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Forward models for the Mueller Matrix (MM) components of materials with relative magnetic permeability
tensor μ≠1 are studied. 4×4 matrix formalism can be used to calculate the complex reflection coefficients
and the MMs of dielectric–magnetic materials having arbitrary crystal symmetry. For materials with
simultaneously diagonalizable ε and μ tensors (with coincident principal axes), analytic solutions to the
Berreman equation are available. For the single layer thin film configuration, analytic formulas for the
complex reflection and transmission coefficients are derived for orthorhombic symmetry or higher. The
separation of the magnetic and dielectric contributions to the optical properties as well as the ability to
distinguish materials exhibiting negative index of refraction are demonstrated using simulations of the MM at
varying angles of incidence.
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1. Introduction

Magnetically active materials in general and metamaterials in
particular comprise important classes of materials both from a
theoretical perspective as well as for possible device applications.
The study of metamaterials has been of interest since the late 1960s
when Veselago first explored the properties of isotropic materials
having simultaneous negative values of ε and μ [1]. In this paper, we
have used theMueller Matrix (MM) formalism for theoretical study of
the optical properties of anisotropic metamaterials in the frequency
range close to the magnetic resonances where μ(ω)≠1. Forward MM
models that match the symmetry of planar metamaterials are
calculated by treating their behavior as a continuous anisotropic
thin film. Our results focus on recently published studies pertaining to
artificially created planar metamaterials [2] which use oscillator
models for the diagonal components of the ε and μ tensors [3,4]. It will
be shown that the MM formalism is useful in the analysis of the
separation of the dielectric and magnetic contributions to the optical
properties of a material including the important case of the negative
index of refraction.

The calculation of a forward model for the MM components of a
dielectric–magnetic material is critical to the analysis of the
experimental data obtained from full MM spectroscopic ellipsometry.
Through an iterative numerical comparison of the forward model
against experimental data, the optical properties of a dielectric–
magnetic material can be analyzed. Specifically, dispersion models for
the relative dielectric permittivity tensor ε and the relative magnetic
permeability tensor μ can be developed. 4×4 matrix formalism [5]
provides a powerful and systematic method to calculate the complex
reflection coefficients and the MMs of dielectric–magnetic materials
having both arbitrary crystal symmetry and magnetic permeability
tensor μ≠1. For a sample whose principal axes are coincident with
the laboratory system, that has simultaneously diagonalizable ε and μ
tensors (with coincident principal axes), and is characterized by
orthorhombic crystal symmetry or higher, exact analytical solutions
for allowed electromagnetic wave propagation in a dielectric–
magnetic medium are produced. For a non-depolarizing medium,
forward MM models are determined directly from the complex
reflection coefficients. Although the optical properties of a non-
depolarizing medium can be also analyzed using the Jones matrices
(JM), the MM approach has an advantage for experimental systems
with imperfect, and hence, depolarizing optical elements. In addition,
the investigated sample itself may introduce depolarization, as in the
case of surface plasmon propagation in metal hole arrays [6]. In this
paper, we demonstrate how the angle of incidence dependence of the
off-diagonal elements M12 and M34 of the MM exhibit asymmetric
results when materials having negative index of refraction are
simulated. The MM approach can be used to determine these effects
experimentally. Alternatively, measurements at variable angles of
incidence of the ellipsometry parameters Ψ and Δ (in which the sign
of Δ is resolved) [7,8] may be applicable to non-depolarizing
anisotropic metamaterials.
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2. 4×4 matrix formalism

Berreman's 4×4 matrix formalism can accommodate materials
with magnetic permeability tensor μ≠1 [5]. The Berreman equation
describing electromagnetic wave propagation in a crystal is:

dψ
dz

= i
ω
c
Δ̃ψ ð1Þ

where ψ is a an array of the transverse components of the
electromagnetic wave [Ex,Hy,Ey,−Hx]T in the medium. Fig. 1 illus-
trates the refraction of light incident in the x−z plane propagating
forward in an anisotropic dielectric–magnetic material. For a crystal
with orthorhombic symmetry having principal axes parallel to the x, y
and z coordinate axes, Δ̃ in Eq. (1) is a 4×4 matrix [5]:

Δ̃ =

0 μyy−
N2
0sin θ0ð Þ2

εzz
0 0

εxx 0 0 0

0 0 0 μxx

0 0 εyy−
N2
0sin θ0ð Þ2

μzz
0

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð2Þ

Inserting Eq. (2) into Eq. (1) returns four exact solutions of the
form ψl(z)=ψl(0)eiqlz with l=1, 2, 3 or 4, two for each of the p and s
polarization states. θ0 is the angle of incidence while p(s) refers to
radiation parallel (perpendicular) to the plane of incidence. qzp and qzs
are the eigenvalues associated with p and s polarizations, respectively
and constitute the z components of the wave vectors in the medium.
These are:

qzp =
ω
c

ffiffiffiffiffiffi
εxx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μyy−

N2
0 sin2 θ0ð Þ

εzz

s
ð3Þ

qzs =
ω
c

ffiffiffiffiffiffi
μxx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εyy−

N2
0 sin2 θ0ð Þ

μzz

s
ð4Þ

Fig. 1 shows qzp and qzs. The x component of the wave vector is
constant for all of the incident and refracted waves. It is through these
equations (eigenvalues of the Berreman equation) that information
about the anisotropic optical properties of the medium [8] enters into
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Fig. 1.Wave vector diagram of refractedwaves propagating in an anisotropic dielectric–
magnetic medium.
the calculation of the complex reflection coefficients and, in turn, MM
elements. For example, the anisotropic ε and μ tensors and the
consequent differences between qzp and qzs are responsible for the
two refracted waves shown in Fig. 1.

3. Analytic formulas

One of the key benefits of using 4×4 matrix formalism to calculate
complex reflection and transmission coefficients is that procedures for
matching electromagnetic boundary conditions are automatically
built in to the method when both incident and, in the case of thin
films, substrate media are isotropic and non-magnetic. For each
polarization state there are two eigenvectors representing forward
and backward propagating waves. In 4×4 matrix formalism, the
complex reflection coefficients rpp(ω) and rss(ω) and the complex
transmission coefficients tpp(ω) and tss(ω) are calculated from the
eigenvectors of Eq. (1) via the solution of simultaneous boundary
value equations relating to the continuity of the electric and magnetic
fields at the media interface(s). For semi-infinite samples, backward
propagating waves are not considered. For thin film samples,
retention of the two backward propagating waves is essential to the
proper calculation of the complex reflection and transmission
coefficients as well as the MM elements. In this section, the cross
polarization terms rps(ω), rsp(ω), tps(ω) and tsp(ω) vanish because the
principal axes of the crystal correspond to the laboratory coordinate
axes.

3.1. Semi-infinite sample

For a semi-infinite material, the two eigenvectors representing the
forward propagating waves are used to calculate the complex
reflection coefficients for p and s polarized radiation. The procedure
for calculating the complex reflection coefficients involves matching
the tangential components of the incident and reflected E and H fields
to a linear combination of the two eigenvectors calculated at the
common interface located at z=0 [5,8]. The complex reflection
coefficients are:

rpp =
εxxkz0−N2

0qzp
εxxkz0 + N2

0qzp
ð5Þ

rss =
μxxkz0−qzs
μxxkz0 + qzs

: ð6Þ

In Eq. (5) and Eq. (6), the complex reflection coefficients are
expressed as functions of the z components of the incident and
refracted wave vectors which themselves take into account the
anisotropic characteristics of the medium. Complex reflection coeffi-
cients stated in this formalism have been used in the study of media
with indefinite permittivity and permeability tensors [9]. These
results, obtained from 4×4 matrix formalism, also allow for the
immediate analysis of the intriguing property of impedancematching.
Consider an isotropicmedium. From Eq. (5), at normal incidence, rpp is
zero when N0 =

ffiffiffiffiffiffiffiffiffiffi
ε= μ

p
. A similar result can be obtained for s

polarization from Eq. (6). These relationships are known as the
impedance matching condition. It provides the condition for zero
reflection at normal incidence even though the indices of refraction of
the incident medium (N0) and the index of refraction of the material
(
ffiffiffiffiffiffi
εμ

p
) are completely different. With incidence from vacuum, this

condition is satisfied if ε=μ. Aside from a trivial case for vacuum,
when both ε and μ are equal to 1, this is only possible if the material is
magnetic and provides confirmation that the material has magnetic
permeability μ≠1. In practice, it is difficult to achieve impedance
matching because both the real and imaginary parts of the dielectric
and magnetic tensors must be identical. Evidence of impedance
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matching in metamaterials was found by Grigorenko et al. in 2005
[10].

3.2. Thin film sample

For a single layer thin film material, all four eigenvectors and
eigenvalues are used in the calculation of both the complex reflection
and transmission coefficients. Both incident and substrate media are
assumed to be isotropic, non-magneticmaterials. The z components of
the incident and substrate wave vectors are kz0 =

ω
c
N0 cos θ0ð Þ and

kz2 =
ω
c
N2 cos θ2ð Þ, respectively. The thin film has thickness d and is

described by ε and μ tensors each having orthorhombic symmetry.We
assume that the ε and μ tensors can be simultaneously diagonalized
and have coincident principal axes. Higher symmetries can easily be
derived from the orthorhombic case. The crystal is aligned such that
its principal axes are coincident with the laboratory axes. Light is
again incident in the x−z plane (see Fig. 1). 4×4 matrix formalism
matches the tangential components of the electric and magnetic field
vectors at z=0 and z=d to produce two generalized field vectors
ψ(0) and ψ(d), respectively. A thin film layer matrix L is utilized to
relate the fields inside the anisotropic film of thickness d at its two
boundaries [8].

ψ dð Þ = Lψ 0ð Þ ð7Þ

L is a 4×4matrix calculated from the eigenvalues and eigenvectors
of the Δ̃ matrix according to:

L dð Þ =Ψ̃�K dð Þ�Ψ̃−1
: ð8Þ

In Eq. (8), Ψ̃ is composed of the four Δ̃ eigenvectors as columns
while K is a diagonal matrix given by Kll=eiqldwith ql representing the
four eigenvalues of Δ̃. After some algebra relating the incident and
reflected waves, the complex reflection coefficients for a thin film can
be calculated. A similar process allows for the calculation of the
complex transmission coefficients [5,8]. Using these procedures, we
derived analytic expressions for both p and s polarizations.

The complex reflection and transmission coefficients for p
polarized radiation are:

rpp =

qzpcos qzpd
� � N2

N0
kz0−

N0

N2
kz2

� �
+ i

N0N2q
2
zp

εxx
− εxxkz0kz2

N0N2

 !
sin qzpd
� �

qzp cos qzpd
� � N2

N0
kz0 +

N0

N2
kz2

� �
−i

N0N2q
2
zp

εxx
+

εxxkz0kz2
N0N2

 !
sin qzpd
� �

tpp =
2kz0qzp

qzpcos qzpd
� � N2

N0
kz0 +

N0

N2
kz2

� �
−i

N0N2q
2
zp

εxx
+

εxxkz0kz2
N0N2

 !
sin qzpd
� �

ð9Þ

The complex reflection and transmission coefficients for spolarized
radiation are:

rss =

qzscos qzsdð Þ kz0−kz2ð Þ + i
q2zs
μxx

−kz0kz2μxx

 !
sin qzsdð Þ

qzscos qzsdð Þ kz0 + kz2ð Þ−i
q2zs
μxx

+ kz0kz2μxx

 !
sin qzsdð Þ

tss =
2kz0qzs

qzscos qzsdð Þ kz0 + kz2ð Þ−i
q2zs
μxx

+ kz0kz2μxx

 !
sin qzsdð Þ

ð10Þ

The formulas are functions of the optical properties of the film
material as well as the characteristics of both the incident and
substrate media. For example, in a vacuum-thin film-vacuum
configuration, the first terms in the numerator of each of the complex
reflection coefficients become zero. This simpler form is applicable to
many experimental configurations and will be used in the analysis of
planar metamaterials below.

In order to verify the accuracy of our analytical expressions, we
have calculated the complex reflection and transmission coefficients
for the cases of the semi-infinite sample, and a single layer film on a
semi-infinite substrate using both our numerical implementation of
the 4×4 matrix algorithm and the analytical expressions in Eq. (5),
Eq. (6), Eq. (9) and Eq. (10). We found that the results coincide within
the rounding errors of the 4×4 matrix algorithm. This analysis was
performed for a variety of conditions including negative permittivity
and permeability values, which are expected to be observed in
metamaterials.

4. Mueller matrices of a planar metamaterial

For the sample symmetry and the experimental configurations
assumed in this paper, the off diagonal elements of the 2×2 Jones
matrix are zero. For non-depolarizing materials, there are well
established formulas to transform the Jones matrix to a full MM [8]
and Eq. (11) is the transformation formula applicable when the off
diagonal Jones matrix elements are both zero.

1
2

rpp
��� ���2 + jrssj2
� �

1
2

rpp
��� ���2−jrssj2
� �

0 0

1
2

rpp
��� ���2−jrssj2
� �

1
2

rpp
��� ���2 + jrssj2
� �

0 0

0 0 ℜ rppr
�
ss

� �
ℑ rppr

�
ss

� �
0 0 −ℑ rppr

�
ss

� �
ℜ rppr

�
ss

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð11Þ

The MM of a dielectric–magnetic material is produced from its
complex reflection coefficients which are, in turn, calculated from its
frequency dependent ε and μ tensors. Accordingly, to produce a MM,
accurate complex reflection formulas appropriate to the orientation of
the crystal must be available. In addition, models for the dielectric and
magnetic functions of the material are required for input into these
reflection formulas. Eq. (11) illustrates that, for our configuration,
there will be eight non-zero MM elements. However, only four of
these terms are independent. Procedures for calculating the forward
model of a MM for a planar metamaterial will now be discussed.

To date, there have been relatively few spectroscopic studies of
metamaterials which analyze their reflection properties using oblique
angles of incidence. Driscoll et al. have done one such study using a
planar array of split-ring resonators (SRRs) [2]. Reflection and
transmission intensities were recorded for the single s polarization
at varying angles of incidence. These results were fitted using the
Fresnel equations to model the optical properties of the metamaterial
as though it behaved as a continuous anisotropic thin film crystal.

These results are important to our study of MMs because the
frequency dependentmodels of thematerial's ε and μ tensors together
with our Eq. (9) and Eq. (10) enable the calculation of predictive MMs
of this planar metamaterial. In the Driscoll experimental configura-
tion, the ε and μ tensors have the following anisotropic symmetry:

ε ωð Þ =
εxx ωð Þ 0 0

0 εyy ωð Þ 0
0 0 1

0
@

1
A

μ ωð Þ =
1 0 0
0 1 0
0 0 μzz ωð Þ

0
@

1
A

: ð12Þ
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The tensors are described by the oscillator models given in
Eq. (13).

εxx ωð Þ = εs−
Aeω

2
p

ω2−ω2
e0 + iωγe

μzz ωð Þ = 1− Amω
2

ω2−ω2
m0 + iωγm

ð13Þ

In the formula for the ε tensor, εs is the static dielectric constant
and ωp is the plasma frequency. Ae and Am are oscillator amplitudes.
The formula for the μ tensor is modified from the traditional
Lorentzian model in that the square of the frequency of incident
radiation (ω) enters the numerator and μ (0) is forced to be equal to 1
[2–4]. The εyy(ω) response was not analyzed in the Driscoll paper.

The general formulas for thin films derived using 4×4 matrix
formalism are used to calculate the complex reflection and transmis-
sion coefficients for this fabricated material. The experiment
performed by Driscoll et al. is set up such that both incident and
substrate medium are in vacuumwith the x axis parallel to s polarized
radiation. In this configuration, the complex reflection coefficients for
p and s polarized radiation in Eq. (9) and Eq. (10) reduce to the
following:

rpp =

i
2

qzp
kz0εyy

−
kz0εyy
qzp

 !
sin qzpd
� �

cos qzpd
� �

− i
2

qzp
kz0εyy

+
kz0εyy
qzp

 !
sin qzpd
� �

rss =

i
2

qzs
kz0μyy

−
kz0μyy
qzs

 !
sin qzsdð Þ

cos qzsdð Þ− i
2

qzs
kz0μyy

+
kz0μyy
qzs

 !
sin qzsdð Þ:

ð14Þ

In Eq. (14), qzp(ω) and qzs(ω) have the same definitions as in
Eq. (3) and Eq. (4) except for the interchange of the x and y axes to
accommodate the experimental set up. kz0 is the z component of the
free space wave vector.

Due to the complexity of the analysis using the Fresnel approach,
Driscoll et al. [2] constrained themselves to study only the s
Fig. 2. The Mueller matrix components of a planar metamaterial in the proximity of th
polarization incident at the sample. 4×4 matrix formalism and full
MMmeasurement should allowmore complete analysis of the sample
properties using the incident light of linear and elliptical polarizations.
In order to develop a forwardmodel and analyze themeasurements of
MMs at oblique angles of incidence, assumptions about the permit-
tivity and permeability along other directions are required. Specifi-
cally, assumptions about the εyy(ω) response are necessary in order to
illustrate how 4×4 matrix formalism could have been used to predict
the MM for this metamaterial. Asymmetries in the SRR fabrication
between the x and y axis suggest that εyy(ω)≠εxx(ω). For purposes of
illustration only, we assume that the natural resonance of the εyy(ω)
oscillation is 15 GHz as compared to 19.9 GHz for the εxx(ω)
oscillation. We assume all other fitted parameters are identical.
Using these parameters, the frequency dependent εxx(ω), εyy(ω) and
μzz(ω) values are calculated and are then input into Eq. (14) to
produce the complex reflection coefficients. Eq. (11) is then used to
transform the complex reflection coefficients into MM elements.
Given the coincidence of the principal axes of the metamaterial with
the laboratory system, the off diagonal Jones matrix elements will
vanish and there will be only 8 non-zero elements of the predicted
MM. These elements are illustrated in Fig. 2. 4×4 matrix formalism
was used for the systematic calculation of the complex reflection
coefficients. Driscoll et al. found that the rss coefficient, when
calculated in conjunction with the fitted oscillator models, produced
a good qualitative fit with s polarized experimental reflectivity data
[2]. The simulated MM components, generated from the ε and μ
tensors, contain additional critical information about the anisotropic
dielectric and magnetic properties of the metamaterial. Actual
experimental MM data should allow for the extraction of the
anisotropic oscillator parameters through non-linear fitting
procedures.

5. Separation of dielectric and magnetic contributions

For proper characterization of materials whose magnetic effects
have non-negligible influence on their optical properties, it is
important to be able to separate dielectric and magnetic contribu-
tions. Spectroscopic experiments usually provide values for the
complex refractive index n =

ffiffiffiffiffiffi
εμ

p
at different frequencies, which

do not contain any direct information as to whether it is ε or μwhich is
responsible for a particular feature observed in the spectrum. The
e resonant feature at 14 GHz for two AOI. Dotted line θ0=0o. Solid line θ0=40o.



Fig. 3.Dielectric andmagnetic contributions in the diagonal and off-diagonal MM components as functions of AOI. Different (ε,μ)combinations illustrate the difference in response of
M12 and M34 compared to M11 and M33. For example, the (2, 3) combination (black dotted line, online dotted green) and the (3, 2) combination (black squares, online solid yellow
line) are degenerate for M11 and M33 but have opposite signs for M12 and M34.

2672 P.D. Rogers et al. / Thin Solid Films 519 (2011) 2668–2673
difference in the change of the variousMM components in response to
whether ε or μ is changing can separate dielectric and magnetic
contributions. For metamaterials, this information is crucial for their
design.

This discrimination is indeed possible by performing MM
measurements made at varying angles of incidence. To illustrate this
point, we model conditions where the index of refraction of a
dielectric–magnetic material remains constant but its inputs (ε and μ)
are varied. Specifically, wemodel a hypothetical case of isotropic ε and
μ where each are allowed to vary between 1 and 6, but their product,
n2=εμ, is held constant at 6. We simulate a given material
Fig. 4.Dielectric andmagnetic contributions in the diagonal and off-diagonal MM componen
M12 compared to M34 when “left handedness” is introduced via negative values for ε and μ.
dotted line, online solid green line) are degenerate for M11 and M33 but have opposite signs f
online blue “o”) are degenerate for M11 and M33 but have opposite signs for both M12 and
composition (ε, μ) and compare it to another material whose values
for ε and μ are interchanged. For example, Fig. 3 shows that the values
of the diagonal MM elements are identical for both materials
characterized by (3, 2) and (2, 3), respectively. However, this
degeneracy is removed when the off-diagonal MM elements are
analyzed over varying angles of incidence (AOI). It is evident in Fig. 3
that the MM response of the off-diagonal elements is the same in
magnitude, but is either positive or negative depending on whether it
is ε or μ that is changing. The (2,3) material has positive off-diagonal
elements while the (3,2) material has negative off-diagonal elements.
Moreover, as seen in Fig. 4, when we introduce the “left handed” [1]
ts as functions of AOI. Different (ε,μ)combinations illustrate the difference in response of
The (−2,−3) combination (black “x”, online red “x”) and the (2, 3) combination (black
or M34. In addition, the (−2,−3) combination and the (−3,−2) combination (black “o”,
M34.

image of Fig.�3
image of Fig.�4
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material with negative permittivity and permeability, but keeping
εμ=6, the M12 and M34 components respond in opposite directions.
For example, while the (−2,−3) material has diagonal and off-
diagonal MM elements identical in magnitude to the (+2,+3)
material, the sign of M34 becomes negative. It is also interesting to
note that the off-diagonal MM responses for two left handedmaterials
can be distinguished. For example, the signs of the M12 and M34

components respond in opposite directions for the (−2,−3) material
as compared to the (−3,−2) material. The difference in the angular
response between M12 and M34 is an indication of the material being
“left handed”. This observation is extremely important as it is
happening in the thin film sample where the study of such MM
measurements at varying AOI may be the only way to identify the
anomalous properties of the metamaterial comprising the film. In the
above cases for both right handed and left handed materials, the
ability to distinguish ε and μ vanishes at normal incidence. However,
the contrast between the magnetic and electric contributions is at
maximum for AOIs that are close or even exceed the Brewster angle of
~68° that corresponds to n =

ffiffiffi
6

p
. Given that there are only 4

independent MM elements to measure, varying the AOI contributes a
critical degree of freedom to the proper characterization of ε and μ
tensors. Fig. 4 also shows the interesting impedance matching
condition discussed in Section 3. When ε=μ, there is zero reflection
at normal incidence.

The simple examples considered above can, of course, be analyzed
using the alternative approach of the Jones matrices. Switching
between dielectric and magnetic contributions as well as between
the positive and negative values of these contributions does naturally
cause changes in Ψ and Δ dependencies. However, the behavior of
these ellipsometric parameters is more complex, and not as illustra-
tive, as compared to switching signs in the off-diagonalMuellerMatrix
components.

Since real metamaterial samples are usually anisotropic, one
should not always expect to see such well pronounced and easily
understandable effects in real experimental data. However, the fact
that the angular dependencies of the MM elements respond
differently to dielectric and magnetic contributions, as well as to the
positive and negative values of ε and μ, should allow for the ability to
distinguish these different situations while extracting ε and μ by non-
linear fitting of the experimental data.
6. Summary

We have presented an analytical approach for the study of
dielectric–magnetic materials using 4×4 matrix formalism. Wave
vectors in a dielectric–magnetic medium are derived directly from the
eigenvalue solutions of the Berreman equation. We utilized the wave
vector approach to derive analytic formulas for the complex reflection
and transmission coefficients of thin films whose ε and μ tensors
match to orthorhombic symmetry. Any other system that has
simultaneously diagonalizable ε and μ tensors (with coincident
principal axes) can be reduced to this case by rotations of the
reference frame. We have demonstrated how these calculations can
produce the full MM of a non-depolarizing material. Forward models
for the active MM elements of a planar metamaterial were calculated.
The separation of the magnetic and dielectric contributions to the
optical properties of an anisotropic material, as well as identification
of negative refractive index in a thin film, are possible using the MM
approach at varying AOI.
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