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Localized plastic deformation known as shear banding is a prominent feature in metallic glasses. In this study
we perform parametric three-dimensional finite element analyses, using primarily a thin layer of metallic
glass on top of a cylindrical base, to study how physical constraint can affect this localized form of deforma-
tion and the corresponding macroscopic stress-strain response. Random perturbation points are added to the
metallic glass model to facilitate the formation of shear bands. The modeling result suggests that the mechan-
ical behavior of metallic glasses can be significantly influenced by the geometrical confinement. Under nom-
inally uniaxial compressive loading, a lower thickness-to-diameter ratio results in higher plastic flow

stresses. Shear bands tend to concentrate in regions away from the interface with the base material. The find-
ings provide a mechanistic rationale for experimental observations based on the micropillar compression
test. The deformation pattern in a multilayered metallic glass structure is also examined.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The unique mechanical and functional properties displayed by
bulk metallic glasses have sparked widespread interests in the mate-
rials research community [1-7]. These amorphous alloys generally
exhibit elastic stiffness comparable to those of conventional engi-
neering alloys, but their strengths at ambient temperature may be
significantly higher. The absence of crystallinty in the microstructure,
however, results in limited deformability. Dislocation slip, mechanical
twinning and other deformation mechanisms associated with crystal-
line structures are no longer applicable. At below the glass transition
temperature, plastic deformation occurs in a highly inhomogeneous
manner via the formation and propagation of shear bands.

A shear band is typically a 10-100 nm-thick zone embedded with-
in the relatively un-deformed matrix. Once shear starts locally, it
tends to concentrate there and extends along a geometrically favor-
able path. In other words, the shear band becomes a weaker region
than its surrounding. This is a manifestation of the work softening
phenomenon inside a shear band. The accumulation of shear strain
in an individual shear band may be as high as 10, although the overall
ductility of the metallic glass specimen is still relatively small [8].

Metallic glasses in the form of deposited thin films have received
great attention in recent years, due to their potential applications in
emerging micro- and nano-scale devices [9,10]. As a result of their
thin dimensions the flexibility can be improved, but deformation
localization is still dominant once plastic yielding starts. In fact, the
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individual shear banding event may become more significant in af-
fecting the mechanical property because of the small physical size.
It has been reported that mechanical behavior of metallic glasses de-
pends on their physical size [11-19]. While the atomic and structural
origin of the intrinsic size effect has not been properly established, it
is acknowledged that geometric confinement alone during mechani-
cal testing of small-sized specimens can dictate the measured
stress-strain response and deformation pattern in metallic glasses
[10,20,21].

For traditional crystalline materials capable of homogeneous plas-
tic deformation, the geometric confinement effect is well recognized.
For instance, plastic deformation disturbed by physical constraint in
small metallic structures (such as films, lines and joints), bonded to
substrates or other adjoining materials, has been widely examined
[22,23]. The same effect on materials showing inherently localized
deformation such as shear banding, on the other hand, is in need of
further investigations. The present study is thus devoted to externally
constrained plasticity in metallic glasses from a numerical modeling
standpoint. Parametric finite element analyses are performed, utiliz-
ing a modeling scheme of a thin layer of metallic glass on an underly-
ing cylindrical base (representative of the micropillar compression
test [10]). The primary objectives of this work include:

» To provide mechanistic insight into interface-mediated localized
deformation, through a simple modeling strategy applied to uniax-
ial compressive loading;

» To explore the apparent yield strength and shear band evolution as
affected by the aspect ratio of the metallic-glass thin films;

* To compare the constrained deformation behavior in materials
prone to shear banding and traditional homogeneous plasticity.
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Fig. 1. Schematics of the numerical models subjected to compressive loading: (a) a
stand-alone metallic glass cylinder, (b) a layer of metallic glass above a supporting
base, and (c¢) multilayered metallic glass/reference metal structure.

Where applicable, qualitative comparisons with reported experi-
mental observations are made and the implications discussed.

2. Numerical model

Three-dimensional finite element models were constructed. Fig. 1(a)
shows a schematic of the model consisting of only the cylindrical metallic
glass specimen itself. The diameter D is fixed at 1 pum, and various thick-
ness (t) values from 0.2 to 1 pm are considered. Quasi-static compressive
loading is applied through the prescribed displacement on the top face
(initially at z = t). On the bottom face (z = 0), movement along the
z-direction is prohibited but displacements in x and y are not
constrained. This baseline case serves as a reference for contrasting
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Fig. 2. Simulated compressive stress-strain curves for the stand-alone metallic glass
cylinders, with aspect ratios 0.2, 0.4, 0.6, 0.8 and 1.0.

with other models involving a support material (substrate) as shown
in Fig. 1(b). Here a metallic glass layer is attached to a base, and the entire
structure is subject to compressive deformation. Two base materials, sil-
icon (Si) and a hard metal (with hypothetical property described below),
both with thickness (h) of 2 um, are considered in this study. Fig. 1(c)
shows another model with an alternating metallic glass/reference
metal structure. The thickness of each layer is kept at 0.2 um. This multi-
layered system provides an additional scenario for examining how the
shear band formation may be affected by the physical constraint. Perfect
bonding between dissimilar materials is assumed in all cases. The total
number of elements in the simulations depends on the model type and
actual geometry. As an example, in the case of t = 1 um in Fig. 1(b),
there are a total of 171,360 eight-noded linear hex elements. The finite
element program Sierra/SolidMechanics (Sandia National Laboratories)
was used in all calculations under the quasi-static condition.

All metallic materials in the model are treated as isotropic
elastic-plastic solids. Young's modulus and Poisson's ratio of the me-
tallic glass were taken to be 118 GPa and 0.37, respectively. Plastic
yielding follows the von Mises criterion and incremental flow theory
[24]. The choice of appropriate constitutive laws for amorphous alloys
has been a topic of active research. Within the continuum framework,
plasticity in crystalline metals is generally controlled only by the
deviatoric part of the stress tensor. For disordered materials such as
metallic glasses, hydrostatic pressure may be expected to influence
the yield behavior. Pressure dependent plasticity models and their
numerical implementation have been developed to simulate certain
aspects of shear band formation in bulk metallic glasses [25-27]. On
the other hand, many experimental investigations have concluded
that the pressure dependence of plastic deformation is relatively
weak (see Ref. [4] for discussion). Some studies specifically showed
that the von Mises criterion is adequate for describing the yield
response [28,29]. Therefore, for simplicity the von Mises criterion,
with perfect plasticity upon yielding at a uniaxial stress of 2.1 GPa,
is chosen for the present study. It is noted that the plasticity model
alone is not able to capture the actual shear banding phenomenon.
Rather, in the simulation we incorporated randomly generated
“weak” points in the metallic glass to trigger discrete deformation
along the maximum shear directions. The perturbation points, arbi-
trarily chosen to constitute 1% of the metallic glass elements unless
otherwise stated, have the same elastic-plastic properties as the reg-
ular material elements, except for a built-in linear plastic work soft-
ening response of slope —18.9 GPa upon yielding. The softening
stress—strain slope used in the model led to a decrease of stress to
10% within 0.1 strain. There will be no fundamental change in defor-
mation pattern using different softening characteristics or different
volumetric fractions of the perturbation points up to 10%. This is be-
cause the basic geometric features of strain localization stay unaffect-
ed. It is noted that the goal here is not to simulate the actual
microscopic processes, but to induce a localized form of plastic flow
in the model in a straightforward manner. A banded deformation pat-
tern can be obtained with our current approach. The same numerical
methodology has also been employed to elucidate the much im-
proved bending ductility of a surface-coated bulk metallic glass [30].

The Si base in Fig. 1(b) is treated as a linear elastic solid, with
Young's modulus and Poisson's ratio 107 GPa and 0.172, respectively.
An alternative base material was also used; its elastic property is the
same as the metallic glass and the yield strength is set at 4.2 GPa.
Note that this “hard metal” base is a normal elastic-perfectly plastic
solid with no mechanism built-in for deformation localization. As
for the multilayer model in Fig. 1(c), the “reference metal” is also an
elastic-perfectly plastic solid with the same elastic property. Its
yield strength, however, is set to be 2.1 GPa which is equivalent to
the initial yield point of the metallic glass. Therefore, the multilayer
model may be viewed as a single metallic glass cylinder, but with
two internal layers divested of the work softening (shear-band
forming) capability.
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Fig. 3. Contours of equivalent plastic strain in the stand-alone metallic glass cylinders with aspect ratios (a) 1.0 and (b) 0.6, at the same macroscopic compressive strain of 0.042.

In the presentation below, simulated stress-strain curves of the
metallic glass are obtained from the reaction force at each prescribed
displacement, on the basis of the “engineering stress” and “engineer-
ing strain” definitions. In the case of base-supported pillar structure
(Fig. 1(b)), the displacement of the base material was first subtracted
from the total displacement so the true deformation in the metallic
glass can be accounted for.

3. Results and discussion
3.1. Stand-alone metallic glass cylinder

Numerical results based on the model in Fig. 1(a) are first
presented. Fig. 2 shows the simulated stress-strain curves of the me-
tallic glass cylinders with various aspect ratios (defined to be t/D). It
can be seen that, under uniaxial loading free of external constraint,
the same stress—strain curves are obtained regardless of the geome-
try. Fig. 3(a) and (b) show the contour plots of equivalent plastic
strain in the specimens with aspect ratios 1.0 and 0.6, respectively,
when the overall compressive strain is 0.042. The localized deforma-
tion pattern is evident. Shear bands appear to be uniformly distribut-
ed throughout the material, and the plastic strains inside the bands
are much greater than the surrounding. The extent of shear bands,
in terms of both density and maximum plastic strain, for the two as-
pect ratios appears to be the same, which is consistent with the
equivalence of overall stress-strain behavior observed in Fig. 2.

25 - - ‘
----- D =0.2
——tD =04 e
2 —tD=086 4
g D =0.8
5] ——tD=1.0
% 15/ 1
7]
o
£
3 1r 1
[0}
£
o
=
w
0.5 1
0 . , '
0 0.01 0.02 0.03 0.04

Engineering Strain

Fig. 4. Simulated compressive stress-strain curves for the metallic glass cylinders, with
aspect ratios of 0.2, 0.4, 0.6, 0.8 and 1.0, when they are attached to a Si base.

3.2. Cylinders constrained by base material

The substrate-supported pillar model in Fig. 1(b) is now consid-
ered. Fig. 4 shows the simulated stress-strain curves of the metallic
glass cylinders when they are attached to a Si base. It is observed
that different aspect ratios result in essentially the same elastic be-
havior. However, the plastic flow stress increases with decreasing as-
pect ratio. In other words, when the bottom face of the metallic glass
is constrained by an elastic substrate, a shorter cylinder (becoming
disk-like) will display a higher apparent mechanical strength. This is
due to the decreasing volume that is relatively free to facilitate
uninterrupted shear path along the 45° directions, as seen below.

Fig. 5 shows the yield stress as a function of aspect ratio of the me-
tallic glass. Here the yield stress is defined to be the plastic flow stress
at 1% offset strain. Note that this curve shows the same trend as in the
pillar compression experiment [10,21]. When the aspect ratio is
greater than about 0.5, the yield stress stays nearly constant. Below
0.5 a steep increase in yield stress is seen. Fig. 6(A) and (B) show
the contour plots of equivalent plastic strain when the overall com-
pressive strain of the metallic glass portion is at 0.042, in the models
with aspect ratios of 1.0 and 0.6, respectively. It is notable that shear
bands are more populated near the top of the specimen, away from
the interface with Si. Plasticity is also much stronger in Fig. 6(A). Ap-
parently the interfacial constraint, causing higher magnitudes of hy-
drostatic stress locally, tends to suppress plastic deformation in the
metallic glass. Such an influence is thus greater in low-aspect-ratio
models.

235 T T ' v
1% Perturbation

231

221

Engineering Stress (GPa)

2.15¢ 1

21 0.2 0.4 0.6 0.8 1

Aspect Ratio

Fig. 5. Simulated 1% offset compressive yield stress as a function of the aspect ratio of
the Si-attached metallic glass.
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Fig. 6. Contours of equivalent plastic strain in the Si base-attached metallic glass
cylinders with aspect ratios (A) 1.0 and (B) 0.6, at the same macroscopic compressive
strain of 0.042.

To examine the possibly different effects of interfacial constraint
on localized deformation as opposed to homogeneous deformation
(traditional metal plasticity), we undertook a separate set of simula-
tions using the same model configuration (Fig. 1(b)) but without
the perturbation points that trigger shear bands. This means that
the “metallic glass” under this special circumstance is simply an
elastic-perfectly plastic material with the same elastic property and
initial yield strength. Furthermore, we also included a case where
an excessive number of perturbation points, namely 10% of the mate-
rial elements, are incorporated into the metallic glass. It was found
that these two additional cases lead to stress-strain curves similar
to those in Fig. 4 (not shown here). When the simulated yield stress
is plotted against the aspect ratio, Fig. 7, the same trend as in Fig. 5
is observed. The lower yield stress for the higher proportion of pertur-
bation points is a consequence of more prominent work softening,
while the overall trend with the aspect ratio remains unaffected. It
is thus realized that the Si base-induced constraint influences the ap-
parent strength of the metal cylinder in fundamentally the same way,
irrespective of the localized or homogeneous form of deformation. It
is worth mentioning that, in traditional metal plasticity, constrained
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Fig. 7. Simulated 1% offset compressive yield stress as a function of the aspect ratio of
the Si-attached metallic glass. In addition to the standard model of 1% perturbation
points, two additional cases, with 0 and 10% perturbation points, are included.
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Fig. 8. Contours of equivalent plastic strain in the Si base-attached metallic glass free of
any perturbation points, with aspect ratios (A) 1.0 and (B) 0.6, at the same macroscopic
compressive strain of 0.042.

deformation is also dictated by the ease of flow along the 45° shear
path [22,31,32].

Fig. 8(A) and (B) show the contour plots of equivalent plastic
strain, in the case of an elastic-perfectly plastic “metallic glass” (no
perturbation point) of aspect ratios of 1.0 and 0.6, respectively,
when the macroscopic compressive strain of the metal portion is at
0.042. Although the material is capable of homogenous deformation,
the interfacial constraint renders higher plastic strains near the top
regions, especially in the higher-aspect-ratio model. Note that this
observation has direct implications in interpreting experimental
results of pillar compression for substrate-bonded crystalline metals.
In the case of metallic glasses, the deformation pattern is manifested
by the denser shear bands in the upper region and in the higher-
aspect-ratio specimens (Fig. 6).
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Fig. 9. Contours of equivalent plastic strain in the “hard metal” base-attached metallic
glass cylinders with aspect ratios (A) 1.0 and (B) 0.6, at the same macroscopic compres-
sive strain of 0.042.
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Fig. 10. Simulated compressive stress—strain curve of the multilayer model. Also in-
cluded is the stand-alone metallic glass model of the same overall dimension (the
case of t/D = 1 in Fig. 2).

EQPS
0.0320
0.0280
0.0240
0.0000

Fig. 11. Contour plot of equivalent plastic strain in the multilayer model when the
macroscopic compressive strain is at 0.042.
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In addition to the Si base, a “hard metal” base is also employed in
this study. The “hard metal” is an elastic-perfectly plastic solid with a
yield strength of 4200 MPa (much greater than the initial yield
strength of the metallic glass). The standard constitutive model for
the metallic glass described in Section 2 is used here. We seek to as-
sess how the shear banding configuration in the metallic glass can
be affected by a plastically deforming support structure. The result
is presented in Fig. 9(A) and (B) where the contour plots of equiva-
lent plastic strain corresponding to aspect ratios of 1.0 and 0.6, re-
spectively, under the macroscopic compressive strain of 0.042 in the
metallic glass portion, are shown. It can be seen, in comparison with
the Si base in Fig. 6 under the same overall strain, that a hard but duc-
tile base can allow slightly more shear bands developed in the metal-
lic glass. Shear bands are still more populated in the upper region of
the specimen. Since the base material also has the ability to plastically
deform, the interface becomes less discernible in Fig. 9 compared to
the case of an elastic Si base in Fig. 6.

To this end, it is noted that a ductile base with a yield strength
lower than that of the metallic glass was also included in our prelim-
inary study. Under this circumstance, plasticity mainly occurs in the
base material rather than the metallic glass so the result is not
presented here.

3.3. Multilayered structure

Attention is now turned to the multilayer model in Fig. 1(c). The
“reference metal” sandwiched between the metallic glass layers is
elastic-perfectly plastic, with the yield strength equal to the initial
yield strength of the metallic glass. Fig. 10 shows the simulated
stress—strain curves of the layered model and the all-metallic glass
model of the same dimension (i.e., the curve of t/D = 1 in Fig. 2).
The two curves essentially coincide. Fig. 11 shows the contour plot
of equivalent plastic strain in the multilayer model, when the overall
applied compressive strain is 0.042. While there is no perturbation
point inside the reference metal, extension of shear bands from the
adjacent metallic glass layers into the reference layers has occurred.
By comparing Fig. 11 with Fig. 3(a), the insertion of reference metal
layers is seen to cause discontinuity of localized deformation paths
at the interfaces, and the overall shear band population and plastic
heterogeneity are slightly reduced.

To further explore the effect of reference metal, we examined the
same multilayer model but with reference metal having various strain
hardening capabilities. All the other conditions remain unchanged.
Fig. 12(A) and (B) show the contour plots of equivalent plastic strain
at the overall applied compressive strain of 0.042, when linear plastic
hardening slopes of 2.1 GPa and 21 GPa, respectively, were built into
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Fig. 12. Contour plots of equivalent plastic strain at the overall applied compressive strain of 0.042, when linear plastic hardening slopes of (A) 2.1 GPa and (B) 21 GPa, were built

into the reference metal.
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Fig. 13. Contour plot of equivalent plastic strain in the Si-base attached metallic glass
model, with a 3° taper, at the macroscopic compressive strain of 0.042.

the reference metal. It can be seen in Fig. 12(A) that, compared to
Fig. 11, the extension of shear bands into the hardening reference
metal is notably reduced. In the case of higher strain hardening,
Fig. 12(B), no localized deformation in the reference metal is seen.
The much less deformable reference metal causes stronger deforma-
tion in the metallic glass layers, but the strain distribution tends to
be more uniform, especially near the interfaces.

It is worth mentioning that multilayered pillars consisting of alter-
nating metallic glass and other metal layers are also an active area of
experimental research [33-35]. Shear bands initiated in the metallic
glass films were found to be accommodated at the interface with
the adjacent layer, which resulted in overall more homogeneous de-
formation and thus much improved ductility compared to monolithic
metallic glass structures. The experimental findings are in qualitative
agreement with the present discussion.

3.4. Effect of taper

In experiments, a slight taper is frequently seen in the FIB (focused
ion beam)-fabricated micropillars. Here we utilize the model in
Fig. 1(b) but with a 3° taper, and observe its deformation field.
Fig. 13 shows the contour plot of equivalent plastic strain at the mac-
roscopic compressive strain of 0.042, in the metallic glass of aspect
ratio 1.0 above the Si base. It can be seen that localized deformation
occurs primarily in the upper region away from the interface. In addi-
tion to the interfacial constraint, the smaller cross section area near
the top boundary results in stress concentration, which also contrib-
utes to the inhomogeneous distribution of plastic strain. Constrained
deformation due to physical confinement is thus further enhanced by
the geometrical effect. The simulated deformation field is in line with
carefully controlled experiments on Zr-, Mg- and Fe-based metallic
glasses [36], where shear bands were all observed to nucleate from
the top surface of the 2-4° tapered micropillars under compression.
The taper geometry also plays an important role in affecting the mea-
sured pillar yield strength [36].

4. Conclusions

Systematic finite element analyses were conducted to study the
evolution of shear bands in constrained metallic glass thin films. The

models have the appearance of micropillars subject to compression,
with or without a supporting base material, or with a multilayered
configuration. Incorporation of randomized perturbation points in
the model facilitated the localized plastic deformation. Without the
influence of external constraint, the same stress-strain behavior and
shear banding configuration can be obtained for stand-alone metallic
glasses with various aspect ratios. When attached to a Si base (sub-
strate), metallic glass cylinders with lower aspect ratios display higher
plastic flow stresses. Shear bands are concentrated in the upper vol-
ume of the specimen, away from the interface with the base material.
The effect is further enhanced if the cylinder shows a tapered geome-
try. The effect of aspect ratio on the apparent yield stress for
base-attached metallic glasses follows the same trend as reported in
experiment. The yield stress stays nearly constant if the aspect ratio
is greater than 0.5. Furthermore, substrate-induced constraint is
found to influence overall plastic deformation behavior in fundamen-
tally the same way, regardless of the localized or homogeneous nature
of the deformation. Forming multilayers by bonding thin-film
metallic-glass with crystalline interlayers (with traditional plastic be-
havior) can potentially alleviate the strongly heterogeneous deforma-
tion configuration.
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