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We propose a modification of the standard van der Pauw method for determining the resistivity and Hall
coefficient of flat thin samples of arbitrary shape. Considering a different choice of resistance measurements
we derive a formula which can be numerically solved (with respect to sheet resistance) by the Banach fixed
point method for any values of experimental data. The convergence is especially fast in the case of
near-symmetric van der Pauw configurations (e.g., clover shaped samples).

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The van der Pauw four probe method is a standard technique for
measuring the resistivity of flat thin samples of arbitrary shape
[1,2]. The sample has to be homogeneous, isotropic, of uniform thick-
ness and simply connected (i.e., without isolated holes). Four contacts
placed on the sample are required. They have to be geometric points
located on the boundary of the sample (or, in practice, errors caused
by their finite size should be sufficiently small).

The van der Pauw geometry is very popular in electric measure-
ments and found a lot of applications in physics, compare, e.g., [3–8].
The method consists in performing direct measurement of resistances
R12,34 and R23,14 (for more details see the next section), and then using
the formula

exp −
πdR12;34

ρ

� �
þ exp −

πdR23;41

ρ

� �
¼ 1 ð1Þ

for computing the resistivity ρ and sheet resistance Rs=ρ/d of the
sample of thickness d. Then, the Hall coefficient is computed as

μH ¼ ΔR24;13

BRs
; ð2Þ

whereΔR24;13 is the change of R24,13 due to themagnetic field B. Eq. (1)
is believed to be unsolvable by the fixed point method. Usually, instead
of numerical procedures, a graph of the so called geometric factor is
used to determine a solution of Eq. (1). Some authors recommend to
rights reserved.
use tables of numerical values of this function [9]. An inherent inaccura-
cy of these methods seems to be commonly recognized.

Many attempts have been made to develop and improve the
van der Pauw approach, see [10–18]. However, the formula (1) has
always been treated as a starting point. In this paper we will show
that another formula, namely:

exp
πdRmax

ρ
− exp

πd R24;13

�� ��
ρ

 !
¼ 1;

where Rmax ¼ max R12;34;R23;41

n o� �
;

ð3Þ

can be used instead of Eq. (1). We will show that preconditions for
the Banach fixed point theorem are rigorously satisfied for any set
of experimental results, usually with an excellent rate of convergence.

Our approach is especially convenient in Hall effect measure-
ments with symmetric (or near-symmetric) van der Pauw configura-
tion (e.g., in the shape of a clover leaf). In the symmetric case
R24,13=0 and, therefore, formula (3) yields the well known explicit
expression: ρ=πdRmax/ln2. In near-symmetric cases R24,13 is much
smaller than Rmax and we need just few iterations to get very accu-
rate numerical results.

2. A brief review of the van der Pauw method

The main idea of the van der Pauw approach is simple and beau-
tiful. First, one considers a sample in the form of the complex upper
half plane (with contacts placed on the real axis). All computations
can be explicitly done in this case. Then, one applies a deep mathe-
matical theory (the Riemann mapping theorem) showing that any
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other (simply connected) sample is conformally equivalent to the
upper half plane [19]. What is more, this conformal transformation
preserves all equipotential lines, current lines and boundary condi-
tions [1]. Therefore any formula which does not contain explicit in-
formation about positions of contacts is invariant with respect to
such transformations, and results obtained in the case of the half
plane are exactly valid for samples of arbitrary shape (provided
that they have no isolated holes).

Therefore, we consider the upper half plane, parameterized by
complex coordinate z (Imz⩾0). Four contacts are represented by
x1,x2,x3,x4 lying on the real axis. In order to perform a measurement
we inject electric current Jjk at contact xj, take it out at xk (k≠ j),
and measure the voltage between remaining two points. Elementary
considerations (based on the superposition principle) show that elec-
tric potential at z is given by

Φ zð Þ ¼ Jjkρ
πd

ln
z−xk
z−xj

�����
����� ð4Þ

(note that |z1−z2| is a distance between complex numbers z1 and z2).
There are 4!=24 different ways to perform measurements described
above. In any case we compute a resistance

Rjk;mn≡
Φ xnð Þ−Φ xmð Þ

Jjk
¼ ρ

πd
ln

xn−xkð Þ xm−xj
� �

xn−xj
� �

xm−xkð Þ

������
������; ð5Þ

where j,k,m,n are pairwise different (a permutation of 1, 2, 3, 4) and
it is convenient to denote Rs=ρ/d (sheet resistance). Thus we have 24
relations between x1,x2,x3,x4 and Rs, treated as unknowns. Rjk,mn are
calculated directly from experimental data. Eliminating x1,x2,x3,x4
van der Pauw obtained Eq. (1) valid for samples of arbitrary shape,
compare [1,2]. We stress that the exact placement of contacts on
the circumference of the sample is not important with exception of
their ordering.

In the next section we study consequences of Eq. (5) in more
detail. In particular, we derive Eq. (3).

3. Modification of the van der Pauw method

In the formula (5) one can recognize the cross ratio, a well known
and very important notion in projective geometry. The cross ratio of
four (ordered) points xj,xk,xm,xn is defined as

xj; xk; xm; xn
� �

:¼
xm−xj
� �

xn−xkð Þ
xm−xkð Þ xn−xj

� � : ð6Þ

The same formula applied for a 4-tuple of complex numbers is
used in conformal (Möbius) geometry [19,20]. There exists a natural
generalization of the cross ratio on points in Euclidean spaces of any
dimension [21].

Taking into account Eq. (6) we rewrite Eq. (5) as

πRjk;mn ¼ Rs ln xj; xk; xm; xn
� ���� ���: ð7Þ

Cross ratios corresponding to various permutations of four points
x1,x2,x3,x4 are related by a set of identities which can be shortly writ-
ten as:

xj; xk; xm; xn
� �

¼ xm; xn; xj; xk
� �

¼ xj; xk; xn; xm
� �−1

; ð8Þ

xj; xk; xm; xn
� �

þ xj; xm; xk; xn
� �

¼ 1; ð9Þ
(they can be verified by straightforward elementary calculation). In
particular, on use of Eqs. (8) and (9) we easily derive the following
equations

x1; x2; x3; x4ð Þ−1 þ x2; x3; x4; x1ð Þ−1 ¼ 1; ð10Þ

x1; x2; x3; x4ð Þ þ x2; x4; x1; x3ð Þ ¼ 1; ð11Þ

x2; x3; x4; x1ð Þ þ x2; x4; x1; x3ð Þ−1 ¼ 1: ð12Þ

Taking into account Eq. (7), and assuming (without loss of the
generality)

x1bx2bx3bx4; ð13Þ

we obtain corresponding identities for resistances Rjk,mn (in Appendix A
we present another approach, where inequalities (13) are not assumed).
Eqs. (8) yield the so called reciprocal and reversed polarity identities, for
instance:

R12;34 ¼ R34;12 ¼ R21;43 ¼ R43;21: ð14Þ

They are useful for eliminating some side effects (one takes an
average of the above four measurements instead of R12,34, etc.). In
our approach improvements of this kind can be done in exactly the
same way as in the standard van der Pauw method. Note that in-
equalities (13) mean that contacts x1,x2,x3,x4 are placed in exactly
this order (counterclockwise) on the circumference of the sample.

Cross ratios are not necessarily positive. Using Eqs. (6) and (13)
we can determine signs of cross ratios. Moreover, Eq. (10) implies
upper bounds on both (positive) components. Thus:

x1; x2; x3; x4ð Þ > 1;
x2; x3; x4; x1ð Þ > 1;
x2; x4; x1; x3ð Þ b 0:

ð15Þ

Eq. (10) yields van der Pauw's formula (1). Surprisingly enough,
Eqs. (11) and (12) lead to the following, physically meaningful,
formulas:

exp πR12;34=Rs

� �
− exp πR24;13=Rs

� �
¼ 1: ð16Þ

exp πR23;41=Rs

� �
− exp −πR24;13=Rs

� �
¼ 1: ð17Þ

For further analysis we choose the first equation if R24,13>0 or the
second equation if R24,13b0. In the first case we have R12,34>R23,41>0,
while in the second case R23,41>R12,34>0. Both cases can be shortly
represented as Eq. (3) where Rmax denotes greater of two values:
R12,34 or R23,41.

4. Fast converging numerical iterations

Eq. (3) can be rewritten as:

x ¼ ln 1þ ekx
� �

; k ¼ R24;13

�� ��
Rmax

; ð18Þ

where x=πRmax/Rs. The discussion at the end of the previous section
shows that 0⩽kb1.

Eq. (18) has a form x=F(x), characteristic for the Banach fixed point
method. In order to obtain a solution (the fixed point of the map F) one
has to iterate: xn+1=F(xn). We are going to show that function F(x)=
ln(1+ekx) satisfies preconditions for the Banach fixed point theorem
(for any k). Indeed, F maps segment Lk ¼ ln2; ln2

1−k

� �
into itself because:

x ⩾ ln2 ⇒ F xð Þ ⩾ ln 1þ 2k
� �

⩾ ln2;

x ⩽ ln2
1−k

⇒ F xð Þ ⩽ k ln2
1−k

þ ln2 ¼ ln2
1−k

;
ð19Þ
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where we took into account F(x)=kx+ln(1+e−kx). Then,

F ′ xð Þ
��� ��� ¼ k

1þ e−kx
⩽ k ð20Þ

for any x∈Lk. Therefore, by virtue of the Lagrange mean value theorem

F x1ð Þ−F x2ð Þj j
x1−x2j j ¼ F ′ cð Þ

��� ���⩽kb1 ð21Þ

(for any x1,x2∈Lk) which means that F is a contraction of the segment
Lk.

In order to estimate the number of iterations N needed to obtain a
prescribed accuracy δ we require that the length of the segment after
applying N contractions is smaller than δ:

kNþ1 ln2
1−k

⩽δ ⇒ N≈
ln 1−kð Þδ

k ln2

� �
lnk

: ð22Þ

The actual number of iterations is, of course, much smaller. Table 1
shows the number of iterations needed to obtain the accuracy δ=
10−5. For k approaching 1 the number of iterations increases (tending
to infinity). In this region (k≈1) it is better to use another iterating
scheme, see below. Note that as an initial point we took x0= ln2
(this is almost obligatory for small k, when the length of segment Lk
is very small and only x0=ln 2 belongs to any Lk). Table 1 contains
also corresponding values of the relative sheet resistance R̂s defined
by

R̂s ¼
Rs

Rmax
¼ π

x
; ð23Þ

where x is the solution of Eq. (18).
Multiplying equation ex=1+ekx (equivalent to Eq. (18)) by e−x

we get: e−x=1−ekx−x. Hence we have another form of Eq. (18):

x ¼ − ln 1−e−k′x
� �

; k′ ¼ 1−k: ð24Þ

One can rigorously show that preconditions for the Banach fixed
point method are satisfied (at least for sufficiently small k ′, namely
k ′b0.125) provided that as a starting point we take x0=− ln k ′
(in practice, the Banach method seems to work very well for larger
range of k′, at least up to k′≈0.25). We omit technical details. Instead,
we present Table 2 showing that for small k ′ (i.e., k≈1) Eq. (24) is
excellently solvable by the fixed point method.

5. Summary

In this paper we proposed an alternative approach to the standard
van der Pauw method. Measurements are essentially the same as in
the standard method and produce three resistances: R12,34, R23,41,
R24,13 (reciprocal and reversed resistances can be used for improving
the accuracy, compare Eq. (14)). We take R24,13 and greater of
remaining two resistances, denoting it by Rmax. Then we compute
two coefficients: k=|R24,13|/Rmax and k′=1−k. In order to find the
Table 1
Number of iterations N necessary to obtain solution x of Eq. (18) (x0=ln 2, δ=10−5)
and R̂s ¼ Rs=Rmax as a function of k=|R24,13|/Rmax.

k 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N 1 4 5 6 7 9 12 15 24 42
R̂s 4.532 4.302 4.062 3.811 3.546 3.264 2.960 2.623 2.234 1.743
sheet resistance we solve either (18) (for 0⩽kb0.9) or (24) (for
0.8bkb1) and calculate Rs=πRmax/x. In the indicated ranges of k
both equations are solvable by the Banach fixed point method with
excellent rates of convergence.

Analysing theoretical consequences of the van der Pauw approach
we derived formulas which are solvable by fast convergent numerical
algorithm. We used exactly the same assumptions and data as
required by the original van der Pauw method. Therefore, any results
obtained by our method should be identical with those produced by
the standard approach (provided that all van der Pauw assumptions
are satisfied with sufficient accuracy).
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Appendix A

It is convenient to rewrite cross ratio identities in terms of
resistances. Using Eq. (7) we transform Eqs. (8) and (9) into:

Rjk;mn ¼ Rmn;jk ¼ −Rjk;nm; ð25Þ

εjk;mn exp
π
Rs

Rjk;mn þ εjm;kn exp
π
Rs

Rjm;kn ¼ 1; ð26Þ

where εjk,mn=±1 and εjm,kn=±1. An elementary algebraic analysis
shows that εjk,mn and εjm,kn are uniquely determined by Rjk,mn and
Rjm,kn. Indeed, one can distinguish the following cases (we assume
Rjk,mn⩾Rjm,kn):

Rjk;mn b 0 ⇒ εjk;mn ¼ 1; εjm;kn ¼ 1; ð27Þ

Rjk;mn > 0 ⇒ εjk;mn ¼ 1; εjm;kn ¼ −1: ð28Þ

Rjk;mn ¼ 0 ⇒ εjk;mn ¼ 1;Rjm;kn ¼ −∞: ð29Þ

Here we do not make any assumptions on the ordering of points xk
(e.g., we do not assume inequalities (13)).

Another useful identity can be verified by a straightforward short
calculation (or derived from Eqs. (8) and (9)):

xj; xk; xm; xn
� �

xj; xm; xn; xk
� �

xm; xk; xn; xj
� �

¼ −1: ð30Þ

In terms of resistances this formula has the form

Rjk;mn þ Rjm;nk þ Rmk;nj ¼ 0; ð31Þ

known to van der Pauw, see [1].
We proceed to presenting another modification of the van der

Pauw method. Suppose that we measured two resistances: Rjk,mn

and Rjm,kn. Without loss of the generality we assume Rjk,mn⩾Rjm,kn

(in the opposite case it is enough to rename contacts, xk↔xm). We
have two distinct cases:

1. Rjk;mnb0. Then, by virtue of Eqs. (27), we get the van der Pauw
equation

exp − π
Rs

Rjk;mn

��� ���� �
þ exp − π

Rs
Rjm;kn

��� ���� �
¼ 1; ð32Þ

where |Rjk,mn|b |Rjm,kn|. Denoting

x ¼
π Rjm;kn

��� ���
Rs

; k ¼
Rjm;kn −j jRjk;mn

��� ���
Rjm;kn

��� ��� ; ð33Þ



Table 2
Number of iterations N necessary to obtain solution x of Eq. (24) (x0=− lnk ′, δ=10−5)
and R̂s ¼ Rs=Rmax as a function of k ′=1−k.

k ′ 0.2 0.1 0.01 10−3 10−4 10−6 10−8 10−10 10−12 10−15

N 22 18 10 8 7 5 4 4 4 3
R̂s 2.234 1.743 0.924 0.598 0.434 0.276 0.200 0.157 0.129 0.101
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we obtain ex=1+ekx (0bkb1) which can be solved by the fixed
point method, see Section 4.

2. Rjk;mn > 0. Then, by virtue of Eq. (28), we get the modified equation

exp
π
Rs

Rjk;mn− exp
π
Rs

Rjm;kn ¼ 1; ð34Þ

where Rjk,mn>Rjm,kn. Denoting

x ¼ πRjk;mn

Rs
; k ¼ Rjm;kn

Rjk;mn
; ð35Þ

we also obtain ex=1+ekx but now −1bkb1 (Rjm,kn can be nega-
tive). The case −1bkb0 can be solved by the fixed point method
as well. Actually, for negative k (including k=−1) the conver-
gence is much better, because in this case F ′(x) is estimated by
1
2 kj j (instead of |k|), compare inequality (20).

We omit the third case (Rjk,mn=0), because then Rjm,kn=∞, see
Eqs. (29). It implies either xj=xk, or xm=xn, which contradicts our
assumption that xk are pairwise different. Note that the symmetric
case corresponds to |Rjk,mn|=|Rjm,nk| (if Rjk,mnb0), or to Rjm,kn=
0 (if Rjk,mn>0). Then formulas (32) and (34) have simple exact
solutions.
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