by C. decurrens, which was higher than observed in the
low elevation band (H = 7.0, df = 2, P = 0.03). No other significant
differences were observed among elevation bands. All elevation bands
were dominated by C. decurrens.

One might conclude the changes observed between 2014 and 2017
helped produce more resilient forest conditions. However, current
structure and composition differs from what might be considered re-
silient in a historical context despite the substantial declines in stand
density. For example, extensive areas exist where most of the largest
trees have been Kkilled, including most Pinus. These are not the same
trees that would have been removed historically by low-moderate in-
tensity wildfires, or targeted for removal in fuel reduction or forest
restoration projects in more contemporary times (Stephens et al.,
2012). Large unburned areas of dead trees may produce succession
patterns favoring shade-tolerant and hardwood tree regeneration, lim-
ited shrub growth, and accumulation of large woody surface fuels that
will likely kill regenerating forests when wildfires occur. Furthermore,
the scale of tree mortality entrenches the homogeneity produced by fire
suppression, reducing the fine-scale heterogeneity that contributes to
resilience. Loss of the large-tree component exacerbates concerns
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by the same number are not significantly different (P > 0.05).
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regarding habitat needs for some wildlife species, notably the California
spotted owl, Strix occidentalis occidentalis (Xantus) (Jones et al., 2018).
Strix occidentalis occidentalis, a species of conservation concern, prefers
large trees and snags embedded in forests of complex structure. It will
take decades to centuries for this structure to return.

3.2.1. Pinus ponderosa

Pinus ponderosa exhibited the highest levels of tree mortality ob-
served (1695 trees, 89.6% of P. ponderosa) (Fig. 4). Mortality on a per
plot basis ranged from 18.2% (one plot, 1330 m on the Eldorado) to
100% (71 plots). Significantly higher levels of P. ponderosa mortality
occurred on the Sequoia (85.4 + 2.6%) and Sierra (84.1 *+ 3.0%)
compared to the Eldorado (70.3 + 3.9%) (H = 9.9, df = 3, P = 0.02).
No other significant differences were observed among forests (Sta-
nislaus, 81.5 *= 3.0%). Significantly higher levels of P. ponderosa
mortality occurred at the lowest elevations (85.5 * 2.4%) compared to
the highest elevations (73.9 = 3.3%) (H = 7.3, df = 2, P = 0.03). No
other significant differences were observed among elevation bands
(mid-, 81.5 = 2.6%). These differences likely result from drought
stress being more severe at lower elevations and latitudes (Asner et al.,
2016). Mortality was most severe in 2015-2016 (Fig. 3), concentrated
in the larger-diameter classes (H = 118.7, df = 5, P < 0.001) (Fig. 4),
and attributed primarily to D. brevicomis (Fig. 5). No mortality occurred
in P. ponderosa < 10.0 cm dbh. This is not surprising as D. brevicomis
exhibits a preference for colonizing large-diameter P. ponderosa
(> 50 cm dbh) (Miller and Keen, 1960).

Like most conifers, P. ponderosa is capable of mobilizing large
amounts of oleoresin following wounding, which constitutes its primary
defense against bark beetles (Franceschi et al., 2005). Drought reduces
carbon assimilation, water transport, and thus synthesis and mobiliza-
tion of oleoresin (McDowell et al., 2011; Sala et al., 2012). Elevated
temperatures and forest densification (Section 3.4) enhance the effect
(Young et al., 2017) due to increases in maintenance respiration and
evaporative demand (Ryan, 1991). As such, droughts occurring during
warm periods are generally more damaging to plants than those oc-
curring during cool periods (Breshears et al., 2005; Adams et al., 2009).
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In most of California, D. brevicomis completes two and a partial third
generation annually, but considerable variation in flight activity occurs
(Fettig et al., 2004, 2005). Warm temperatures may increase the length
of flight activity and voltanism of bark beetles. For example, high
summer temperatures have been documented to prevent facultative
prepupal diapause in spruce beetle, Dendroctonus rufipennis Kirby, al-
lowing D. rufipennis to complete their life cycle in one year compared to
two years when diapause is invoked (Hansen and Bentz, 2003). This
and other factors have resulted in increased levels of tree mortality
attributed to D. rufipennis in recent years (Hart et al., 2017). While it is
possible voltanism is increasing in populations of D. brevicomis in the
central and southern Sierra Nevada (B.M.B., pers. observ.), we attribute
the large amounts of P. ponderosa mortality observed to declines in host
resistance due to severe drought stress and forest densification (Section
3.3).

On occasion, mortality of P. ponderosa was attributed to D. ponder-
osae (14 trees) and Ips spp. (36 trees), but in these cases mortality was
concentrated in the smaller-diameter classes (Fig. 5). Dendroctonus
ponderosae, I. paraconfusus and I. pini are also important disturbance
agents in the Sierra Nevada, but unlike D. brevicomis colonize other
Pinus in addition to P. ponderosa (Fettig, 2016). In California, D. pon-
derosae infestations in P. ponderosa are typically confined to smaller
(< 31.8 cm dbh) trees, and its role is often secondary to that of D.
brevicomis, particularly in larger-diameter trees (Fettig and McKelvey,
2014). This is consistent with our observations (Fig. 5). However, given
the species notable reputation as a disturbance agent (Negrén and
Fettig, 2014), the paucity of mortality attributed to D. ponderosae is
somewhat surprising and likely attributed to being outcompeted by D.
brevicomis for drought-stressed trees. Ips spp. generally colonize slash,
saplings, and weakened trees. Colonization rates are negatively corre-
lated with tree diameter in P. ponderosa (Kolb et al., 2006), and trees
5-20 cm dbh are most frequently colonized as observed in our study
(Fig. 5).

The Transverse and Peninsular mountain ranges of southern
California experienced a similar outbreak of D. brevicomis in the early
2000s that resulted in substantial mortality of large-diameter
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(> 43.2cm dbh) P. ponderosa and Coulter pine, P. coulteri D. Don
(Fettig, 2018). Precipitation was the lowest in recorded history the year
prior to the outbreak (Minnich et al., 2016), and was associated with a
regional drought event that extended throughout much of the south-
western U.S. Air pollutants and root diseases were important inciting
and contributing factors (Grulke et al., 1998; Jones et al., 2004). Con-
cerns regarding hazard trees, fire risk, transportation and accessibility,
and power line maintenance were paramount (Fettig, 2018), similar to
areas most affected by this outbreak (www.fire.ca.gov/treetaskforce/).

3.2.2. Pinus lambertiana

Pinus lambertiana exhibited the second highest levels of tree mor-
tality observed (78 trees, 48.1% of P. lambertiana) (Fig. 6). Mortality on
a per plot basis ranged from 0% (31 plots) to 100% (21 plots), while
113 plots had no P. lambertiana. Mortality of P. lambertiana ranged from
16.1 = 9.7% on the Eldorado to 51.0 = 8.6% on the Sierra, but no
significant differences were observed among national forests (H = 6.6,
df = 3, P =0.09). Furthermore, no significant differences were ob-
served among elevation bands (H = 0.7, df = 2, P = 0.71). Mortality
was concentrated in the mid-diameter classes (Fig. 6) (H = 20.7,
df = 5, P < 0.001), and primarily attributed to D. ponderosae (Fig. 7).
Mortality of only one P. lambertiana was attributed to Cronartium ribi-
cola J.C. Fisch, the invasive pathogen that causes white pine blister rust.
While all size classes of P. lambertiana are susceptible to white pine
blister rust, smaller trees most frequently suffer lethal stem cankers
(Maloney et al., 2011). It is thought that drought results in less rust
infection (Kolb et al., 2016) due to the moist conditions required for
disease progression (Van Arsdel et al., 1956). White pine blister rust
and fire exclusion appear to be having significant impacts on P. lam-
bertiana populations in the Sierra Nevada (van Mantegm et al., 2004)
only to be exacerbated by this tree mortality event. This is concerning
given the limited P. lambertiana regeneration observed (Table 3).

3.2.3. Abies concolor

Abies concolor exhibited the third highest levels of tree mortality (65
trees, 26.3% of A. concolor) (Fig. 8). Mortality on a per plot basis ranged
from 0% (35 plots) to 100% (10 plots), while 114 plots had no A.
concolor. Mortality of A. concolor ranged from 9.3 + 5.6% on the

Stanislaus to 39.9 + 8.1% on the Sequoia, but no significant differ-
ences were observed among national forests (H = 4.6, df =3,
P = 0.20). Furthermore, no significant differences were observed
among elevation bands (H = 4.6, df = 2, P = 0.10). Mortality tended to
be concentrated in the mid-diameter classes, but no significant differ-
ences were observed among diameter classes (H= 7.6, df =5,
P = 0.18). Mortality was primarily attributed to S. ventralis (Fig. 9).
Outbreaks of S. ventralis are often associated with trees stressed by
drought, defoliation, root pathogens or other factors (Ferrell et al.,
1994).

3.2.4. Calocedrus decurrens

About 23.2% (318 trees) of C. decurrens died (Fig. 10). Mortality on
a per plot basis ranged from 0% (72 plots) to 100% (11 plots), while 30
plots had no C. decurrens. Mortality of C. decurrens ranged from
13.7 += 3.8% on the Eldorado to 26.6 + 5.5% on the Stanislaus, but
no significant differences were observed among national forests
(H = 3.3, df = 3, P =0.35). Significantly higher levels of mortality
occurred in the low (40.1 * 5.9%) compared to the high elevation
band (7.9 = 2.2%) (H=24.9, df=2, P < 0.001). No other sig-
nificant differences were observed among elevation bands (mid-,
22.1 * 3.6%). No trends were observed among diameter classes
(Fig. 10). Most mortality was attributed to suppression, however in
larger trees morality was often classified as unknown (Fig. 11). In both
cases, drought was likely a significant contributing factor.

The bark beetle genus Phloeosinus contains several species in North
America that colonize the twigs, branches and stems of trees weakened
by drought or other factors (Fettig, 2016). Surprisingly, only five trees
were colonized and killed by Phloeosinus spp. (Fig. 11), which likely
underrepresents the true contribution of this species as sampling was
limited to the tree bole. While Phloeosinus spp. are generally not con-
sidered an important cause of tree mortality, droughts in the Sierra
Nevada during the 1980s and then again in the early 2000s resulted in
significant branch flagging and some tree mortality attributed to wes-
tern cedar bark beetle, Ph. punctatus LeConte (USDA Forest Service,
2003). Stephenson et al., (2018) reported drought-induced dieback of
giant sequoia, Sequoiadendron giganteum Lindl. (Buchholz), crowns in
Sequoia and Kings Canyon National Parks in 2014. Phloeosinus spp.
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colonized some trees, but mortality was limited and the role of
Phloeosinus spp. in contributing to tree mortality was unclear
(Stephenson et al., 2018).

3.2.5. Quercus spp

Quercus are resistant to drought as they tend to be deep rooted, and
form substantial mychorrhizal associations that enhance soil moisture
uptake (Allen, 2015). Quercus chrysolepis and Q. wislizeni are evergreen,

and have sclerophyllous leaf structures that reduce evapotransporation
(Plumb and Gomez, 1983). Quercus kelloggii is deciduous, and may
prematurely drop leaves to reduce evapotranspiration during periods of
drought (McCreary, 2012). Despite this, it is surprising that only one
Quercus (Q. kelloggii) died given the amount of mortality observed in
other tree species. This is in contrast to a large oak decline event that
occurred in the Ozark Mountains, U.S. during drought in the early
2000s. There, red oak borer, Enaphalodes rufulus (Haldeman), a native
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Table 3

Tree regeneration on four national forests in the central and southern Sierra Nevada, California, U.S.

Eldorado Stanislaus Sierra Sequoia All

Seedlings’ per ha
Abies concolor 366. 4 = 268.0 a 185.9 + 90.6 a 93.0 = 49.0a 246.1 £ 75.0a 222.8 £ 73.9
Calocedrus decurrens 229.7 * 69.2 a 989.7 + 306.7 a 2625 * 72.7 a 792.9 + 235.6 a 568.7 + 102.1
Pinus lambertiana 142.2 * 41.7 a 185.9 = 107.5a 131.2 = 588 a 109 £ 7.6 b 117.6 = 325
Pinus ponderosa 311.7 = 120.2 a 196.9 = 86.6 a 153.1 = 70.1 a 109.4 = 30.0 a 192.8 = 41.7
Pseudotsuga mengziesii 131.2 = 643 a 55 %= 55b 0.0 = 00b 0.0 = 00D 34.2 = 16.5
Quercus chrysolepsis 109 = 76b 267.9 + 1025a 350.0 = 163.2a 27.3 = 224D 164.2 = 49.4
Quercus kelloggii 251.5 + 85.1a 404.6 + 1249 a 360.9 + 2184 a 246.1 * 70.4a 315.8 + 68.3
Al 1449.1 = 387.8 a 2242.0 = 4745 a 1356.1 + 372.3 a 1432.7 = 302.5a 1620.0 = 194.8
Saplings” per ha
Abies concolor 180.5 = 85.5a 776.5 * 3922 a 125.8 = 64.3 a 120.3 = 44.7 a 300.8 = 103.5
Calocedrus decurrens 355.4 = 102.7 a 918.7 *+ 311.0a 541.4 + 1354 a 1203.0 = 610.4 a 754.6 + 176.7
Pinus lambertiana 93.0 + 385a 875 + 422 a 76.6 = 245 a 109 = 76a 67.0 = 15.7
Pinus ponderosa 350.0 + 120.8 a 328.1 + 1514 a 2242 + 121.1a 76.6 = 348 a 2447 + 57.9
Pseudotsuga menziesii 71.1 = 440 a 0.0 = 0.0b 0.0 = 00b 0.0 = 0.0b 17.8 = 11.1
Quercus chrysolepsis 98.4 + 47.2b 393.7 + 1344 a 284.3 + 79.0 b 169.5 = 729b 236.5 + 45.0
Quercus kelloggii 131.2 = 46.0 a 388.2 + 1284 a 202.3 = 70.1a 153.1 = 49.0 a 218.7 + 40.6
AllP 1317.8 = 258.1 b 2985.6 + 673.6 a 1536.6 + 314.7 ab 1771.7 + 611.3 b 1902.9 + 251.7

Values are mean = SEM, based on one 0.004-ha subplot per 11.3-m fixed-radius plot.

! Height < 0.3m.
2 Height > 0.3 m and dbh (diameter at breast height, 1.37 m) < 6.35 cm.

3 Includes infrequently encountered species Cornus nuttallii, Arbutus menziesii, Notholithocarpus densiflorus, Pinus sabiniana, and Quercus wislizeni.

wood-boring beetle previously recorded only at endemic levels, con-
tributed to substantial levels of tree mortality (Stephen et al., 2001).
The goldspotted oak borer, Agrilus auroguttatus Schaeffer, an invasive
insect first associated with dying Quercus in San Diego County in 2008
(Coleman and Seybold, 2008), has caused mortality of large numbers of
Quercus in southern California, but is not established in the Sierra Ne-
vada. The species colonizes Q. kelloggii and Q. chrysolepis, among others,
and represents a significant threat. Infestations appear to be incited by
drought, and it has been demonstrated that A. auroguttatus enhances
drought stress in infested hosts (Coleman et al., 2011).

3.3. Tree mortality and density

We observed significant positive relationships between the number
of trees and the number of trees killed (F;, 173 = 143.2, P > 0.001,
R? = 0.45, Fig. 12), basal area and the number of trees killed (F;,
178 = 18.5, P < 0.001, R?> = 0.10), and SDI and the number of trees
killed (F;, 175 = 45.9, P < 0.001, R? = 0.21). Hayes et al., (2009) re-
ported basal area and SDI were strong predictors of levels of tree
mortality attributed to D. brevicomis in California (R? > 0.90). In their
study, plots with the highest densities experienced the highest levels of
tree mortality on both an absolute (number of trees killed) and pro-
portional (% mortality) basis. We observed a significant negative
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Fig. 9. Causes of Abies concolor mortality by diameter class (mid-point of 12.7-cm diameter classes) on the Eldorado, Stanislaus, Sierra and Sequoia National Forests,
California, U.S. Other includes root diseases.

relationship between the number of trees and proportion of trees killed 2009). Simply put, relative competition (e.g., for soil moisture) be-
(F1, 178 = 30.1, P > 0.001, R?=0.15), and a negative relationship comes less important during severe drought when few resources are
between SDI and the proportion of trees killed (F;, 178 = 6.9, available to any trees. Hayes et al., (2009) attributed the relationship
P < 0.001, R? = 0.04), although neither explained much variation. In between stand density and tree mortality to impacts on individual tree
our study, density-dependent mortality of trees may have been masked vigor and water availability (e.g., Kolb et al., 1998; Sala et al., 2005;
by severe drought stress as observed in other systems (e.g., Floyd et al., Wallin et al., 2008), and pheromone plume distributions (Thistle et al.,
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National Forests, California, U.S. No significant differences were observed (P > 0.05).
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2004). They reported measures of tree competition were better pre-
dicators of tree mortality than measures of host availability recorded as
basal area of P. ponderosa and numbers of P. ponderosa. Similar, we
found measures of host availability explained less variation than mea-
sures of stand density (data not shown). Negron et al., (2009) reported
the probability of P. ponderosa mortality caused by bark beetles was
positively correlated with tree density during drought in Arizona.
Fiddler et al., (1989) showed that thinning significantly reduced the
amount of P. ponderosa mortality attributed to bark beetles in Cali-
fornia. No tree mortality occurred in stands of < 9 m? per ha of basal

area, which agrees with the optimal stocking level of 11 m? per ha
described by Oliver (1979a, 1995). In our study, only one plot had
<11 m? per ha of basal area in 2014. Oliver (1995) reported maximum
SDI (365) for even-aged P. ponderosa stands in northern California was
regulated by bark beetles. A SDI value of 230 defined a threshold for a
zone of imminent bark beetle-caused tree mortality within which en-
demic populations killed a few trees, but net stand growth was positive.
Only 27 plots had SDI values <230 and only half (91 plots) had SDI
values <365 in 2014. Based on these thresholds, the majority of our
plots would have been classified as “susceptible” to mortality by bark
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beetles, and those that were not existed as small islands in a larger
landscape mostly classified as “susceptible”, which likely increased
their susceptibility due to contagion (Miller and Keen, 1960). In 2017,
84 plots had <11 m?/ha of basal area, and 175 plots had SDI values
<365. Based on these data, most plots would now be classified as of
“low susceptibility”. As such, we expect to observe little tree mortality
attributed to bark beetles during the next several years, especially in
reference to D. brevicomis given the paucity of suitable hosts that remain
(Fig. 4).

3.4. Seedlings and saplings

Tree regeneration was dominated by C. decurrens with few sig-
nificant differences observed (Table 3). Of note, significantly fewer P.
lambertiana seedlings occurred on the Sequoia than other national for-
ests (H = 11.2,df = 3, P = 0.011), and of Q. chrysolepis on the Eldorado
and Sequoia compared to the Sierra and Stanislaus (H = 20.0, df = 3,
P < 0.001) (Table 3). Significantly more A. concolor seedlings occurred
at the mid- (295.3 = 83.7) and high elevation bands (348.6 + 203.6)
compared to the low elevation band (24.6 = 17.3) (H = 12.0, df = 2,
P = 0.003), which corresponds with dominance of overstory A. concolor
(Tables 1 and 2). Significantly more Q. chrysolepis seedlings occurred at
the low (242 + 79.4) and mid-elevation band (246.1 * 123.4) com-
pared to the high elevation band (4.1 * 4.1) (H=15.4, df=2,
P < 0.001). Seedlings were dominated by shade-intermediate, shade-
intolerant and shade-tolerant species, including C. decurrens, Q. kelloggii
and A. concolor, respectively.

Significantly higher numbers of saplings occurred on the Stanislaus
than the Eldorado and Sequoia (H = 9.9, df = 3, P = 0.019) (Table 3).
Of note among elevation bands, significantly more A. concolor saplings
occurred at the mid- (360.9 = 154.7) and high elevation bands
(488.0 = 264.0) compared to the low elevation band (53.3 + 45.3)
(H = 11.5, df = 2, P = 0.003); more Q. chrysolepis saplings occurred at
the low elevation band (504.4 + 113.9) compared to the high eleva-
tion band (20.5 * 10.6) (H=7.1, df =2, P = 0.03); and more Q.
kelloggii saplings occurred at the low (291.2 = 93.3) and mid-elevation
band (274.8 + 68.5) compared to the high elevation band
(90.3 = 34.6) (H=17.1, df = 2, P = 0.03). In general, saplings were
dominated by C. decurrens, A. concolor, and P. ponderosa (Table 3).

The relative densities of tree species in the understory differed from
those in the overstory. For example, the density of A. concolor, C. de-
currens and Quercus spp. was much greater in the understory than in the
overstory, as has been reported elsewhere in the Sierra Nevada (Gray
et al., 2005). Calocedrus decurrens seedlings and saplings are generally
considered more drought tolerant than the other conifers (Pharis,
1966), but respond more slowly to release and are often heavily
browsed by deer, Odocoileus hemionus Raf. (Powers and Oliver, 1990).
Competition for light and soil moisture are primary factors limiting tree
regeneration in the Sierra Nevada (Van Pelt and Franklin, 2000),
especially in mixed-conifer stands. However, the higher light environ-
ment in the understory resulting from mortality of the overstory may
kill some of the advanced regeneration that has mostly shade foliage
(Boardman, 1977), but surviving individuals are likely to have more
favorable growing conditions due to reduced competition for soil
moisture. In the near-term, substantial litter and duff accumulations
from the abundance of dead trees will likely further favor establishment
of tree species other than P. ponderosa, due to its seed bed requirements
(Powers and Oliver, 1990).

3.5. Shrubs, forbs, grasses and invasive weeds

Mountain misery or bearclover, Chamaebatia foliolosa Benth.,
whiteleaf manzanita, Arctostaphylos viscida Parry, and greenleaf man-
zanita, Ar. patula Greene, were the most abundant shrubs (Table 4).
Competition by Chamaebatia foliolosa and Arctostaphylos spp. has been
demonstrated to reduce P. ponderosa seedling survival and growth in
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multiple studies (Oliver 1979b; Tappeiner and Radosevich, 1982; White
and Newton, 1989). We observed little mortality of shrubs, which are
capable of capturing and uptaking soil moisture at much lower con-
centrations than most trees, buffering shrubs from drought stress
(Hurteau and North, 2008). Cover by forbs and grasses was variable
throughout the network (Table 4), but more forbs were observed on the
Sierra than the Stanislaus (H = 13.1, df = 3, P = 0.004). Bare ground
accounted for only 0.3 + 0.1% (Table 4). Among elevation bands,
more grass cover occurred on the low (10.9 * 2.3%) and mid-eleva-
tion bands (8.0 + 1.7%) compared to the high elevation band
(3.3 £ 1.0%) (H = 27.6, df = 2, P < 0.001), and more forbs occurred
at the low elevation band (8.7 *= 1.8%) compared to the high elevation
band (5.0 = 1.3%) (H = 12.3, df = 2, P = 0.003). Litter occurred at
higher levels on the high elevation band (58.7 + 4.4%) compared to
the low (43.0 = 4.4%) (H = 7.7, df = 2, P = 0.02), where higher tree
densities were observed (Tables 1 and 2). More bare ground occurred at
the high elevation band (0.6 = 0.2%) compared to the low
(0.02 = 0.02%) and mid-elevation bands (0.2 * 0.09%) (H = 13.0,
df = 2, P = 0.001)

Many disturbances promote plant invasions by increasing resource
availability and decreasing plant competition. Surprisingly, previous
studies of bark beetle-impacted landscapes in the western U.S. have
reported few increases in invasive plants (Fettig et al., 2015). In our
study, 40 plots contained species considered invasive, causing damage,
or having the potential to cause damage (www.cal-ipc.org/ip/
inventory/index.php 2016). Cheatgrass, Bromus tectorum L., was the
most common (17 plots). Others included ripgut brome, Bromus dia-
ndrus Roth (9 plots), bull thistle, Cirsium vulgare (Savi) Ten. (8 plots),
Johnsongrass, Sorghum halepense (L.) Pers. (4 plots), yellow star-thistle,
Centaura solstitalis L. (3 plots), mullein, Verbascum thapsus L. (2 plots),
and Himalayan blackberry, Rubus armeniacus Focke (1 plot). Future
surveys will facilitate a better understanding of the impacts of this
mortality event on the distribution and abundance of invasive plants.

4. Conclusions

Droughts accompanied by warmer temperatures (i.e., “hotter
droughts” or “global change-type droughts”) are increasingly re-
cognized as important drivers of tree mortality not only in the western
U.S. (Fettig et al., 2013; Crockett and Westerling, 2018), but worldwide
(Allen et al., 2010, 2015; Hartmann et al., 2018). In short, warming
amplifies chronic and acute water stress, and increases the incidence
and severity of forest disturbances and drought-induced mortality of
forest vegetation. During recent decades, tree mortality attributed to
bark beetles has exceeded that by wildfires in the western U.S. (Hicke
et al., 2016) raising concerns about the sustainability of some forests
(Morris et al., 2018). In our study, 48.9% of trees died in a period of
three years, most of which were P. ponderosa in the larger-diameter
classes. Accordingly, we observed immediate shifts in forest structure
and compositions, with a decline in the relative proportion of P. pon-
derosa and increases in the relative proportions of C. decurrens, Q. kel-
loggii and Q. chrysolepis. Tree regeneration was dominated by C. de-
currens and Quercus spp., however additional surveys are required to get
a better understanding of recruitment of these species to the mid- and
overstory. In the absence of management intervention, we expect to see
some type conversions (e.g., to Cedrus and Quercus or shrublands),
particularly in the lower elevations of the southern Sierra Nevada
where mortality of dominant and co-dominant trees was most severe.

Recently, the California Tree Mortality Task Force (2017) released
recommendations for comprehensive restoration of the Sierra Nevada.
Key elements of their plan include: (1) increasing the pace and scale of
thinning, prescribed burning and managed wildfire, (2) rebuilding
California’s forest products industry to facilitate adequate biomass re-
movals, (3) improving forest structure for wildlife habitat, (4) restoring
ecologically-sensitive areas (e.g., meadows), (5) facilitating important
legislative and administrative reforms that act as barriers to project
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Table 4
Ground cover percent on four national forests in the central and southern Sierra Nevada, California, USA.
Eldorado Stanislaus Sierra Sequoia All

Shrubs 346 = 52a 39.3 =+ 48a 324 = 52a 329 = 48a 348 £ 25
Chamaebatia foliolosa 26.6 = 5.0a 316 + 48a 242 + 51a 242 + 41a 26.7 + 2.4
Arctostaphylos viscida 0.8 = 05a 0.8 = 0.6a 33 *09a 35 *14a 2.1 =05
Arctostaphylos patula 0.0 £ 0.0a 04 £ 02a 0.0 £ 0.0a 22 + 08a 0.7 = 0.2
Forbs 7.0 £ 2.5 ab 3.0 09D 76 * 16a 9.6 = 2.1 ab 6.8 £ 09
Grasses 6.1 £ 17a 42 + 14a 82+ 17a 11.3 = 3.0a 7.4 = 1.0
Bare ground 03 *01la 0.5 = 03a 0.1 = 01a 0.2 = 0.1a 0.3 = 0.1

Values are mean = SEM, based on one 0.004-ha subplot per 11.3-m fixed-radius plot. Most abundant shrub species shown.

implementation, and (6) monitoring and adaptive management. In
areas where substantial tree mortality has not yet occurred (e.g., some
mid- to high elevations of the Eldorado), forest managers might reduce
stand densities to increase the resilience of forests to drought and dis-
turbances incited by drought (North et al., 2015a; Kolb et al., 2016;
Fettig et al., 2018a) by use of mechanical thinning and/or fire, the latter
either prescribed or managed wildfires (North et al., 2015b). To that
end, Goulden and Bales, (2014) showed that evapotranspiration in-
creases exponentially with increased Normalized Difference Vegetation
Index (NDVI, a measure of forest greenness and density) supporting the
value of thinning to reduce drought stress in the southern Sierra Ne-
vada, and a recent study of the Illilouette Creek Basin in Yosemite
National Park found increases in wetness occurred following 40 years of
managed wildfire (Boisramé et al., 2017). Numerous other studies have
demonstrated the effectiveness of thinning to increase resistance and
resilience to bark beetles (Fettig et al., 2007) and wildfire (Mclver et al.,
2013). There are other tools available (e.g., insecticides and semi-
ochemicals) to protect individual trees (e.g., blister rust-resistant P.
lambertiana) or stands of trees from mortality attributed bark beetles
during periods of drought (Fettig and Hilszczanski, 2015). To that end,
it is likely that stocking thresholds (e.g., Oliver, 1995) will need to be
lowered to maintain adequate levels of resistance and resilience under
increased levels of drought stress projected for this region (Diffenbaugh
et al., 2015). High variability thinning (focused on spatial complexity)
coupled with prescribed burning may best align forests in the central
and southern Sierra Nevada with historical conditions, which were
known to be more resilient to drought and disturbances incited by
drought (Knapp et al., 2017).

Tree mortality resulting from colonization of native bark beetles is
an important part of the ecology of these forests. Some level of tree
mortality is desirable and often results in a mosaic of age classes and
tree species compositions that increases resistance and resilience to
multiple disturbances (Fettig, 2012). This differs from impacts asso-
ciated with large-scale outbreaks, which may negatively impact several
ecological goods and services, including timber and fiber production,
water quality and quantity, fish and wildlife populations, recreation,
grazing capacity, biodiversity, endangered species, carbon sequestra-
tion and storage, and cultural resources, among many others (Morris
et al., 2018). It is important to note that the ecology and impact of bark
beetles is also influenced by other biotic, abiotic, and anthropogenic
(e.g., management activities and land use patterns) disturbances that
also directly influence successional pathways. To our knowledge, this is
the most severe outbreak of D. brevicomis in recorded history, and
among the largest for any bark beetle in recent decades in the western
U.S. (Fettig et al., 2018b). Furthermore, much of the tree mortality
occurred in and near the wildland urban interface (California Tree
Mortality Task Force, 2018), which may foreshadow impacts of future
outbreaks of D. brevicomis (and other species) as human populations
shift from the eastern to western U.S. (U.S. Census Bureau, 2012). It
also highlights increased mortality risks for trees during severe
droughts, particularly under warmer temperatures attributed to climate
change (Clark et al., 2016; Crockett and Westerling, 2018). In the fu-
ture, it is likely that more frequent extreme weather events will increase

the frequency and magnitude of severe ecological disturbances in many
forests, driving rapid and often persistent changes in forest structure,
composition and function across large landscapes.
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