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Abstract 

Using Au/GaAs as a model system, the effect of initial catalyst conditions on nanowire densities 

was studied. Resulting morphologies and fractional surface densities are determined as a 

function of e-beam dose, dot size, and inter-dot spacing using scanning and transmission electron 

microscopies. The majority of resulting nanowires exhibited randomly oriented growth with the 

respect to the substrate and tapered with narrow tops, wider bases, and the catalyst tips - 

characteristics of vapor-liquid-solid process. The base diameters of the wires are larger than the 

dot size, which is likely due to the non-catalyzed vapor-solid deposition along the sidewalls. The 

higher dose rate in pattering leads the formation of higher aspect ratio nanowires with narrower 

base. The fractional surface density follows the trend of clearing dose and critical dose for 

nanowire growth increases with decreasing catalyst pattering size and spacing. At a given dose, 

the fractional density increased with increasing Au dot size and with decreasing inter-dot spacing. 

Our results may provide new insights into the role of catalyst preparing conditions on the density 

controlled growth of nanowires in a single wafer. 
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1. Introduction 

Semiconducting group III-V nanowires, such as GaAs, InAs, and InP, owing to their high 

carrier mobilities and low band gaps, form an important class of materials with potential 

applications in nanoelectronics and optoelectronics, as chemical and biological sensors, and in 

energy harvesting devices [1,2]. To-date, nanowires have been grown using a variety of growth 

techniques such as self-catalyzed [3,4,5], oxide-templated [6,7,8], dislocation-assisted growth 

[9,10,11], among which the vapor-liquid-solid (VLS) [12] process is probably the most widely 

adapted method. And, considerable progress has been made over the past decade in developing 

methods to control the nanowire morphology, structure, and composition [13,14,15,16]. Wafer-

scale growth of highly-ordered arrays of nanowires with nearly identical morphology, structure, 

and composition has been demonstrated using lithographically-patterned substrates as templates 

[17,18,19,20,21]. However, relatively little is known concerning the role of catalyst patterning 

parameters on the growth of nanowires. The properties of these nanowires were found to 

critically depend on the thickness and the linear dimension of the catalyst pattern elements.   

In this paper, we report results from a detailed investigation of the influence of electron-

beam dose during electron-beam lithography (EBL) on the morphology and the fractional surface 

density of nanowires. Au dots of two different sizes and three different inter-dot spacings are 

patterned via EBL on a 4" GaAs(111)B wafer. Several arrays of such patterns are prepared by 

applying a range of electron beam doses. In a single growth experiment, solid-source Ga and As 

precursors are used to grow GaAs nanowires on these patterned wafers. We studied the overall 

morphology and the fractional surface densities of the resulting nanowires as a function of 

electron beam dose, Au dot size, and inter-dot spacing.  
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2. Experimental Details 

All of our experiments are carried out on a 4" GaAs(111)B wafer. First, 200-nm-thick 

film of poly-methylmethacrylate (PMMA) is spin-coated on the wafer. Using EBL at 50 keV, we 

prepared 31 rows (labeled A to AE) of 11 identical patterns, as shown in Fig. 1. Each pattern 

consists of 6 rectangular regions that are made up of 250 × 150 ordered arrays of dots of nominal 

size D (= 100 nm and 150 nm) separated by inter-dot spacing S (= 100 nm, 150 nm, and 250 nm). 

Each of the rows is patterned using a different electron beam dose Q with increasing doses from 

Q = 145 μC/cm
2
 for the A

th
 row to 595 μC/cm

2
 for the AE

th
 row. The patterned wafer is 

developed at room temperature by dipping for 30 s in a liquid solvent composed of a mixture of 

isopropyl alcohol (IPA) and methyl isobutyl ketone (MIBK) with the ratio of 3:1. Au films, 1-

nm-thick, are then sputter-deposited on the patterned wafer and the wafer air-transferred to an 

ultra-high vacuum (UHV, base pressure < 5.5 × 10
-10

 Torr) molecular beam epitaxy (MBE) 

system equipped with solid Ga and As sources for GaAs deposition. In the growth chamber, the 

wafer is cleaned of any surface oxides by heating at 480 
o
C for 600 s in the presence of As vapor 

maintained at a pressure of 1.05 × 10
-5

 Torr. The sample is subsequently annealed at 485 
o
C for 

120 s in UHV to generate Au-Ga alloy droplets. Finally, nanowires are grown at 490 
o
C for 2400 

s using a Ga beam pressure of 3.04 × 10
-7

 Torr and a thermally cracked As2 pressure of 1.05 × 

10
-5

 Torr. The as-grown samples are characterized using FEI Nova 600 field-emission scanning 

electron microscopy (SEM) and FEI Titan 300 keV high resolution transmission electron 

microscopy (TEM). SEM images are processed using Image J software [22] to measure the 

image intensities of the patterns. From the SEM images of the dot patterns, we measured the dot 

sizes D to be 106 ± 5 nm and 144 ± 5 nm and the inter-dot spacings S to be 104 ± 5 nm, 156 ± 4 

nm, and 258 ± 4 nm. Please note that in the following sections, we use the nominal D (= 100 and 
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150 nm) and S (= 100, 150, and 250 nm) values for convenience. The fractional surface density 

of nanowires in a given pattern is determined [23]. In order to study the crystallinity of the GaAs 

nanowires, we obtained TEM images and diffraction patterns of individual nanowires which are 

mechanically exfoliated from the wafer, dispersed in ethanol and drop-casted onto a 3 mm Cu 

grid with the holey carbon film. 

 

3. Results and Discussion 

Figure 2 shows representative secondary electron SEM images acquired from a thin Au 

covered GaAs(111)B sample with circular dot patterns created using EBL with Q = (a) 220 

μC/cm
2
, (b) 295 μC/cm

2
, (c) 460 μC/cm

2
, and (d) 535 μC/cm

2
. In the patterns created using low 

electron beam doses, for example Q = 220 μC/cm
2
, the dots are barely visible. With increasing Q, 

we obtain well-defined dots with sharp boundaries. The plot in Fig. 2e shows spatial variations in 

normalized intensities of the SEM images in Figs. 2a–d. Here we define normalized intensity as 

the ratio of intensity at a given pixel with respect to average intensity of the image [24,25]. We 

find that the intensities of the dots increase with increasing Q. This trend is analogous to clearing 

dose in electron beam lithography where the amount of exposure energy required to just clear the 

resist in a large clear area for a given process increases linearly with e-beam dose Q [26].  

Figure 3a shows a typical SEM image of an individual GaAs nanowire grown in the Y
th

 

row pattern (D = 150 nm, S = 150 nm, Q = 505 μC/cm
2
). The nanowire is 2.5 μm long and is 

strongly tapered with a base diameter of ~ 192 nm and a tip diameter of ~ 28 nm. The top-view 

SEM image of the wire in Fig. 3b shows that the wire is facetted with a hexagonal cross-section. 

Figures 3c–d show top-view and 30
o
-tilted SEM images of vertically aligned GaAs nanowires 

grown in the Z
th

 row pattern (D = 150 nm, S = 150 nm, Q = 520 μC/cm
2
). For this pattering 
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condition, the majority of Au catalyzed GaAs nanowires exhibit epitaxial relationship with the 

respect to GaAs(111)B substrate and significant tapering along the growth direction. The 

resulting morphology indicate that both vapor-liquid-solid and vapor-solid depositions are 

involved in the overall growth process [27,28]. 

 From multiple SEM investigations, we measured the base diameter of individual 

nanowires. The obtained data was fitted to a log-normal distribution [29], and then their average 

diameters were calculated from the fitted slope. For D & S = 100 nm, the base diameter 

decreases from 253.3 ± 2.7 nm to 167.9 ± 2.6 nm as the electron beam dose increases from Q = 

400 µC/cm
2
 to Q = 520 µC/cm

2
. For D & S = 150 nm, the base diameter changes from 217.1 ± 

6.8 nm to 177.5 ± 5.1 nm as the dose rate varies from Q = 400 µC/cm
2
 to Q = 520 µC/cm

2
. In 

these dose ranges between Q = 400 µC/cm
2
 and Q = 520 µC/cm

2
, the average length of 

nanowires is 3.0 ± 0.5 μm but nanowires are observable up to 10 μm in length. We observed that 

several nanowires grown from the same root within a circular dot pattern results in an irregular 

morphology and randomly oriented growth respect to the substrate. The shapes of nanowires are 

highly tapered along their length and with larger base diameters than the original pattern sizes 

i.e., 100 nm or 150 nm.  We also measured the average aspect ratio of nanowires. The aspect 

ratio is defined as the length of nanowire divided by the base diameter of the wire. For D & S = 

100 nm, the aspect ratio increases from 13.2 at Q = 400 µC/cm
2
 to 25.1 at Q = 520 µC/cm

2
. For 

D & S = 150 nm, the ratio increases from 22.7 at Q = 400 µC/cm
2
 to 25.7 at Q = 520 µC/cm

2
. 

We found that the aspect ratio in the pattern D & S = 100 nm is more sensitively changed to the 

dose rate than that in D & S = 150 nm. At the lower dose rate, the as-grown nanowires have 

lower aspect ratio structures with larger bases but higher aspect ratio structures with decreasingly 
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narrow bases towards the higher dose rate. These results are also typical of all the nanowires 

grown in other patterns, irrespective of D, S, and Q.  

Figure 4a is a bright-field TEM image of GaAs nanowire collected from the Z
th

 row 

pattern (D = 150 nm, S = 150 nm, Q = 520 μC/cm
2
). The relatively uniform contrast along the 

wire is suggestive of spatially homogeneous structure and composition in the wire. As can be 

seen in Fig. 4a, the fact that the wire is highly tapered along with a smaller catalyst at the top is 

also indicative of uncatalzyed deposition of Ga and As species on the sides of the nanowires [28]. 

The inset in Fig. 4a is a selected area electron diffraction (SAED) pattern, viewed along the [112] 

axis, from the region highlighted in the TEM image. From the SAED data, we determined the 

crystal structure of nanowire as zinc blende (cubic) and the wire growth direction as 111 [28]. 

Figure 4b shows the high resolution TEM image of the tip-wire interface. The darker contrast at 

the wire tip is likely due to the presence of an Au catalyst, expected for the vapor-solid-solid and 

VLS growth of nanowires [30,31]. From the lattice-resolved image, we measured inter-planar 

spacings of 0.23 nm and 0.33 nm for the tip and wire, respectively corresponding to 111 planes 

in Au and GaAs [32]. We randomly selected 30 wires in other patterned regions and further 

analyzed TEM images. The catalyst tips are commonly observed in the wires (Figs. 4c–e). The 

overall length of nanowires was consisted with SEM analysis but rarely found up to 5 μm (Fig. 

4f). Irrespective of the electron beam patterning parameters (D, S, and Q), the majority of 

nanowires contain a high density of planar defects (i.e. twins, stacking faults) and kinks along 

their growth direction (see Figs. 4g and h).  

Overall nanowire morphology shows random orientation respect to substrate and broad 

size distribution of base diameter of nanowire, indicating none Au catalyzed nanowire growth 

that surface migration of Ga adatom with a mean length of 3 ~ 5 μm may induce nanowire 
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growth [33, 34,35]. Random orientation of GaAs nanowires results in the large variations in Au-

Ga catalyst [35,36], catalyst migration of Au [37,38] or Ga [39,40,41], and relatively lower 

growth temperature [42,43,44]. We note that the base diameters of the wires are larger than the 

Au dot size D, which is likely due to the non-catalyzed deposition along the sidewalls during the 

catalyst-assisted growth process [45]. It confirms that non-catalytic deposition (i.e. mainly for 

lateral growth) at the lower dose rate prevails VLS growth mechanism (i.e. primarily for vertical 

growth) [5,27,46], in which the dose rate changes in the substrate pattering step may be used as 

one control parameter for adjusting the base diameter and aspect ratio within the constant growth 

conditions. 

In the following sections, we focus on understanding the effect of D, S, and Q on the 

fractional surface density of nanowires. Figures 5a–d are top-view SEM images of the patterned 

areas created using different Q. Figure 5a is a low-magnification SEM image of the region 

containing two patterns Q = 340 μC/cm
2
 and 355 μC/cm

2
. The brighter contrast in the red 

rectangle is due to the presence of nanowires (see higher magnification image in Fig. 5b). The 

absence of any such contrast within the image is attributed to the lack of nanowires in that region. 

From a series of SEM images acquired from all the patterns, we find that regions patterned using 

Q < 355 μC/cm
2
 did not yield any nanowires. In Fig. 5b, we find nanowires in three out of the 

six patterns, which contain Au dots with D = 150 nm separated by distances S = 100 nm, 150 nm, 

and 250 nm from left to right in the image. The other three patterns invisible in the image due to 

the lack of any nanowires contain smaller dots of size D = 100 nm. We observed similar 

behavior in all the patterns prepared using doses Q < 400 μC/cm
2
. At higher doses, for example 

Q = 400 μC/cm
2
, nanowires are observed to grow in five out of the six patterns (see Fig. 5c). 

And, at Q > 400 μC/cm
2
, nanowires are found in all the six patterns as shown in Fig. 5d.  
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The effects of electron beam dose Q and inter-dot spacing S on the fractional surface 

density of nanowires grown using Au dots of size D = 100 nm are pictorially illustrated in Fig. 6. 

For a given D and S, the fractional density of nanowires in the patterns increases with increasing 

Q. The density is also found to increase with decreasing S. In our experiment, this behavior is 

consistently observed from all the patterns fabricated using a range of Q values. From the images 

of the patterns, we measured the fractional surface density of nanowires as a function of Q, D, 

and S.  

Figure 7 is a plot of the fractional surface density as a function of Q for all the six 

different combinations of D and S. Here we found that the fractional density changes are 

consistent with a clearing dose in which the residual thickness of the polymer film decreases 

with increasing dose [47,48,49]. For Q ≤ 350 μC/cm
2
, nanowires are not observed in any of the 

patterns, irrespective of D and S. For Q ≥ 475 μC/cm
2
, nanowire yield is maximum (the nanowire 

density is ~ 80%) in all of the patterns and is independent of Q. In the patterns prepared using 

intermediate Q values between 350 μC/cm
2
 and 475 μC/cm

2
, the nanowire coverage increases 

linearly with Q.  

The observed effect of Q can be understood as follows: at low electron beam doses, the 

pattern is underexposed and does not be completely developed. Consequently, Au is not 

deposited in the patterns and nanowires do not grow. At the intermediate electron beam dose but 

below the critical dose, only a fraction of the polymer chains in the PMMA film breaks up and 

the extent of damage increases linearly with Q [26,47]. Therefore, some amount of Au is 

deposited in the patterns. While nanowires can grow out of these patterns, their base diameters 

are likely to be narrower and their lengths shorter owing to smaller sized catalysts at the tips 

which diffuse away during growth. A net effect is the reduced nanowire density in the patterns 
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created using lower Q. Here we can define the critical dose Qc; that is a minimum required dose 

for full development resist layer and fully saturated fractional density of nanowires. At electron 

beam doses above the critical dose Qc (i.e, Qc ≈ 490 μC/cm
2
 for D = 100 nm and S = 250 nm), 

the pattern film is completely developed. Hence, the amount of Au deposited and the nanowire 

yield are maximized in these patterns. We find that the critical dose Qc increases with increasing 

S for a given D.  This observation is consistent to GaP and InAs nanowire growth [17,50].  

Interestingly, nanowire yield is also found to vary with the parameters D and S. Figure 8 

shows the effect of inter-dot spacing S on the fractional surface density. This effect is more 

pronounced in the patterns obtained using intermediate Q values, i.e. between 350 μC/cm
2
 and 

475 μC/cm
2
. In Fig. 8, we find that the minimum dose Q to yield nanowires is ~ 350 μC/cm

2
 in 

the patterns with dots D = 150 nm. In contrast, higher doses (Q > 380 μC/cm
2
) are required to 

yield nanowires in the patterns with smaller dots D = 100 nm. It is also shown that nanowire 

yield is higher in the patterns with smaller inter-dot spacing. For a given Q, smaller S shows 

larger fractional density of nanowire growth.  

In order to explain these results, we assume that a minimum volume of Au, which may 

vary with growth temperature and flux, is necessary for the nucleation and growth of nanowires. 

During EBL, electron beam broadening and multiple scattering events can lead to the proximity 

effect [47,51]. This effect is likely to be more significant in the patterns with smaller S and D. In 

Fig. 8, smaller dots require higher dosage than larger dots in satisfying the critical dose for the 

nucleation and growth of nanowires. Also, the proximity effect can limit on the minimum 

spacing between features [52]. The direct consequence of undesirable exposures next to small 

feature results in broadening its size of the small feature. Hence, the extent of damage to the 

polymer film around dots with small S is slightly higher than dots with large S. At a given dose, 
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those patterns with smaller S will be developed into the larger pattern size than the intended size. 

In the Au deposition, those patterns may receive more amounts of Au, which result in higher 

fractional density of nanowires.  

 

4. Conclusion 

 We investigated the correlation between predeposited catalyst layers and nanowire 

density, varying electron beam dose, patterned dot size, and inter-dot spacing on the Au-

catalyzed growth of GaAs nanowires using solid Ga and As sources on GaAs(111)B wafer. 

Using scanning and transmission electron microscopy, we determined the morphologies of as-

grown nanowires and the fractional surface density of nanowires. Due to the characteristics of 

vapor-liquid-solid process for axial growth and vapor-solid process for radial growth, overall 

nanowire morphology showed random orientation respect to substrate and broad size distribution 

of base diameter of nanowire. At given Au dot size and spacing, the exposure of higher dose rate 

promotes the formation of higher aspect ratio nanowires with smaller bases.  The fractional 

density of nanowires shows linear dependency on electron beam dosage and followed the trend 

of clearing dose in PMMA layer. At a given dose, the fractional density also increased with 

increasing Au dot size and with decreasing inter-dot spacing. Our results will be useful to 

identify the key parameters of electron beam lithography that are desirable for large-scale and 

density-controlled growth of nanowires in a single wafer.  
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FIGURE CAPTIONS 

 

Fig. 1. Schematic overview of patterns on GaAs(111)B wafer. Each of the 31 patterns labeled 

alphabetically from A to AE consists of 6 rectangular regions made up of 250 × 150 ordered 

arrays of a given dot-size D (= 100 and 150 nm) and inter-dot spacing S (= 100, 150, and 250 

nm).  

 

Fig. 2. Effect of electron beam dose Q on the patterned dot profiles. Top-view field-emission 

SEM images acquired from a GaAs(111)B wafer patterned using EBL with dots of size D = 100 

nm and inter-dot spacing S = 150 nm as a function of Q = (a) 220 μC/cm
2
, (b) 295 μC/cm

2
, (c) 

460 μC/cm
2
, and (d) 535 μC/cm

2
. Scale bar in all the images is 500 nm. (e) Spatial variations in 

the SEM image intensities of the patterns in (a)-(d) normalized with respect to the back ground 

intensity. Each of the curves is an average of over 128 line profiles acquired from the patterned 

regions.  

 

Fig. 3. (a) 30
o
-tilted SEM image of a GaAs nanowire grown in the area containing Au dots of 

size D = 150 nm, and spacing S = 150 nm patterned using Q = 505 μC/cm
2
. (b) Top-view SEM 

image of the same nanowire (D = 150 nm, S = 150 nm, Q = 505 μC/cm
2
). (c) Top-view SEM 

image of GaAs nanowire arrays grown in the area containing Au dots of size D = 150 nm, and 

spacing S = 150 nm patterned using Q = 520 μC/cm
2
. (d) 30

o
-tilted SEM image of GaAs 

nanowire arrays (D = 150 nm, S = 150 nm, Q = 520 μC/cm
2
).  
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Fig. 4. (a) Bright-field TEM image of a GaAs nanowire grown in the area prepared using Q = 

520 μC/cm
2
, D = 150 nm, and S = 150 nm. Inset is a selected area electron diffraction pattern 

acquired along the [112] zone axis from the region highlighted in the image. The diffraction data 

indicates that the wire is zinc blende in structure and the growth direction is 111. (b) Higher 

resolution TEM images of the catalyst tip-wire interface. (c–e) HR-TEM images of the catalyst 

tips in the GaAs nanowires which are indicative of the characteristics of vapor-liquid-solid 

growth mechanism. All scale bars are 10 nm. (f–g) Bright-field TEM image of GaAs nanowire 

obtained from randomly selected wires at the various dose rates Q for D = 150 nm and S = 150 

nm. Significant tapering of nanowires indicated the growth of individual nanowires occurs via 

both vapor-liquid-solid and vapor-solid growth process. (h) Bright-field TEM image of GaAs 

nanowire obtained from the pattering condition of Q = 520 μC/cm
2
, D = 150 nm, and S = 150 nm. 

The SAED pattern indicates the growth direction of the wire is 111.  

 

Fig. 5. Top-view SEM image obtained from the patterned GaAs(111)B wafer after the growth of 

GaAs nanowires. a) Low-magnification SEM image of the region containing the pattern prepared 

using Q = 355 μC/cm
2
, highlighted by red square. The scale bar is 0.5 mm. (b) Higher 

magnification SEM image of the red rectangular region in (a). (c,d) SEM images of the areas 

patterned using Q = (c) 400 μC/cm
2
 and (d) 520 μC/cm

2
. In the images (b–d), scale bar is 50 μm. 

All the dots in a given row have the same size D = 150 nm (top row) and 100 nm (bottom row), 

while S is 100 nm, 150, and 250 nm in the left, center, and the right patterns, respectively.  
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Fig. 6. SEM images of a GaAs(111)B wafer with GaAs nanowires grown in the areas patterned 

with Au dots of size D = 100 nm. The vertical and horizontal axes show patterns obtained using 

different Q and S values, respectively. Scale bars in the images are 4 μm. 

 

Fig. 7. The fractional surface density of nanowires plotted as a function of Q. Solid lines are a 

guide for the eye. The critical dose Qc is a minimum required dose for fully saturated fractional 

density of nanowires.  

 

Fig. 8. The fractional surface density of nanowires plotted as a function of S for (a) D = 100 nm 

and (b) D = 150 nm with four different e-beam doses Q = 355, 400, 430, and 520 C/cm
2
.
 
Solid 

lines are a guide for the eye.  
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Figure 8b 

 

Highlights 

 Initial Au catalyst layers are prepared using electron beam lithography.  

 GaAs nanowires are grown on GaAs(111)B using molecular beam epitaxy. 

 Effect of dose, size and spacing of Au dots on morphology and density is studied.  

 Density of nanowires is controlled by changing exposed dose on Au catalyst.  

 

 


