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Abstract 

The evaluation of the elastic response of coated systems under indentation loading represents 

a crucial issue, which determines the behavior of such systems under tribological applications. 

Although a number of models have been proposed in the literature for the description of the 

change in the composite modulus with indentation depth, as well as for the determination of 

the elastic modulus of monolayer coatings, only few works address the analysis of multilayer 

coatings. The present work proposes a general methodology, which allows the modification 

and extension of the models employed in the analysis of monolayer coatings, for the study of 

the elastic response of multilayer coatings. For this purpose, a number of models have been 

examined, including those proposed by Gao et al., Menčík et al., Perriot and Barthel, Antunes 

et al., Korsunsky and Constantinescu, Doerner and Nix, Bec et al. and Bull. The foundation of 

the advanced formalism is the physically-based concept proposed by Iost et al. for the 

computation of the volume fraction of each layer in the coating and therefore, of its 

contribution to the global elastic response under indentation. The modified models are further 

employed in the analysis of a coated system composed of a 2024-T6 aluminum alloy substrate 

coated with a multilayer coating of DLC/CrC/CNiPCr/NiP of approximately 54 m in 
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thickness, as well as, a set of experimental data reported by Bull for a bilayer coated system. 

It has been shown that the different models analyzed are able to provide a satisfactory 

description of the experimental data, although the quality of the fit depends on the number of 

material parameters involved in each model. The mean square error of the fit is employed for 

conducting a comparison between the models.  

 

Keywords: Elastic modulus, penetration depth, multilayer coatings, nanoindentation testing.  
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Nomenclature 

Arabic symbols 

a, contact radius 

a(tf/h), weight function 

aA1(A1, tf/h), weight function in the first model advanced by Antunes et al. 

aA2(tf/h), weight function in the second model advanced by Antunes et al. 

aB(tf/h), weight function in the second model advanced by Bull 

aBec(tf, a, h), weight function in the Bec et al. model 

aDN
(i)

,  DN DN fa α , t /h , weight function in the Doerner and Nix model 

aG(tf/h), weight function in the Gao et al. model 

 KC KC KC fa β , n , t /h , weight function in the Korsunsky and Constantinescu model 

aM1(M1, tf/h), weight function in the first model advanced by Menčík et al. 

aM2(M2, tf/h), weight function in the second model advanced by Menčík et al. 

 PB PB PB fa β , n , t /h , weight function in the Perriot-Barthel model 

b
(i)

, b(C, tf, h), weight function in the Jönsson-Hogmark model 

C, C
(i)

 constants in the Jönsson-Hogmark model 

E, elastic modulus, GPa 

E*, plane strain elastic modulus, GPa 

EC, composite elastic modulus, GPa 

EC Exp., experimental values of the composite elastic modulus, GPa 

EC Cal., computed values of the composite elastic modulus, GPa 

ES, substrate elastic modulus, GPa 

EF, elastic modulus of a film, GPa 

h, indentation or penetration depth, nm 

hc, contact depth, nm 

hmax, maximum penetration depth, nm 

H, hardness, GPa 

HC, composite hardness, GPa 

kb, constant in the Bec et al. model, nm 

N, number of layers in the multilayer coating 

nb, constant in the Bec et al. model 

NExp., number of experimental data points 

nKC, adjustable parameter in the Korsunsky and Constantinescu model 
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nPB, adjustable parameter in the Perriot and Barthel model 

Npar, number of adjustable parameters in the models 

P, load, N 

S, contact stiffness, N m
-1

 

tf, tf
(i)

, coating thickness, nm 

xv
(i)

, volume fraction of the i
th

-layer in the multilayer coating 

 

Greek symbols 

DN, adjustable parameter in the model of Doerner and Nix. 

KC, adjustable parameter in the Korsunsky and Constantinescu model 

PB, adjustable parameter in the Perriot and Barthel model 

, (h, tf, ) weight function in the Gao et al. model 

, Poisson ratio 

, half-angle of the tip conical indenter at the maximum load 
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1. Introduction. 

 Multilayer coatings, deposited by means of both chemical vapor deposition (CVD) and 

physical vapor deposition (PVD) techniques, have been employed for the improvement of 

hardness, elastic modulus, adhesion strength, toughness, wear resistance, as well as 

decreasing the friction coefficient of coated systems. Particularly, the increase in hardness and 

load-bearing capacity brought about by the deposition of such films has been attributed to the 

presence of interfaces between the different layers, which act as barriers to dislocation 

motion. Therefore, as the number of such interfaces increases, a concomitant increase in the 

mechanical properties and performance of the multilayer coated system has been observed [1-

12].  

 In general, the assessment of the mechanical behavior of coated systems involving 

multilayer coatings requires an accurate determination of both hardness and the elastic 

properties, not only of the multilayer as a whole, but also of the individual layers which 

compose it. For example, it is widely accepted that the H
3
/E*

2
 ratio could provide a good 

indication of the resistance to plastic deformation of the coating and therefore, of its 

toughness [13, 14]. Here H stands for hardness and E* represents the plane strain modulus of 

the film, which is given by E* = E / (1-
2
), where  represents the Poisson ratio. In this sense, 

experience shows that an increase in such a ratio leads not only to the increase in the wear 

resistance of the coated system, but also an increase in impact resistance [15, 16]. Therefore, a 

precise evaluation of the global properties of the multilayer, as well as the individual 

mechanical properties of each layer would be of utmost importance for designing the 

performance of such materials in service.  

 In the case of monolayer coatings, a number of empirical models have been proposed 

for determining the elastic modulus of the film, EF, from indentation testing and to ensure that 

the measured properties are not influenced by the deformation of the substrate. Some of these 

models, such as those proposed by Gao et al. [17], Menčík et al. [18], Perriot and Barthel 

[19], Antunes et al. [20] and Korsunsky and Constantinescu [21], are expressed in terms of a 

linear law of mixtures of the form: 

 

    C f F f SE  = a t /h E  + 1 - a t /h E                                          (1a) 

or 

   C f F f SE  = 1 - a t /h E  + a t /h E                                           (1b) 
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A second group of these models, as those proposed by Doerner and Nix [22], Bec et al. [23], 

Menčík et al. [18], Antunes et al. [20] and more recently by Bull [24, 25] have been expressed 

by assuming the validity of a harmonic law of mixtures, of the form: 

 

   f f

C F S

a t /h 1 - a t /h1
 =  + 

E E E
                                                     (2a) 

or 

   f f

C F S

1 - a t /h a t /h1
 =  + 

E E E
                                                    (2b) 

 

In the above equations, EC represents the composite elastic modulus, ES the substrate elastic 

modulus and a(tf/h) a weight function commonly expressed in terms of the coating thickness 

to indentation depth or coating thickness to contact radius ratio. In some of the models, a(tf/h) 

also involves some adjustable parameters.  

On the contrary, the experimental and theoretical work devoted to the determination of 

the elastic modulus of individual layers in multilayers coatings has been relatively more 

limited. For example, in the case of bilayer coatings, Whiting et al. [26, 27] and Harms et al. 

[28] employed the so called “vibration reed” method, which allows the computation of the 

elastic modulus of one layer of the coating from the shift in natural frequency of the beam 

without and with the second layer.  

Chudoba et al. [29], on the other hand, proposed a methodology for determining the 

elastic properties of bilayer systems from elastic indentation conducted with spherical 

indenters, together with the modeling of the corresponding force-penetration depth curve. 

Similarly, Malzbender and Steinbrech [30] presented a set of relationships in order to analyze 

the mechanical properties of multi-layered composites employing the experimental data 

derived from bending tests. This approach allows the determination of the unknown thickness 

or elastic modulus for a layer within a multi-layered composite, provided that the respective 

properties of all other layers are known.  

 More recently, López-Puerto and co-workers [31] were able to extend the 

methodology proposed by Whiting et al. [26, 27] and Harms et al. [28], to the analysis of 

multilayer coatings by developing an integral approach, which allows the computation of the 

elastic modulus of a single layer in a multilayered system in cantilever configuration, by 

measuring the natural frequency of the complete multilayered cantilever beam. These authors 
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were able to verify the accuracy of the model by comparing the predicted values of the 

fundamental frequency with those predicted by a three dimensional finite element model of 

laminated cantilever beams for systems of three layers composed of two dissimilar metallic 

films, with thicknesses less than 250 nm, deposited onto a polymeric substrate.  

 On the other hand, Bull [25] has recently developed an alternative methodology for 

determining the elastic modulus of a coating on a substrate by means of nanoindentation. The 

method is based on the load support of a truncated cone of material beneath the indenter. This 

author has shown that the proposed model can be extended to the analysis of multilayer 

coatings, which constitutes a critical aspect when compliant coating layers are sandwiched 

between stiffer layers.  

 Thus, given the limited research work that has been carried out in order to characterize 

the elastic mechanical properties of multilayer coatings by means of indentation methods, a 

strong motivation arises to adapt the existing models developed for monolayer coatings to this 

aim. Therefore, the present work has been carried out in order to propose a simple 

methodology, which allows the extension of the different models developed for the 

description of the composite elastic modulus of coated systems encompassing monolayer 

coatings, for determining the elastic modulus of each of the individual layers, which compose 

a multilayer coating, as well as describing the composite elastic modulus of such coated 

systems. The advanced approach is based on the rational computation of the actual volume 

fraction of each layer in the coating, which contributes to the composite elastic modulus, 

following the earlier developments of Iost et al. [32] for the description of the composite 

hardness of multilayer coatings.  

 

2. Brief review of the different models earlier advanced for the determination of the 

elastic modulus of monolayer coatings 

 Doerner and Nix [22], in their pioneer investigation, first advanced a methodology for 

the interpretation of depth-sensing indentation data, which allowed the determination of the 

elastic modulus of thin films from the slope of the unloading of the indentation conducted on 

the coated system. For this purpose, the above authors proposed an empirical expression for 

the reciprocal of the unloading slope, dh/dP, or compliance of the coated system under 

investigation, of the form: 
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DN f DN f

1
 t  t2 2 2

2 - - 
f s 0h h

s

f s 0

dh 1 1 - 1 1
 =    1 - e  +  e  +  + b

dP 2h 24.5 E E E

           
     

      

   (3) 

 

Accordingly, the composite elastic modulus for the coated system, Ec, would be given by: 

 

   DN DN f DN DN f

C F S

1 - a α , t /h a α , t /h1
 =  + 

E E E
                            (4a) 

 

Where the weight function, aDN(DN, tf/h), is expressed as: 

 

  f
DN DN f DN

t
a α , t /h   exp - α

h

 
  

 
                                    (4b) 

 

In the above equations, h represents the true plastic or penetration depth, f, Ef, s, Es and 0, 

E0, the Poisson ratio and elastic modulus of coating, substrate and indenter, respectively, tf the 

coating thickness, DN an empirical constant and bs the intercept corresponding to the bulk 

substrate.  

 In a subsequent investigation, Gao et al. [17] analyzed the elastic contact problem of a 

rigid cylindrical punch indenting a multi-layered linear elastic half space. The results of this 

analysis were employed to model the unloading phase of a microindentation test of thin films 

deposited on a substrate. According to this analysis, the composite modulus can be expressed 

as a simple linear law of mixtures as a function of the film and substrate moduli, of the form: 

 

    C G f F G f SE  = a t /h E  + 1 - a t /h E                                          (5a) 

 

Where the weight function aG(tf/h) would be given by: 
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 

 
 

-1 ff
G f

2

ff

2

f

f

2 tt
a  = h, t ,  =  tan   + 

h h tan

h tan

t1 t h tan
            1-2   ln 1 +  - 

2 1- h tan t h tan
1 + 

t

 
 






   

  
   
   

   
   

    
   

    
      

  (5b) 

 

In this case,  = 70.3° and represents the half-angle of the tip conical indenter at the 

maximum load and  is the Poisson ratio. In this case, as observed from equation (5b), the 

weight function does not depend on any adjustable parameter.  

 On the other hand, Bec et al. [23] developed an alternative formulation based on the 

consideration that the coating and substrate behave as two springs in series. In this case, the 

effective contact compliance was computed in terms of the contact radius, “a”, by means of 

simple correcting parametric relationships of the form f(a) = Bn

B1 + k a , where kB and nB are 

constants. According to these authors the composite elastic modulus would be described by 

means of a harmonic law of mixtures of the form: 

 

   Bec f Bec f

C F S

1 - a t ,  a, h a t ,  a, h1
 =  + 

E E E
                                    (6a) 

 

Where the corresponding weight function, aBec(tf, a, h), which does not require any empirical 

parameter, would be given by: 

 

  f f
Bec f

f f

2t 2t
a t ,  a, h  =  = 

2t 2t
πa 1   πh tan 1   

πa πh tan




   
    

   

                  (6b) 

 

 Menčík and co-workers [18] also investigated the application of five different weight 

functions for determining the elastic modulus of thin homogeneous films from indentation 

measurements. The investigated functions involved different types, including a linear, 

exponential and reciprocal exponential, as well as the weight functions earlier put forward by 

Gao [17] and the Doerner and Nix [22]. Although these authors concluded that, in general, the 
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indentation response of the different film/substrate systems investigated could be described by 

the Gao’s analytical function, they also proposed the determination of the elastic modulus of 

thin films by means of an exponential weight function, used jointly either with a linear or a 

harmonic law of mixtures. Therefore, according to their first model, the composite elastic 

modulus would be given by: 

 

    C M1 M1 f F M1 M1 f SE  = a α , t /h E  + 1 - a α , t /h E                           (7a) 

 

Where the corresponding weight function, aM1(M1, tf/h), would be expressed as: 

 

 M1 M1 f M1

f

h
a α , t /h  = exp - α  

t

 
 
 

                                          (7b) 

 

Also, according to their second model: 

 

   M2 M2 f M2 f

C F S

a α , t /h 1 - a α , t /h1
 =  + 

E E E
                                  (8a) 

 

Where, again the corresponding weight function, aM2(M2, tf/h), would be given by: 

 

 M2 M2 f M2

f

h
a α , t /h  = exp - α  

t

 
 
 

                                           (8b) 

 

 Perriot and Barthel [19 ], by analyzing the contact problem of coated elastic materials, 

were able to develop a numerical algorithm based on an exact integral formulation of the 

elastic contact of an axisymmetric indenter onto a coated substrate. As part of their 

formulation, these authors proposed an empirical function for the description of the 

composited elastic modulus of the coated system, of the form: 

 

   C PB PB PB f F PB PB PB f SE  = 1 - a β , n , t /h E  + a β , n , t /h E                       (9a) 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12 

 

Where the corresponding weight function, aPB(
PB PB fβ , n , t /h ), would be given by: 

 

 
PBPB PB PB f n

PB f

1
a β , n , t /h  = 

β  t
1 + 

 h tan

 
 
 

                              (9b) 

 

In the above expression, both PB and nPB represent adjustable parameters. 

 Antunes et al. [20] also examined the influence of the elastic and plastic properties of 

both the substrate and film materials, which encompass a coated system, on the composite 

elastic modulus of the latter, by means of three-dimensional numerical simulations of the 

Vickers hardness test. In order to describe the change in the composite modulus as a function 

of the elastic modulus of film and substrate, these authors proposed two different 

formulations. The first one corresponds to a linear law of mixtures of the form: 

 

   C A1 A1 f F A1 A1 f SE  = 1 - a α , t /h E  + a α , t /h E                           (10a) 

 

Where the weight function is expressed as: 

 

  f
A1 A1 f A1

t
a α , t /h   exp - α

h

 
  

 
                                          (10b) 

 

In the above expression, A1 represents an adjustable parameter.  

 The second formulation advanced by Antunes and co-workers [20] corresponds to a 

harmonic law of mixtures, which involves the weight function proposed earlier by Gao et al. 

[17]: 

 

   A2 f A2 f

C F S

a t /h 1 - a t /h1
 =  + 

E E E
                                 (11a) 

 

Where: 

 f
A2 f

t
a  = h, t , 

h
 
 
 

                                             (11b) 
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 Korsunsky and Constantinescu [21], in a subsequent investigation, analyzed the 

influence of punch tip sharpness on the interpretation of indentation measurements. This 

study involved the development of closed form solutions for the indentation of a 

homogeneous elastic half-space by an axisymmetric indenter of arbitrary shapes, which 

included Hertzian, conical, and conical with a rounded tip. In order to present the numerical 

results for the apparent contact modulus for elastic coated systems, as well as representing the 

apparent contact modulus as a function of the indentation depth, these authors proposed a 

formulation of the composite elastic modulus of the form: 

 

   C KC KC KC f F KC KC KC f SE  = a β , n , t /h E  + 1 - a β , n , t /h E            (12a) 

 

Where the corresponding weight function  KC KC KC fa β , n , t /h  is similar to that employed for 

the description of the composite hardness of a coated system, as earlier proposed by 

Korsunsky and co-workers [33], which is given by: 

 

 
KCKC KC KC f n

KC f

1
a β , n , t /h  = 

h
1 + 

β  t

 
 
 

                                 (12b) 

 

In the above expression, KC and nKC represent adjustable parameters.  

 More recently, Bull [23, 24] has developed a simple formulation, which can be applied 

to both monolayer and multilayer coatings, which does not involve any adjustable parameter. 

As in the previous models, the composite modulus is expressed in terms of the coating and 

substrate moduli by means of a weight function, which is developed from the assumption that 

the indentation load is supported by a conical region of elastic deformation below the contact. 

Thus, by assuming that the substrate is very much thicker than the coating (tS >> tf) the 

composite modulus would be given by: 

 

   B f B f

C F S

1 - a t /h a t /h1
 =  + 

E E E
                                              (13a) 
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Where the weighting function is expressed as: 

 

 
 

 
0

B f

0 f f

π h tanπ a
a h, t  =   

π a   2t π h tan  + 2t







                               (13b) 

 

 In the next section, the extension of all the preceding models to describe the composite 

elastic modulus of systems involving multilayer coatings, as well as determining the elastic 

modulus of each of the layers will be presented.  

 

3. Basis of the model 

 According to the model proposed by Jönsson and Hogmark [34] for the analysis of 

monolayer coated systems under indentation, the composite hardness, HC, can be expressed as 

a function of film and substrate hardness (HF and HS, respectively), by means of a simple law 

of mixtures of the form: 

 

   C f F f SH  = b C, t , h H  + 1 - b C, t , h H                                   (14) 

 

In the above equation, b(C, tf, h) represents a weight function similar to that present in 

equation (1), which is given by: 

 

 
22 2

f f f
f 2

C t C  t C t
b C, t , h  = 2  -  = 1 - 1 - 

h h h

 
 
 

                         (15) 

 

In this case, such a function depends not only on the coating thickness and indentation depth, 

but also on a constant C, which depends on the indentation behavior of the coating material 

(fracture or plastic deformation) and indenter geometry [32]. Thus, the product Ctf will 

determine the indentation depth at which the substrate will start to contribute to the composite 

hardness. Given the ill-definition of b(C, tf, h) as observed from equation (4), the weight 

function can be re-defined simply as follows: 
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 

 

f f

2

f
f

b C, t , h  = 1                           if     h < C t

C t
b C, t , h  = 1 - 1 -     otherwise

h

 
 
 

                             (16) 

 

Thus, according to equation (16), if h < Ctf, the composite hardness will be determined 

entirely by the coating, whereas in the opposite case, it will be determined by both coating 

and substrate. For a Berkovich indenter the product Ctf will vary between approximately 9-

17% of the coating thickness [32].  

 The extension of this model to deal with multilayer coatings, conducted by Iost et al. 

[32], allowed the demonstration that the effective volume fraction of j
th

-layer of the multilayer 

coating, which contributes to the composite hardness, can be determined on the basis of 

equation (14) by taking into consideration the different layers involved in the indentation 

process. Thus, for the first layer of the coating: 

 

     1 i i

v fx  = 1   if    h < C  t                                              (17a) 

 

   
   

   

2
1 1

1 1 f
v 1 1

f

C  t
x  = b  = 1  1 -      Otherwise

h - C  t

   
  

   

                    (17b) 

 

Therefore, the volume fraction for any given layer would be given by an expression of the 

form: 

 

       
j - 1 j

j i i i

v v f

i = 1 i = 1

x  = 1 - x     if     h < C  t                                     (18a) 

 

Otherwise: 

 

     

       
2 2

j j-1
i i i i

f f
j j j - 1 i = 1 i = 1

v

C  t C  t

x  = b  -  b  = 1  1 -  - 1 - 1 - 
h h

      
         

      
      
            

 
    (18b) 
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That is to say: 

 

 

   

 

2
j

i i

j-1f
j ii = 1

v v

i=1

C  t

x   = 1  1 -  - x
h

  
   

  
  
    


                                  (18c) 

 

 Thus, in principle, the effective volume fraction, which determines the contribution of 

any particular layer within the multilayer coating to the composite mechanical property, could 

be computed from the corresponding weight function associated to the specific model 

employed.  

 In the case of the characterization of the elastic modulus of coated systems involving 

monolayer coatings, a particular consideration that should be taken into account is the widely 

accepted notion that the interference of the substrate will occur when the indentation depth is 

greater than approximately 1% of the coating thickness [35-37], which is equivalent to setting 

C = 1/100 for all the computations involved. In the analysis of coated systems which involve 

multilayer coatings, the interference of the (j + 1) layer or the substrate would then occur 

when the indentation depth is greater than approximately 1% of the summation of the j 

previous layers thickness, as illustrated below.  

 Regarding the different models mentioned above for the description of the change in 

the elastic modulus with penetration depth and taking, as an example, the model proposed by 

Doerner and Nix [22], according to the above formulation, the extension of this model to the 

analysis of the elastic properties of multilayer coatings, as well as its computational 

instrumentation, would require that for first layer: 

 

 
 1

1 f
v

t
x  = 1   if     h < 

100
                                          (19a) 

 

Otherwise: 
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     
 

 

1
1 1 1 f

v DN DN 1

f

t
x  = 1 - a  = 1 - exp - α

t
h - 

100

  
   

  
  
 

   

                          (19b) 

 

For the subsequent layers of the coating: 

 

     
j - 1 j

j i i

v v f

i = 1 i = 1

1
x  = 1 - x    if     h <  t

100
                                    (20a) 

 

Otherwise: 

 

     

   

 

 

 

 

 

j j j - 1

v DN DN

j j-1
i i

f f
j j j-1i=1 i=1

v DN DNj j-1
i i

f f

i=1 i=1

x  = 1 - a  -  1 - a    or

t t

 x  = 1 - exp - α  - 1 - exp - α
1 1

h - t h - t
100 100

   
   

      
      
   

      
      
            

 

 

         (20b) 

 

After the computation of the volume fraction of each layer, the corresponding volume fraction 

of the substrate material is determined by means of: 

 

   
N

S i

v v

i = 1

x  = 1 - x                                                     (21) 

 

N represents the number of layers of the multilayer coating.  

Thus, according to this model, the composite elastic modulus of the multilayer coating 

can be calculated from the following relationship: 

 

 

 

 i SN
v v

i
i = 1C SF

1 x x  
 =    + 

E EE
                                            (22) 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 

 

Thus, the modified version of the Doerner and Nix model, in order to analyze multilayer 

coatings, would require the determination of (2N + 1) parameters. This computation is carried 

out by means of non-linear regression analysis of the experimental data available, as shown in 

the forthcoming.  

Finally, equations (19a), (20a) and (21) will be the same for any other model chosen to 

represent the change in the composite elastic modulus with penetration depth data. Appendix 

1 summarizes the corresponding formulation and computational instrumentation for the 

models advanced by Gao et al. [17], Bec et al. [23], Menčík et al. [18], Perriot and Barthel 

[19], Antunes et al. [20], Korsunsky and Constantinescu [21] and Bull [24, 25].  

 

4. Experimental materials and techniques 

 In order to validate the modified form of the different models indicated above, the 

nanoindentation data obtained from a multilayer coating deposited onto a 2024-T6 aluminum 

alloy was employed. However, in order to improve the load-carrying capacity, the aluminum 

alloy substrate was coated with a NiP plating of approximately 52 m in thickness, prior to 

the PVD deposition of a hydrogenated a-C:H diamond-like carbon (DLC) film, commercially 

known as  Dymon-iC
 TM

. Therefore the NiP plating acted as an intermediate layer between the 

DLC film and the aluminum substrate. PVD deposition was carried out at Teer Coatings, U. 

K. Deposition was conducted by means of closed field unbalanced magnetron sputtering ion 

platting (CFUBMSIP), coupled with plasma assisted chemical vapor deposition (PACVD). 

Details of the deposition techniques and characterization of the coated system have been 

reported elsewhere [38, 39]. As reported by Staia et al. [39], the coating roughness was of 0.2 

 0.01 m prior to DLC deposition.  

Nanoindentation tests were carried out in order to obtain the load-displacement data by 

employing a Nanoindenter (MTS System Corporation, Oak Ridge, TN) equipped with a 

Berkovich diamond indenter tip, using a continuous contact stiffness measurements (CSM) 

mode. Such a mode provides continuous load and indentation depth measurements during 

loading by superimposing a 2 nm harmonic oscillation on the loading curve, at a frequency 45 

Hz. Both elastic modulus and hardness data were continuously determined during loading up 

to the maximum load by means of the Oliver and Pharr (OP) method [40]. The maximum 

loads applied were in the range of 7000 mN. The diamond tip calibration was performed 

following the procedure of OP, by determining the Berkovich indenter area function, A(hc), 

evaluated at the contact depth, hc. For this purpose, a fused silica sample supplied by the 

instrument manufacturer, whose elastic modulus is 72 GPa, was employed. As will be 
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presented in the next section, the elastic modulus of this sample was found to be constant for 

penetration depths greater than approximately 8-10 nm. Thus, the real contact depth, defined 

as hc = hmax - 0.75 P/S, was measured continuously. Here, hmax represents the maximum 

penetration depth, P the load and S the contact stiffness, which is defined as the ratio of the 

load to depth amplitudes of the small harmonic oscillations.  

Three different samples of the coated system were employed and on each specimen 25 

indentations were conducted. A constant indentation rate of 0.05 s
−1

 was employed and both 

the hardness and elastic modulus versus penetration depth were recorded continuously up to 

approximately 7000 nm. The Oliver and Pharr method [40] was used in order to analyze the 

results of the indentation tests, since this material was not observed to exhibit significant pile-

up or sink-in phenomena.  

 A CrC intermediate layer was deposited onto the NiP plating prior to the deposition of 

the DLC coating, which in principle represents a multilayer coating consisting of DLC film 

and a CrC coating with a total thickness in the range of 2.2 m, both deposited onto an 

eletroless NiP plating of about 52 m in thickness. As indicated above, the tri-layer coating 

was deposited onto an aluminum substrate. This coated system has been thoroughly 

characterized by Staia et al. [38] employing electron microprobe analysis (EMPA) techniques. 

These authors have reported that a diffusive reaction between the DLC, CrC and NiP took 

place during PVD deposition. Such a reaction occurred over a distance of approximately 4 m 

into the NiP from the CrC-NiP interface. Thus, as a consequence of this diffusive reaction, a 

distinctive layer of CNiPCr was formed.  

 Therefore, in order to test the validity of the modified models employed for the 

description of the composite elastic modulus with penetration depth, the multilayer coating 

will be considered to exhibit the following architecture: a first layer of DLC, with a thickness 

of 900 nm, a second layer of CrC with a thickness of 1200 nm and a diffusive layer of 

CNiPCr with a thickness of 4000 nm. Given the thickness of the remaining electroless NiP 

plating, of approximately 48 m, and the fact that, as shown in the forthcoming, the 

composite elastic modulus versus penetration depth, up to approximately 7000 nm, does not 

show any influence of the aluminum alloy, the NiP plating will be considered as the 

“substrate” for all practical purposes.  
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5. Experimental results 

 Figure 1 illustrates the response of the fused silica standard employed for the 

calibration of the indenter used in the nanoindentation tests. As can be clearly observed, from 

a penetration depth of about 7 nm, the elastic modulus of the material becomes constant at a 

value of approximately 71 GPa. However, as far describing the change in the composite 

elastic modulus with indentation depth and analyzing the behavior of each layer while 

avoiding any experimental artifact related to the elastic-plastic transition that occurs at low 

contact depths, only the experimental data concerning penetration depths higher than 50 nm 

were considered. Figures 2 through 19 include approximately 20 thousand experimental 

points, which correspond to the individual E versus h curves obtained in each indentation test.  

 Thus, Figures 2 through 19 illustrate the results obtained regarding the description of 

the change both in the composite elastic modulus and volume fraction of the layers 

contributing to the composite modulus, with penetration depth. As shown in Figure 2, the 

experimental values of the composite elastic modulus exhibit a wide scatter band, starting 

from a magnitude of approximately 60 GPa at 50 nm. As the penetration depth, h, increases to 

values of approximately 500 nm, the composite modulus also increases at a relatively high 

rate to a magnitude in the range of 113-133 GPa.  

However, as h continues to increase and higher values are achieved, the composite 

modulus tends to attain a saturation value in the range of approximately 141  11 GPa. This 

magnitude is entirely consistent with that reported by Staia et al. [38], who conducted 

nanoindentation tests on the reverse side of the same DLC coated samples under investigation 

and reported a value of approximately 140  10 GPa for the electroless NiP plating. 

Therefore, it is expected that any model employed for the description of these data will 

predict a relatively low value for the DLC modulus, in the range between 60-70 GPa and a 

much greater magnitude for the CrC, CNiPCr and NiP layers, in the range of approximately 

90-150 GPa.  

 Figure 2 also illustrates the prediction of the change in the composite elastic modulus 

provided by the model advanced by Doerner and Nix [22]. The values of the elastic modulus 

and the constant DN of each one of the layers, which compose the coating, are given on the 

plot. As can be observed from Figure 2, the model provides a satisfactory description of the 

experimental data and according to Figure 3, the elastic response of the multilayer coating is 

determined mainly by the DLC, CrC and CNiPCr layers. On the contrary, the effect of the 

NiP plating considered as the substrate becomes important at penetration depths greater than 
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about 2000 nm, although its contribution to the composite modulus at the end of the 

indentation process is less than approximately 30%. Figure 2 also illustrates the value of the 

Mean Square Error (MSE), defined as: 

 

   
exp.

i

N
2

C Exp. C Cal.i
i=1

exp. Par

 E  - E  

MSE = 
N  - N

 
 

                                       (23) 

 

Where, NPar represents the number of adjustable parameters that intervene in the model, Nexp. 

the number of experimental data points, EC Exp. the experimental values of the composite 

elastic modulus and EC Cal. the module values computed with the model employed. In this 

way, it would be possible to conduct a crude ranking of the different models that have been 

tested. For the present model, MSE = 54.5 GPa
2
. 

 The model advanced by Gao et al. [17] does not involve any material parameter, other 

than the corresponding values of the elastic modulus of each layer, as well as that of the 

substrate. However, as indicated in Appendix 1, the model requires some knowledge of the 

Poisson ratio of the materials, which constitute the different layers of the multilayer coating. 

In the present case, it has been assumed that 
(DLC)

 = 0.30 [41], 
(CrC)

 = 0.33 [42], 
(CNiPCr)

 = 

0.31 [43] and 
(NiP)

 = 0.30 [44]. The results corresponding to this model are presented in 

Figures 4 and 5. As can be observed in Figure 4, the description of the experimental data 

provided by this model is also very satisfactory (MSE = 57.8 GPa
2
). Contrary to the previous 

model, as shown in Figure 5, this approach predicts the intervention of the NiP plating at a 

much earlier stage, which becomes dominant at penetration depths in the range of 

approximately 1120 nm. As the penetration depth increases from this value, the composite 

modulus is determined by the NiP and CNiPCr layers, since the influence of the DLC and 

CrC layers becomes relatively small.  

 The model proposed by Bec et al. [23] has similar characteristics to those of the model 

advanced by Gao et al. [17], in the sense that no additional material parameters are involved. 

As shown in Figure 6, the description of the experimental data is also satisfactory, particularly 

for penetration depths greater than approximately 1500 nm, which results in a somewhat 

higher MSE. The evolution of the volume faction of each layer, presented in Figure 7, is also 

quite similar to the predicted by the previous model, the most important difference being the 

stronger influence of the NiP substrate than in the previous case.  
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 The results corresponding to the first model advanced by Menčík et al. [18] are 

illustrated in Figures 8 and 9. The number of parameters involved is similar to that of the 

Doerner and Nix model [22] and also the MSE is very similar. Therefore, the description 

provided by the model can also be considered as satisfactory. However, an important 

difference in comparison with the previous models is the predicted influence of the CrC layer 

and its evolution in the course of the indentation process. As shown in Figure 9, the CrC film 

becomes the determining layer, regarding the elastic behavior of the coating, at penetration 

depths of approximately 250 nm, extending its influence up to about 5000 nm. At such a 

penetration depth, the elastic response of the coating is determined by the CrC and CNiPCr 

layers, as well as the NiP substrate.  

 Regarding the second model proposed by these authors [18], Figures 10 and 11 

illustrate the corresponding predictions. As shown in Figure 10, the description of the 

experimental data provided by this model is significantly better than that of their first model 

(MSE = 51.8 GPa
2
) and somewhat better than that provided by the Doerner and Nix model 

[22]. However, a particular characteristic of the predicted volume fraction evolution, shown in 

Figure 11, is the negligible influence of the CNiPCr layer on the elastic response of the 

coating. Therefore, the elastic response is entirely determined by the DLC film, up to about 

150 nm and the CrC layer up to approximately 4000 nm. At higher penetration depths, the 

elastic response is mainly determined by the NiP substrate.  

 The model advanced by Perriot and Barthel [19] involves two additional material 

parameters, besides the elastic modulus, for each layer, which provides a satisfactory 

description of the experimental data, as illustrated in Figure 12. Such an elastic response is 

determined by the DLC film, up to about 230 nm, the CrC layer, between 230 and 600 nm 

and the NiP substrate, which dominates at indentation depths higher than 600 nm. An 

interesting aspect shown in Figure 12 is that, according to this model, the CrC layer has a 

stronger influence on the elastic response of the coating than the diffusion CNiPCr layer with 

a thickness of approximately 4000 nm. The model exhibits a MSE somewhat higher than that 

of the Doerner and Nix model in spite of number of parameters involved.  

 The results concerning the first model advanced by Antunes et al. [20] are presented in 

Figures 14 and 15. Figure 14 illustrates that the model is able to describe quite satisfactorily 

the change in the experimental values of the composed modulus with penetration depth, 

which allows a MSE value close to that found for the second model proposed by Menčík et al. 

[18]. The evolution of the volume fraction for each layer, shown in Figure 15, indicates that, 

according to this model, the elastic response of the multilayer coating is determined at first by 
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the DLC film, up to an indentation depth of approximately 400 nm, followed by the CrC 

layer, between approximately 400 and 700 nm, until the CNiPCr layer becomes dominant, 

from 600 nm until the end of the indentation process. Substrate effects are first observed at 

approximately 1700 nm, but never achieve more than 40%.  

 The second model proposed by Antunes et al. [20] is based on the use of the function 

 introduced by Gao et al. [17]. Therefore, the model does not include any additional material 

parameters besides the corresponding elastic modules. As can be observed in Figure 16, the 

model provides a satisfactory description of the experimental data, particularly for penetration 

depths greater than approximately 1500 nm. For penetration depths less than this value, the 

model tends to underestimate slightly the experimental values of the composite modulus, 

which increases the magnitude of the MSE to a similar level of that found for the Bec et al. 

model [23]. As expected, the evolution of the volume fraction of each coating layer, shown in 

Figure 17, is very similar to that describe for the Gao et al. model [17], with predominance of 

the DLC layer up to approximately 600 nm, followed by the CNiPCr layer up to 1100 nm. 

Above this limit, the elastic response of the coating is determined by the NiP plating.  

 The model advanced by Korsunsky and Constantinescu [21] provides an excellent 

description of the experimental data, as shown in Figure 18. However, this description is 

achieved at the expense of increasing the number of material parameters involved in the 

model. Similarly to the model advanced by Perriot and Barthel [19], this approach introduces 

two additional material parameters for each layer of the coating. The MSE corresponding to 

this model is the lowest of all the models analyzed, partially as a consequence of the number 

of parameters that are involved. The evolution of the volume fraction of each layer, as 

predicted by the model, indicates the dominant effect of the DLC film up to penetration 

depths of approximately 250 nm, followed by the CrC layer up to about 2500 nm, although 

the CNiPCr layer also exhibits an important contribution from approximately 500 nm. 

Beyond penetration depths of 2500 the elastic response of the coating is mainly determined by 

the NiP substrate.  

 Finally, Figures 20 and 21 illustrate the results predicted by the model of Bull [24, 25]. 

This model does not involve any additional material parameters to the corresponding elastic 

modulus of the individual layers and represent the only model, of those under study, which 

has been extended to the analysis of multilayer coatings. A comparison of the Figures 

mentioned above with Figures 6 and 7 show clearly that the results obtained with this model 

are identical as those obtained with the model advanced by Bec at al. [23], in agreement with 
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the findings of Bull [25]. Therefore, both formulations can be considered to be equivalent if 

the substrate thickness is assumed to be “infinite” in Bull’s model.  

 According to the results that have been presented, predicted by the different modified 

models, the DLC film concerning the present investigation has a mean elastic modulus of 

approximately 69  3 GPa, whereas those corresponding to the CrC and CNiPCr layers are 

approximately 135  17 GPa and 144  5 GPa, respectively. The mean elastic modulus of the 

NiP plating has been found to be approximately 146  2 GPa, in agreement with the results 

obtained from the tests conducted on the reverse side of the coated specimens.  

 

6. Discussion 

 One of the crucial aspects of extending any model developed for the analysis of the 

elastic response of monolayer coatings to systems involving multilayers coatings under 

indentation loads is the definition of the volume fraction of the different layers and their 

corresponding contribution to the composite elastic modulus. This critical issue was 

satisfactorily solved by Iost et al. [32], by taking into consideration the physical meaning 

related to the indentation area. Although it is not explicitly indicated in their original work, 

the results of such analysis show that the volume fraction of each layer can be determined 

from the weight function employed either in the linear or harmonic law used for the 

description of the composite mechanical property measured as a function of the indentation 

depth.  

This feature, expressed by equations (17) and (18), allows a generalization of the 

physically-based concept advanced by Iost and co-workers [32]. Thus, once the volume 

fraction corresponding to the first layer is determined, the volume fraction of the subsequent 

layer can be easily computed from the corresponding weight function and by subtracting the 

prior volume fraction. The determination of the volume fraction of the remaining layers 

should follow a similar procedure by taking into account the thickness of the layers involved 

and the fractions of such thicknesses from which the layers below or substrate will start 

exerting their influence.  

 In the present case, the analysis has been based on the commonly accepted notion that 

the limiting penetration depth for the interference of the layers below that under examination 

or substrate is in the range of 1% [35-37]. Therefore, the fact that the volume fraction of a 

particular layer in the coating can be computed from the difference between the global 

volume fraction (determined by taking into account the current indentation depth and the 
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thickness of the different layers involved) and the previously computed volume fractions for 

the upper layers, allows the general extension of this methodology to any model, other than 

that advanced by Jönsson and Hogmark [34], for which, the concept was first developed.  

 The results presented in Figures 2 through 22 for the ten different models analyzed in 

the present work indicate that the use of this concept provides quite satisfactory results 

regarding the description of the change in the composite elastic modulus with indentation 

depth, as well as the computation of the elastic modulus of each of the layers involved in the 

coating. As expected, the quality of such a description depends on the number of material 

parameters involved in the model, which also has a significant influence on the MSE of the 

computation.  

 The structure of each model and particularly the form of its weight function has also a 

significant effect on the prediction of the volume fraction evolution in the course of the 

indentation process. This feature can be clearly observed in Figures 22 and 23, which 

illustrate the volume fraction evolution for the DLC, CrC and CNiPCr layers, as well as that 

of the NiP plating considered as substrate. As shown in Figure 22a, the influence of the DLC 

film on the elastic response of the coating is quite similar in all the models, up to penetration 

depths in the range of approximately 300 nm, which leads to the clustering of the different 

curves, hindering their distinction. Thus, as can be observed in Figure 22b (where the 

maximum indentation depth has been limited to 2000 nm) as penetration depth increases, the 

predicted evolution of this volume fraction varies according to each model. Some of the 

models (e.g. Gao et al., Bec et al., Antunes et al., Doerner and Nix and Bull) predict a stronger 

contribution of this layer than others (Menčík et al., Perriot-Barthel, Korsunsky and 

Constantinescu).  

 Regarding the influence of the CrC layer on the elastic response of the coating, as 

shown in Figure 23a, the strongest influence is predicted by the two models advanced by 

Menčík et al., whereas the weakest influence is predicted by the models advanced by Gao et 

al., Bec et al. and Bull. The predictions of the other models are observed to range between 

these extremes. A similar spread is observed for the volume fraction evolution of the CNiPCr 

layer, which shows distinct features, as illustrated in Figure 23b. In this case, the strongest 

influence is predicted by the models of Doerner and Nix and Antunes et al. (model 1).  

In both cases, the volume fraction tends to decrease as the indentation depth increases 

beyond approximately 3500 nm. Other models, such as those proposed by Gao et al., Bec et 

al., Perriot-Barthel, Korsunsky-Constantinescu and Bull predict a much weaker influence of 

this layer and also exhibit a trend to decrease with penetration depth from approximately 1000 
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nm. The two exceptions to this general description is exhibited by the two models proposed 

by Menčík et al., one of which predicts a steady increase (model 1) and the other, which 

predicts a negligible effect.  

 Finally, as expected, all the models predict a steady increase in the volume fraction of 

the NiP plating with indentation depth, as shown in Figure 23c. The strongest effect is 

exhibited by the the Perriot-Barthel model, followed by those predicted by Bec et al. and Bull, 

Gao et al. and Antunes et al. (model 2) and Korsunsky-Constantinescu and Menčík et al. 

(model 2). The less strong substrate influence is predicted by the models of Antunes et al. 

(model 1), Menčík et al. (model 1) and Doerner and Nix.  

 The particular evolution that is observed for the volume fraction of each layer 

according to the different models that have been analyzed can be readily explained on the 

basis of the mixture law employed in each model, as well as the specific definition of such a 

fraction. As an example, the model advanced by Gao et al. [17] and the second model 

proposed by Antunes et al. [20] employ the same weight function (h, tf, ) indicated in 

equation (5b). However, Gao et al. model is based on a linear law of mixtures, whereas 

Antunes et al. model is based on a harmonic law. This simple fact gives rise to completely 

different results regarding the prediction of the volume fraction evolution for each layer, as 

well as for the computation of their corresponding elastic moduli.  

A similar situation can be observed regarding the models advanced by Doerner and 

Nix [22] and the first model proposed by Antunes et al. [20]. Both models make used of the 

same weight function, as can be observed by comparing equations (4b) and (10b). However, 

the Doerner and Nix model is based on a harmonic law of mixtures, whereas the first model 

proposed by Antunes et al. [20] is based on a linear law. As a consequence, the prediction of 

the volume fraction evolution for each layer according to each model is completely different, 

as well as the elastic moduli and the corresponding values of the constants DN and A1 found 

for each layer.  

If the two models advanced by Menčík et al. [18] are compared with those proposed 

by Doerner and Nix [22] and Antunes et al. (model 1) [20], it can be readily understood why 

the predicted results are quite different in each case, despite the fact that the four models 

involve an exponential function with just one material parameter in their corresponding 

weight functions, as indicated by equations (4b), (7b), (8b) and (10b). In this case, regardless 

the type of mixture law employed in the model, the definition of the weight function in the 

form proposed by Menčík et al. [18], expressed in terms of h/tf rather than tf/h as in the 

Doerner and Nix and Antunes et al. (model 1) weight functions, will clearly lead to different 
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results regarding the prediction of the volume fraction evolution and the computed parameters 

for each of the layers in the film. 

The comparison of the model advanced by Perriot and Barthel [19] with that proposed 

by Korsunsky and Constantinescu [21] leads to similar conclusions. Both models assume the 

validity of a linear law of mixtures. However, a close look at the corresponding weight 

functions, as indicated in equations (9b) and (12b), points out that both models are bound to 

predict distinct volume fraction evolutions for each of the layers, despite that the number of 

material parameters involved in such functions is the same. In this case, it can again be 

observed that in the Perriot-Barthel model the weight function is expressed in terms of tf/h 

and is applied directly to the substrate modulus (eq. (9a)), whereas in the Korsunsky-

Constantinescu model the weight function is expressed in terms of h/tf and it is applied 

directly to the film modulus (eq. (12a)).  

 If a crude ranking of the different models is attempted based on the MSE, the 

magnitude of the such a parameter would increase in the following order: Korsunsky-

Constantinescu, Menčík et al. (model 2), Antunes et al. (model 1), Doerner and Nix, Perriot-

Barthel, Gao et al., Menčík et al. (model 1), Bec et al., Bull and finally that of Antunes et al. 

(model 2, based on the Gao’s et al. function, ). However, it is also important to take into 

consideration that the quality in the description of the experimental data fit partially increases 

as the number of parameters involved in the model also increases, which in turn leads to a 

decrease in the robustness of the model.  

 Thus, the most robust models are those which do not include any material parameter in 

their corresponding weight functions, such as those advanced by Gao et al., Bec et al., 

Antunes et al. (model 2) and Bull. In this case, the MSE is only influenced by the elastic 

modulus values corresponding to each of the layers, which compose the coating, as well as 

that of the substrate (N + 1 parameters, where N represents the number of layers). The next 

group would be that which includes the Doerner and Nix model, as well as the two models 

advanced by Menčík et al. These three approaches contain one material parameter in their 

corresponding weight functions and therefore the robustness is somewhat decreased. In this 

case, the MSE is also influenced by such material constants and therefore, the number of 

parameters which intervene in the numerical procedure increases to 2N + 1. Finally, the less 

robust models would be those proposed by Perriot-Barthel and Korsunsky-Constantinescu, 

which include two material constants in their corresponding weight functions, which are 

strongly correlated between them. In this way, the MSE would be influenced by 3N + 1 

parameters.  
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 Concerning the values of the elastic modulus predicted by the different models for the 

distinct layers, which encompass the multilayer coating, the magnitude of 69  3 GPa found 

for the DLC film is somewhat less than the expected value for this type of coating, in the 

range of 100-300 GPa, as reported by Lemoine et al. [45]. However, as shown in Figure 1, 

these results cannot be attributed to blunted tip indenter employed in the nanoindentation tests 

but rather, to the structure and defects present in the film. As indicated by the Lemoine and 

co-workers [45], the mechanical behavior of DLC films is not only determined by the 

organization of the material at the micro or nanoscale, presence of fibres or thin films and sp
3
 

fraction, but also by the defects present in numerous forms, including network terminations, 

bond angle disorder, impurities, etc.  

 The elastic modulus predicted for the CrC layer of approximately 135  17 GPa is 

well in the range of 100-152 GPa reported by Anderson et al. [46] for CrC films deposited by 

means of non-reactive direct current (DC) magnetron sputtering, with a carbon content 

spanning 85-67 at.%. These authors reported that the mechanical properties of the 

investigated Cr-C films depended strongly on the carbon content and that the elastic modulus 

could achieve values between 256-346 GPa for a carbon content of 25 at.%, depending on 

their condition.  

 On the other hand, the elastic modulus predicted for the CNiPCr layer of 

approximately 144  5 GPa is very close, as expected, to that of the NiP “substrate” of 146  

2 GPa. The graded nature of the CNiPCr has been analyzed in detail by Staia et al. [39], who 

described the changes in C, Cr, Ni and P that take place within this layer by means of EPMA 

techniques conducted on the cross section of the coated system. These results showed clearly 

that during PVD deposition diffusion of C and Cr took place from the CrC layer towards the 

NiP plating, whereas diffusion of Ni and P also occurred from the NiP deposit towards the 

CrC film. Staia and co-workers [39] showed that this diffusion process gave rise to the 

formation of such a graded layer, which for simplicity, as far as the present investigation is 

concerned, has been considered as an additional layer with “homogeneous” mechanical 

properties. However, it is acknowledged that such an assumption is an over simplification of 

this complex problem, whose formal analysis would require the consideration of the 

continuous change in mechanical properties that actually occurs throughout the layer.  

 Further evidence of the correct trend in the computation of the elastic modulus by 

means of the different models analyzed in the present work is given in Figures 24 and 25, 

corresponding to the modeling of the experimental data reported by Bull [25] for a bilayer 
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Cu/silica/silicon system. Figure 24 illustrates the prediction of the change in contact modulus 

as a function of contact depth provided by the different models investigated, assuming that 

ECu = 120 GPa, Esilica = 70 GPa and Esilicon = 167 GPa, and taking into account that tCu = 800 

nm and tsilica = 1000 nm, as indicated by Bull [25]. This Figure clearly shows that most of the 

extended models are able to provide a very satisfactory description of the experimental data, 

with the exception of the second model advanced by Antunes et al. [20], which is based on 

Gao’s et al. function. In this case, it was assumed that Cu = 0.355 and silica = 0.17. Given the 

fact that the different extended models are based on the 1% layer thickness rule, for contact 

depths less than 8 nm, a prediction of a constant contact modulus equal to 120 GPa (Cu) is 

obtained. As the contact depth increases between 8 and 18 nm the contact modulus is 

determined by both the Cu and silica layers, which gives rise to a decrease in its magnitude, 

as shown in the Figure. For contact depths greater than 18 nm, the influence of the silicon 

substrate becomes important and the predicted value of the contact modulus reaches a 

minimum and increases again, as observed on the plot.  

On the other hand, Figure 25 illustrates the comparison of the prediction results 

reported by Bull [25] and those obtained with the extended model proposed in the present 

work. As can be observed from this Figure both predictions compare very well. This 

observation gives further support to the physical basis on which the different models have 

been extended to analyze the elastic modulus of the distinct layers encompassing a multilayer 

coating. 

 A final important aspect that should be mentioned regarding the trilayer system 

investigated in the present work, is that related to the change in the composite elastic modulus 

with penetration depth and the expected influence of the aluminum alloy actual substrate. 

According to the “rule” of the 1% of the coating thickness, applied for the evaluation of the 

elastic response of coated systems and taking into consideration that the overall thickness of 

the multilayer coating is of approximately 54 m, the aluminum alloy substrate, with a elastic 

modulus of approximately 76 GPa, should start contributing to such a response at penetration 

depths in the range of 540 nm. Such a contribution would be recognized on the composite 

elastic modulus curve as a significant decline in its value. However, as can be observed from 

the elastic modulus versus penetration depth plot, even at penetration depths close to 7000 nm 

this influence is not perceived at all. Moreover, if the hypothesis that the aluminum alloy 

substrate will start to contribute to the composite modulus at a penetration depth of 540 nm is 

made, the different models that have been analyzed would predict a negligible volume 

fraction of such a material and therefore, no contribution whatsoever to the composite 
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modulus. This observation points out the highly localized nature of the stress field below the 

indenter, which somehow should also be included into the multilayer formalism. Therefore, 

indentation experiments at higher maximum loads are being conducted for determining more 

precisely the penetration depth at which the aluminum alloy substrate effects will be actually 

perceived.  

 

7. Conclusions 

 A rational methodology, which allows the description of the change in the composite 

elastic modulus with indentation depth for multilayer coatings, has been developed. The 

formalism involves the extension of the different models proposed for monolayer coatings, in 

order to analyze the complex behavior exhibited by multilayer coatings under indentation 

loading. The proposed methodology is founded on the physically-based concept advanced by 

Iost et al. [32], which allows the computation of the volume fraction of each layer in the 

coating and therefore, its contribution to the elastic response of the coating. It has been shown 

that such a volume fraction can be determined from the weight function employed either in 

the linear or harmonic laws used for describing the composite elastic modulus measured as a 

function of the indentation depth. In order to illustrate the applicability of the formalism, a 

number of models proposed in the literature for the description of the composite elastic 

modulus of monolayer coatings have been modified and extended for the analysis of a 

multilayer coating. These models include those advanced by Gao et al. [17], Menčík et al. 

[18], Perriot and Barthel [19], Antunes et al. [20], Korsunsky and Constantinescu [21], 

Doerner and Nix [22], Bec et al. [23] and Bull [24, 25]. The coated system that has been 

analyzed corresponds to a 2024-T6 aluminum alloy with a multilayer coating of 

DLC/CrC/CNiPCr/NiP of approximately 54 m in thickness. It has been found that the 

different models analyzed provide a satisfactory description of the elastic modulus as a 

function of penetration depth, both for the trilayer system investigated in the present work, as 

well as for a set of experimental data reported in the literature for a bilayer coated system 

[25]. However, as expected, the quality of the fit increases as the number of material 

parameters involved in the model also increases. A crude comparison between the models can 

be carried out on the basis of the mean square error. 
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Captions to the Figures 

 

Figure 1. Calibration curve for the Berkovich indenter employed in the present investigation, 

by means of a fused silica standard. A constant value of the elastic modulus of approximately 

71 GPa is obtained above 7 nm of penetration depth. 

 

Figure 2. Change in the experimental values of the composite elastic modulus as a function of 

penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Doerner and Nix model.  

 

Figure 3. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Doerner and Nix model, as a function of penetration 

depth. 

 

Figure 4. Change in the experimental values of the composite elastic modulus as a function of 

penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Gao et al. model.  

 

Figure 5. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Gao et al. model, as a function of penetration depth.  

 

Figure 6. Change in the experimental values of the composite elastic modulus as a function of 

penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Beck et al. model.  

 

Figure 7. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Beck et al. model, as a function of penetration depth.  

 

Figure 8. Change in the experimental values of the composite elastic modulus as a function of 

penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Menčík et al. model 1.  

 

Figure 9. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Menčík et al. model 1, as a function of penetration depth.  
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Figure 10. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Menčík et al. model 2.  

 

Figure 11. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Menčík et al. model 2, as a function of penetration depth.  

 

Figure 12. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Perriot-Barthel model.  

 

Figure 13. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Perriot-Barthel model, as a function of penetration depth.  

 

Figure 14. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Antunes et al. model 1.  

 

Figure 15. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Antunes et al. model 1, as a function of penetration depth.  

 

Figure 16. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Antunes et al. model 2.  

 

Figure 17. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Antunes et al. model 2, as a function of penetration depth.  

 

Figure 18. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Korsunsky and Constantinescu 

model.  
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Figure 19. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Korsunsky and Constantinescu model, as a function of 

penetration depth.  

 

Figure 20. Change in the experimental values of the composite elastic modulus as a function 

of penetration depth for the coated system under investigation. The description of the 

experimental data has been conducted with the modified Bull model.  

 

Figure 21. Change in the volume fraction of each layer contributing to the composite elastic 

modulus, according to the modified Bull model, as a function of penetration depth.  

 

Figure 22. Change in the volume fraction of the DLC layer as a function of penetration depth, 

according to each of the modified models analyzed in the present work. 

 

Figure 23. Change in the volume fraction of the CrC, CNiPCr and NiP layers as a function of 

penetration depth, according to each of the modified models analyzed in the present work. 

 

Figure 24. Change in the contact modulus as a function of contact depth for the bilayer 

Cu/silica/silicon system, as predicted by the different extended models analyzed in the present 

work. The experimental data (red dots) have been reported by Bull [25]. ECu = 120 GPa, Esilica 

= 70 GPa and Esilicon = 167 GPa, tCu = 800 nm and tsilica = 1000 nm.  

 

Figure 25. Comparison of the predictions in the change of the contact modulus as a function 

of contact depth for the bilayer Cu/silica/silicon system, corresponding the extended Bull’s 

model proposed in the present work and that reported by Bull [25]. 
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Appendix 1 

 

Formulation corresponding to the model advanced by Gao et al. [17] 

 As indicated in section 2, for this model the composite elastic modulus can be 

expressed as: 

 

    C G f F G f SE  = a t /h E  + 1 - a t /h E                                          (A1) 

Where: 

 

 

 
 

-1 ff
G f

2

ff

2

f

f

2 tt
a  = h, t ,  =  tan   + 

h h tan

h tan

t1 t h tan
            1-2   ln 1 +  - 

2 1- h tan t h tan
1 + 

t

 
 






   

  
   
   

   
   

    
   

    
      

  (A2) 

 

For extending the model to multilayer coatings: 

 

 
 

   
 1 1

1 1 1f f
v f

t t
x  = h -  , t  ,       if     h >       and

100 100
 
 
 
 

               (A3) 

 

       

       

j j
j i i j

v f f

i=1 i=1

j-1 j-1 j
i i j-1 i

f f f

i=1 i=1 i=1

1
x  = h - t  , t  ,  - 

100

1 1
           h - t  , t  ,      if     h > t

100 100

 

 

 
 
 

 
 
 

 

  

          (A4) 

 

Finally: 

     
N

i i S

C v F v S

i = 1

E  =   x E  + x E                                           (A5) 

 

The model requires the determination of N+1 parameters.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 

 

Formulation corresponding to the first model advanced by Bec et al. [23] 

 

 As indicated in section 2, according to this model: 

 

   Bec f Bec f

C F S

1 - a t ,  a, h a t ,  a, h1
 =  + 

E E E
                                    (A6) 

 

Where: 

 

  f f
Bec f

f f

2t 2t
a t ,  a, h  =  = 

2t 2t
πa 1   πh tan 1   

πa πh tan




   
    

   

                  (A7) 

 

The extension of the model to multilayer coatings requires that: 

 
 

 

   

 1 1
1 f f

v 1
1f

f

2t t
x  =      if     h >    and

100t
π h -  tan   2t

100


 
 

 

                     (A8) 

 

 

 

     

 

     

 

j
j

f
j i=1

v j j
j j

f f

i=1 i=1

j-1
j

jf
ii=1

fj-1 j-1
j j i=1

f f

i=1 i=1

2 t

x  =  - 
1

π h - t  tan   2 t
100

2 t
1

                if     h > t
1001

π h - t  tan   2 t
100





 
 

 

 
 

 



 




 

          (A9) 

 

 

 

 i SN
v v

i
i = 1C SF

1 x x
 =    + 

E EE
                                                    (A10) 

 

The model requires the determination of N+1 parameters.  
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Formulation corresponding to the first model advanced by Menčík et al. [18] 

 

 As indicated in section 2, according to this model: 

 

    C M1 M1 f F M1 M1 f SE  = a α , t /h E  + 1 - a α , t /h E                           (A11) 

 

Where: 

 M1 M1 f M1

f

h
a α , t /h  = exp - α  

t

 
 
 

                                          (A12) 

 

 For extending the model to multilayer coatings: 

 

   

 

 

 

1

f
1

1 1 f
v M1 1

f

t
h - 

t100x  = exp - α       if     h >       and
100t

 
 
 
 
  

                      (A13) 

 

   

 

 

 

 

 

 

j
i

f
j j i=1

v M1 j
i

f

i=1

j-1
i

jf
j-1 ii=1

M1 fj-1
i i=1

f

i=1

1
h -  t

100
x  = exp - α   -

t

1
h -  t

1100
           exp - α       if     h >  t

100
t

 
 
 
 
  

 
 
 
 
  










      (A14) 

 

Finally: 

 

     
N

i i S

C v F v S

i = 1

E  =   x E  + x E                                           (A15) 

 

The model requires the determination of 2N+1 parameters.  
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Formulation corresponding to the second model advanced by Menčík et al. [18] 

 

 As indicated in section 2, according to this second model: 

 

   M2 M2 f M2 f

C F S

a α , t /h 1 - a α , t /h1
 =  + 

E E E
                                  (A16) 

 

Where, again: 

 M2 M2 f M2

f

h
a α , t /h  = exp - α  

t

 
 
 

                                           (A17) 

 

 For extending the model to multilayer coatings: 

 

   

 

 

 

1

f
1

1 1 f
v M2 1

f

t
h - 

t100x  = exp - α       if     h >       and
100t

 
 
 
 
  

                      (A18) 

 

   

 

 

 

 

 

 

j
i

f
j j i=1

v M2 j
i

f

i=1

j-1
i

jf
j-1 ii=1

M2 fj-1
i i=1

f

i=1

1
h -  t

100
x  = exp - α   -

t

1
h -  t

1100
           exp - α       if     h >  t

100
t

 
 
 
 
  

 
 
 
 
  










      (A19) 

Finally: 

 

 

 

 i SN
v v

i
i = 1C SF

1 x x
 =    + 

E EE
                                           (A20) 

 

The model would also require the determination of 2N+1 parameters.  
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Formulation corresponding to the model advanced by Perriot and Barthel [19] 

 

 As indicated in section 2, according to this model: 

 

   C PB PB PB f F PB PB PB f SE  = 1 - a β , n , t /h E  + a β , n , t /h E          (A21) 

Where: 

 
PBPB PB PB f n

PB f

1
a β , n , t /h  = 

β  t
1 + 

 h tan

 
 
 

                              (A22) 

Thus, the extension of the model to multilayer coatings requires that: 

 

 

   

 

 

 

1
PB

1
1 f

v n

1 1

PB f

1

f

1 t
x  =      if     h >       and

100

β  t
1 + 

t
 h -  tan

100


 
 
 
  
   
  

                      (A23) 

 

   

 

 

   

 

 

 

j
PB

j
PB

j

v n
j

j i

PB f

i=1

j
i

f

i=1

j
i

fn
i=1j-1

j-1 i

PB f

i=1

j-1
i

f

i=1

1
x  =  -

β  t

1 + 
1

 h - t  tan
100

1 1
                if     h > t

100

β  t

1 + 
1

 h - t  tan
100





 
 
 
  
  
  

 
 
 
  
  
  











     (A24) 

 

     
N

i i S

C v F v S

i = 1

E  =   x E  + x E                                           (A25) 

 

The model would require the determination of 3N + 1 parameters.  
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Formulation corresponding to the first model advanced by Antunes et al. [20] 

 

 As pointed out in section 2, according to this model: 

 

   C A1 A1 f F A1 A1 f SE  = 1 - a α , t /h E  + a α , t /h E                           (A26) 

Where: 

  f
A1 A1 f A1

t
a α , t /h   exp - α

h

 
  

 
                                          (A27) 

 

Thus, the extension of the model to multilayer coatings requires that: 

 

     
 

 

 1 1
1 1 1 f f

v A1 A1 1

f

t t
x  = a  = 1 - exp - α      if     h >       and

100t
h - 

100

  
   

  
  
 

   

       (A28) 

 

   

 

 

 

 

 

 

j
i

f
j j i=1

v A1 j
i

f

i=1

j-1
i

jf
j-1 ii=1

A1 fj-1
i i=1

f

i=1

t

 x  = 1 - exp - α  - 
1

h - t
100

t
1

           1 - exp - α      if     h > t
1 100

h - t
100

  
   

  
  
    

  
   

  
  
    










        (A29) 

 

     
N

i i S

C v F v S

i = 1

E  =   x E  + x E                                                   (A30) 

 

The model would require the determination of 2N + 1 parameters.  
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Formulation corresponding to the second model advanced by Antunes et al. [20] 

 

 As indicated in section 2, according to this model: 

 

   A2 f A2 f

C F S

a t /h 1 - a t /h1
 =  + 

E E E
                                 (A31) 

 

Where: 

 f
A2 f

t
a  = h, t , 

h
  

 
 

                                           (A32) 

 

The extension of the model to multilayer coatings is conducted by means of equations (A3) 

and A(4). Finally: 

 

 

 

 i SN
v v

i
i = 1C SF

1 x x
 =    + 

E EE
                                           (A33) 

 

As the model advanced by Gao et al. [17], this model also requires the determination of N+1 

parameters. 
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Formulation corresponding to the model advanced by Korsunsky and Constantinescu 

[21] 

 

 As pointed out in section 2, according to this model: 

 

   C KC KC KC f F KC KC KC f SE  = a β , n , t /h E  + 1 - a β , n , t /h E            (A34) 

 

Where: 

 
KCKC KC KC f n

KC f

1
a β , n , t /h  = 

h
1 + 

β  t

 
 
 

                                 (A35) 

 

Thus, the extension of the model to multilayer coatings requires that: 

 

 

 

   

 

 

1
KC

1
1 f

v n
1

f

1 1

KC f

t1
x  =      if     h >       and

100
t

h - 
100

1 + 
 β  t

  
  
  
 
 
  

                      (A36) 

 

 

   

 

 

   

 

 

j
KC

j
KC

j

v n
j

i

f

i=1

j
j i

KC f

i=1

j
i

fn
j-1 i=1

i

f

i=1

j-1
j-1 i

KC f

i=1

1
x  =  -

1
h - t

100
1 + 

 β  t

1 1
                if     h > t

100
1

h - t
100

1 + 

 β  t

  
  
  
 
 
 

  
  
  
 
 
 











                  (A37) 

 

     
N

i i S

C v F v S

i = 1

E  =   x E  + x E                                                   (A38) 

The model requires the determination of 3N+1 parameters.  
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Formulation corresponding to the model advanced by Bull [23, 24] 

 

As indicated in section 2, according to this model: 

 

   B f B f

C F S

1 - a t /h a t /h1
 =  + 

E E E
                                              (A39) 

 

Where: 

 
 

 
0

B f

0 f f

π h tanπ a
a h, t  =   

π a   2t π h tan  + 2t







                               (A40) 

 

The extension of the model to multilayer coatings requires that: 

 

 

 

 

 

 

 

1

f

1
1 f

v 1

f
f

t
π h -  tan

100 t
x  =      if     h >    and

100t
π h -  tan  + 2t

100





 
 
 

 
 
 

                      (A41) 

 

 

   

   

   

   

 

j
i

f

j i=1

v j
i

f f

i=1

j-1
i

f j
ii=1

fj-1
i i=1

f f

i=1

1
π h - t  tan

100
x  =  - 

1
π h - t  tan  + 2t

100

1
π h - t  tan

100 1
                if     h > t

1001
π h - t  tan  + 2t

100









 
 
 

 
 
 

 
 
 

 
 
 










                (A42) 

 

 

 

 i SN
v v

i
i = 1C SF

1 x x
 =    + 

E EE
                                                    (A43) 

 

The model requires the determination of N+1 parameters.   
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Figure 1 
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Highlights 

 

 The composite modulus of a multilayer coating is described using different models 

 The proposed modified models allow the determination of the modulus of each layer 

 Each layer volume fraction contributing to the composite modulus, has been computed 

 Nanoindentation data of a multilayer coating have allowed the testing of the models 


