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The nano-Thermal Transport Array is a silicon-based micromachined device for measuring the thermal
properties of nanoscale materials in a high-throughput methodology. The device contains an array of thermal
sensors, each one of which consists of a silicon nitride membrane and a tungsten heating element that also
serves as a temperature gauge. The thermal behavior of the sensors is described with an analytical model.
The assumptions underlying this model and its accuracy are checked using the finite element method. The
analytical model is used in a data reduction scheme that relates experimental quantities to materials
properties. Measured properties include thermal effusivity, thermal conductivity, and heat capacity. While
the array is specifically designed for combinatorial analysis, here we demonstrate the capabilities of the
device with a high-throughput study of copper multi-layer films as a function of film thickness, ranging from
15 to 470 nm. Thermal conductivity results show good agreement with earlier models predicting the
conductivity based on electron scattering at interfaces.
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1. Introduction

The thermal transport properties of nanoscale materials can differ
significantly from their bulk counterparts [1,2]. When the micro-
structural length scale of a material is comparable to the mean free
path of the phonons and electrons responsible for thermal transport
in that material, surfaces and interfaces start to influence overall
thermal transport. This effect has become increasingly important, as
nanotechnology has pushed device design below the applicable scales
of bulk materials properties. In devices such as integrated circuits or
micro-electro-mechanical systems, thermal transport can play a
significant role in function and failure. Beyond technological con-
siderations, the study of thermal properties at the nano-scale presents
interesting fundamental questions into the interaction of heat transfer
and microstructure at these small length scales, including thermal
conductivity across and parallel to interfaces [3].

Along with length scale, thermal properties of materials also vary
with composition and processing conditions [4]. Extensive studies of
these considerations have been performed for bulk materials in the
past, but few studies have been performed on nanoscale materials
systems. A high-throughput measurement technique specifically
applicable to nanoscale materials would be helpful in remedying
this situation. Such a technique could be used to quickly map the
thermal transport properties of very small quantities of materials as a
function composition or processing conditions, thus facilitating design
and optimization of nanoscale devices.

Thin-film heat transport metrology has improved significantly in
recent years. Through-plane techniques such as 3-omega, time-
domain thermoreflectance, and scanning optical thermometry can
be used in a high-throughput methodology, but have limited in-plane
applicability [5,6]. The most promising in-plane methods rely on
membrane structures that constrain heat flow in the plane [7–9]. Until
now, this class of instruments has seen no high-throughput thermal
conductivity measurement application. Many of themembrane-based
techniques are not compatible with high-throughput methods
because they involve multiple thermal cells and/or numerous
thermometers. The 3-omega method has been used to measure in-
plane thermal conductivity, but the technique requires two heating
elements of differing widths for each measurement, reducing the
high-throughput applicability of this approach [10]. More recently the
3-omega method has been used to measure the thermal conductivity
and heat capacity of silicon nitride and nickel titanium membranes.
The approach used for these measurements requires multiple
thermometers and up to 16 electrical connections, making it
inconvenient for high-throughput application [11].

In the following article, we present an instrument designed to
measure the in-plane thermal conductivity of nanoscale films and
coatings with a high-throughput methodology. The nano-thermal
transport array (nTTA) is a micromachined array of thermal sensors,
so called because it uses a high-throughput approach to measuring
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heat transport in thin film material systems. An analytical, one-
dimensional, transient heat transfer model is used to optimize the
dimensions of each sensor, define themeasurement range, and reduce
measureddata to thedesiredmaterial properties.Afinite elementmodel
(FEM) is used to verify the analytical model. Direct effusivity measure-
ments of Si3N4 membranes and Si3N4/Cu multilayer-membranes as a
function of film thickness, and calculated thermal conductivity mea-
surements, demonstrate the capabilities of the nTTA.

2. Physical description and operating principles

The nTTA device consists of a substrate with a number of
micromachined thermal sensors. The thermal sensors are arranged
in a 5×5 array to facilitate combinatorial sample preparation (Fig. 1).
When a thin-film sample with an in-plane composition or thickness
gradient is deposited on this substrate, it is essentially discretized at
each thermal sensor allowing the simultaneous measurement of 25
samples with unique composition or thickness.

The design and operation of the thermal sensors is similar to the
nano-calorimetric cells developed by Allen and colleagues [12–15],
but optimized for sensitivity to heat loss. Each thermal sensor consists
of a thermistor on an electrically insulating ceramic membrane
supported by the substrate (Fig. 2(a), (b)). The thermistor is
fabricated from an electrically conductive film and serves both for
measuring temperature and for heating the sample. Samples to be
measured form a continuous film across the membrane of each
sensor. Electrically insulating samples are deposited on the front-side
of the membrane while conductive samples are deposited on the
backside of the membrane.

Referring to the schematic in Fig. 2(a), the long straight line down
the center of the membrane is the heating element, the metal lines
connected to the heater are the voltage probes, and the portion of the
heating element between the voltage probes is the thermistor. A
current passed through the heating element heats the membrane
along its centerline. The local temperature change is determined from
the resistance of the thermistor, which is evaluated in a four-point
measurement. As the thermistor heats, a temperature gradient
develops in the membrane resulting in heat loss. The thermal
properties of the membrane are determined from the power input
and temperature history of the thermistor before a steady state is
Fig. 1. Nano-thermal transport array schematic.

Fig. 2. Thermal cell schematic: (a) plan view, and (b) cross-section view.
reached, i.e., they are evaluated from the transient behavior of the
sensor. As will be discussed later, this approach has some benefit over
techniques relying on the steady state in terms of improved
temperature uniformity within the sensor.

Conservation of energy relates the electrical power dissipated in
the thermistor to the thermal energy stored locally and the heat lost to
the environment. The power dissipated is determined experimentally
from the current supplied to the thermistor and the potential drop
between the voltage probes. The current and the potential drop also
provide the resistance of the thermistor, which is calibrated to
temperature. The temperature history of the thermistor, thermal
properties of the materials, and the geometry of the thermal sensor
determine the energy stored and lost. The sensor array contains both
sensors with narrow andwide thermistors. At moderate temperatures
the heat loss from narrow thermistors is dominated by heat transfer
from the thermistor to themembrane, and as a result the temperature
response of the thermistor is a strong function of the thermal
transport properties of the membrane. Thermal modeling is used to
relate power and temperature to the specific heat and effusivity of the
membrane. Wide thermistors (rightmost column of thermistors in
Fig. 1) are paired with the neighboring narrow thermistors in a
measurement scheme to decouple radiation and conduction losses
and to facilitate emissivity measurements. Vacuum conditions
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Fig. 3. Schematic of control volume in relation to the entire thermal cell.
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eliminate convection losses and provide a chemically inert testing
environment.

Two measurements are required to extract the thermal properties
of the sample film: one reference measurement on the bare thermal
cell and one on the cell with the sample film. The reference mea-
surement characterizes the heat loss through the bare membrane,
while the cell with sample film provides effective thermal properties
for the ceramic/sample bilayer membrane. Combining the results of
both measurements allows determination of the sample thermal
properties. A wide range of samples can be deposited andmeasured as
long as they do not fracture the membranes due to high stresses.

Materials chosen for the nTTA device are based on the functional
requirements placed on each structure, cost and fabrication knowl-
edge base. The substrate is made of silicon, chosen because of the
availability of relatively low-cost and high-quality wafers. Silicon also
has established anisotropic etching procedures for forming cavities.
The ceramic membrane is made of Si3N4, selected because of its
electrically insulating properties and a demonstrated ability to form
thin membranes. The thermistor is made of tungsten, because of its
relatively large temperature coefficient of resistance and its small
resistivity, which are beneficial to measurement sensitivity [13]. Also,
tungsten has a very high melting point, so that the material has
excellent thermal stability compared to conductors with lower
melting temperatures. The electrical leads and contact pads on the
substrate are made of copper to reduce the resistance of the lead lines
and to facilitate contact to the device. The high-temperature stability
of nTTA materials means that the device is compatible with high-
temperature sample fabrication methods. Specific dimensions of the
nTTA device can be found in Table 1.

3. Transient 2D thermal model

This section is focused on the derivation of the thermal model that
describes the sensor. Much of the detail of the modeling consists of
formulating the heat flow in the membrane. To accomplish this task
we consider a control volume CV. The CV is defined by the volume of
the thermistor and the volume of the membrane (including any
sample) directly below the thermistor (Fig. 3). The CV is bounded by
the two xz-planes located at the edges of the heating element, the two
yz-planes at the voltage probes, and the two xy-planes at the top and
bottom free surfaces of the thermal cell.

The electrical power dissipated in the thermistor, P, is partly stored
as internal energy in the CV U, and partly lost to the environment by
conduction and radiation, Q:

P = U + Q : ð1Þ

The energy storage rate is

U = ∭
CV

ρcP
∂T
∂t dV ; ð2Þ

where ρ is the density, cP is the specific heat, T is the temperature, t is
time and V is the volume. The total energy loss to the environment Q,
is decomposed as,

Q = Qx + Qy + Qz; ð3aÞ
Table 1
Approximate dimensions of nTTA components.

Length (x) Width (y) Thickness (z)

Substrate (Si) 55 mm 55 mm 0.7 mm
Membrane (Si3N4) 5 mm 3 mm 80 nm
Narrow thermistor (W) 3 mm 84 μm 125 nm
Wide thermistor (W) 3 mm 800 μm 125 nm
Qx = ∬−2kx
∂T
∂x dAx; ð3bÞ

Qy = ∬−2ky
∂T
∂y dAy; ð3cÞ

Qz = ∬2εCV σ ðT4−T4
0 ÞdAz; ð3dÞ

where x, y, and z represent the respective directions of the heat flow.
Physically, Qx represents the conduction losses at the ends of the
thermistor, Qy refers to the conduction losses into the membrane, and
Qz represents the radiation losses from the top and bottom free
surface of the CV.Within the definition of these terms, k is the thermal
conductivity, ε is the emissivity, σ is the Stefan–Boltzmann constant,
T0 is the temperature of the environment, and A is the respective
cross-sectional area. The factor of two in each term arises from the
symmetry of the CV. Convection losses are neglected because the
measurements are performed in vacuum.

The relations expressed in Eqs. (2), (3a), (3b), (3c) and (3d) can be
simplified significantly. Since the physical length scale in the z-direction
is much smaller than a typical diffusive length scale, the temperature is
uniform in this direction. Conversely, in the x-direction the thermal
diffusion length in a typical experiment is much smaller than the
distance from the voltage probes to the substrate. Therefore, significant
temperature gradients are constrained to the inactive portions of the
heater; the temperature of the active portion of the heater (i.e. the
thermistor) can be considered uniform in the x-direction. This transient
temperature profile is in contrast to steady-state hot strip techniques,
where temperature variation along the heater can be significant. Finally,
we assume that temperature variation in the y-direction is small
within the CV, and confirm thiswithfinite elementmodeling later in the
paper. From these assumptions, the Qx term vanishes while the energy
storage rate and the radiation loss reduce to U=CPdf [t]/dt and
Qz=2AzεCVσ(( f [t]+T0)4−T 0

4), respectively. Here CP is the total heat
capacity of the CV (including samplewhen applicable) and f [t] represents
the average temperature change of the heater, f [t]=TAve−T0, as a
function of time. Finally, since Qy must be continuous across the CV-
membraneboundary, this termcanbe rewrittenasQy=−2AMkM∂TM/∂y,
where the subscriptMdenotesmembraneparameters and themembrane
temperature gradient is evaluated at the edge of the heating element.
Substituting the expressions for U, Qy, and Qz into Eq. (1) results in

P = CP r½t�−2AMkM
∂TM
∂y + 2AzεCVσððf ½t� + T0Þ4−T4

0 Þ: ð4Þ

Here r[t] is the heating rate of the CV, AM is the cross-sectional area of
the membrane, kM is the thermal conductivity of the membrane, Az is
the emitting surface area of the CV, and εCV is the effective emissivity
of the CV. The emissivity εCV is an effective value because the top and
bottom surfaces of the CV are made of different materials with
different emissivity values. Eq. (4) is not yet explicit in terms of the
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relevant thermal parameters because the temperature gradient in the
membrane cannot be measured directly and it depends on both kM
and the volumetric heat capacity of the membrane (ρ cP)M.

To determine the temperature gradient in themembrane, we solve
the one-dimensional thermal diffusion equation for the temperature
profile in the membrane,

ðρcPÞM
∂TM
∂t = kM

∂2TM
∂y2

−2
εM σ
hM

ðT4
M−T4

0 Þ: ð5Þ

Here εM and hM are the emissivity and the thickness of the membrane,
respectively. The factor of two in the radiation term arises because
the membrane radiates from the top and bottom surfaces. If we let
τ=TM−T0, and approximate the radiation term with a linear Taylor
expansion about τ=0, then the radiation term becomes (8 εMσT03/
hM)τ. By letting α=kM/(ρcp)M, and β=8 εMσT03/hM(ρcp)M, Eq. (5)
reduces to,

∂τ
∂t = α

∂2τ
∂y2

−βτ; ð6aÞ

with initial and boundary conditions,

τ½y;0� = 0; τ½0; t� = f ½t�; τ½∞; t� = 0: ð6bÞ

Here the temperature in the membrane is assumed to be initially
uniform. The temperature at the left boundary (y=0) evolves as a
function of time, while the right boundary (y=∞) remains fixed at the
initial value. Comparing these conditions to the physical thermal cell,
the initial condition is satisfied by letting the sensor equilibrate with
its surroundings for an appropriate length of time (on the order of
seconds for these sensors). The left boundary condition is given by the
experimentally measured temperature history of the thermistor. The
right boundary condition remains valid as long as the thermal
diffusion length is smaller than the distance to the edge of the
membrane. The linearization of the radiation term in themembrane is
valid as long as the temperature difference between the membrane
and its surroundings remains appropriately low.

To solve Eqs. (6a) and (6b), we follow Sneddon's example for the
solution to Eqs. (6a) and (6b) without the radiation term [16]. Starting
with an auxiliary problem, we first solve the case where the left
boundary condition satisfies τ[0, t]= f [t′], where t′ is a fixed
parameter, i.e., f [t′] is a constant. Let τ*[y,t] be the solution to the
auxiliary problem. Applying the Fourier sine transform,

θ ψ; t½ � =
ffiffiffi
2
π

r
∫∞
0
τ* y; t½ � sin ψy½ �dy; ð7Þ

to Eqs. (6a) and (6b) and taking into account the boundary conditions
yields

∂θ
∂t + β + αψ2

� �
θ ψ; t½ � =

ffiffiffi
2
π

r
αψ f t0

� �
: ð8Þ

With θ[ψ,0]=0 from Eq. (6b), Eq. (8) can be solved with a result

θ ψ; t½ � =
ffiffiffi
2
π

r
αψ f t0

� �
β + αψ2 1−e− β + α ψ2ð Þt

� �
: ð9Þ

Applying the inverse Fourier sine-transform yields the solution of the
auxiliary problem

τ* y; t½ � = 2
π
∫
∞

0

αψ f t0
� �

β + αψ2 1−e− β + α ψ2ð Þt
� �

sin ψy½ �dψ: ð10Þ
Eq. (10) represents the solution to Eq. (6a) for the case that τ*[0, t]
is constant. This result can be used with Duhamel's theorem to solve
Eq. (6a) when the boundary condition is a function of time. According
to Duhamel's theorem [16], the solution for the problem with the
variable boundary condition, τ[0, t]= f [t], is related to the solution τ*
[y, t] for the fixed boundary condition τ[0, t]= f [t′] by

τ y; t½ � = ∂
∂t ∫

t

0
τ* y; t−t0
� �

dt0: ð11Þ

Substituting Eq. (10) into Eq. (11) results in,

τ y; t½ � = ∂
∂t ∫

t

0

2
π
∫
∞

0

αψf t0
� �

β + αψ2 1−e− β + αψ2ð Þ t−t0ð Þ
� �

sin ψy½ �dψdt0:

ð12Þ

Taking the derivative and simplifying gives,

τ½y; t� = 2
π
α∫

t

0
f ½t0�∫∞

0
ψ sin½ψy�e−ðβ + α ψ2Þðt−t0Þdψdt0: ð13Þ

Using the result from reference [17],

∫
∞

0
ψ sin½ψy�e−α ψ2ðt−t0 Þdψ =

ffiffiffi
π

p
4

ye−
y2

4 αðt−t0 Þ

ðαðt−t0ÞÞ3=2 ; ð14Þ

and substituting into Eq. (13), yields,

τ y; t½ � = ∫t

0
f t0
� �yExp⌊ −y2

4α t−t0ð Þ−β t−t0
	 


⌋
2
ffiffiffiffiffiffiffi
πα

p
t−t0ð Þ3=2 dt0: ð15Þ

Eq. (15) represents the temperature profile in the membrane for a
given temperature history of the heating element. The first factor
inside the integral is the forcing function, while the second factor is
the Green's function of the problem. If the temperature history of
the thermistor f [t′] is represented by an nth order polynomial with
coefficients {a0, a1, a2,…, an}, then Eq. (15) can be expressed
analytically, although the result becomes complicated quickly with
increasing order of the polynomial. Taking the derivative of the
resulting analytic function with respect to y and evaluating at y=0,
gives the temperature gradient in the membrane at the edge of the CV
in terms of the polynomial coefficients ai:

∂τ
∂y jy=0

=

ffiffiffiffi
1
α

r
∑
n

i = 1
aibi t;β½ �; ð16Þ

where the bi[t,β] are functions of t and β alone. They follow from the
operations described above and can be found in Appendix A for
polynomials up to order five for βN0 and order seven for β=0. Since
∂τ/∂y=∂TM/∂y, we substitute Eq. (16) into Eq. (4) and let g[t]=Σ ai
bi[t,β] to get,

P = CPr½t� + 2AMϕMg½t� + 2AzεCVσððf ½t� + T0Þ4−T4
0 Þ: ð17Þ

Here the effusivity is defined as ϕ =
ffiffiffiffiffiffiffiffiffiffiffi
kρcP

p
. Eq. (17) establishes the

power balance of the CV in terms of the unknown thermal parameters
CP, ϕM and εCV. Data analysis will focus on using Eq. (17) to evaluate
these thermal parameters.

4. Finite element simulations

A two-dimensional transient finite element model (FEM) has been
created to simulate the heat flow in the thermal cell and to evaluate
the accuracy of the analytical model. The model represents a cross-
section of the sensor in the yz-plane (Fig. 2(b)), reduced by the mirror



Fig. 4. FEM average node temperature distribution along y-direction for a bare thermal
cell and cell with 50 nm Cu sample, simulated for 5 mswith respective currents of 5 and
10 mA.
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symmetry at the center of the heating element. The dimensions of the
model are based on the actual thermal cell used in our experiments
(Table 1). The left-end boundary condition, at the mirror plane,
imposes zero heat flux, while the right-end boundary condition
maintains the edge of the membrane at T0. The top and bottom
surfaces allow radiative heat loss to a blackbody at T0. The initial
condition is T[0, y]=T0 everywhere.

In order to simulate a measurement, two finite element models are
required: amodel of a bare cell consisting of a silicon nitride membrane
and a tungsten heater, and a model of a cell with a representative
sample, in this case a 50 nm copper film. Based on experimental results
presented in a subsequent section, the initial resistance of the heating
element is set to R0=45 Ω, while the temperature coefficient of
resistance is λ=1.65×10−3 K−1. The remaining materials properties
are based on literature values, shown in Table 2.

The finite element simulations have been performed with the
commercial code ABAQUS. The heat transfer is modeled using the
diffusive heat transfer element DC2D8, an 8-node biquadratic element.
The y-spacing of the elements inside the CV is approximately 4 nm,
while the spacing in themembrane is approximately 21 nm. The heater
is represented by 4 elements through the film thickness; themembrane
(membrane plus sample when present) is represented by 2 elements.
Heat generation is accomplished via a user subroutine associated with
the elements of the thermistor. A constant current I (5 mA for the
reference case and 10 mA for the sample case) and a resistance R=R0
(1+λ (T−T0)) determine the electrical power dissipated in the
heating element. A time step of 0.05 ms is used in the simulations.

The output of the simulations is in the form of the nodal
temperature history. The nodal temperatures show that the temper-
ature variations through the thickness of the membrane and heating
element are small (ΔTb0.1 °C). The FEM neglects interface resistances
between the layers in the CV as does the analytical model. This
assumption can be justified by considering the worst case conditions
of a heat flux through the interface equal to the entire power
dissipated in the heater (4.5 mW) and a very low thermal conduc-
tance (20 MW/m2 K) [1], which produces a temperature difference
across the interface of just 0.001 °C. This temperature error is
insignificant and can be neglected. Averaging the temperature of the
nodes through the thickness of the model produces a temperature
distribution along the y-direction. Fig. 4 shows temperature distribu-
tions in a reference cell and in a sample cell with 50 nm of copper for a
representative set of experimental conditions. These temperature
distributions confirm the earlier assumption that the lateral temper-
ature variation within the CV is small (ΔT b0.1 °C). From
these observations, we conclude that the temperature boundary
condition f [t] in the analytical model can be represented by the
average temperature of the thermistor. This is equivalent to the actual
experiments where the average temperature is measured. The
temperature-time data generated by the finite element models
(Fig. 5) are then analyzed using the method described in the next
section to determine the heat capacity of the control volume CP and
the effusivity of the membrane ϕM.

5. Data reduction and error analysis

A data reduction method based on the analytical model has been
developed to analyze the FEM results and the experimental data.
Table 2
FEM input materials properties [19–23].

k (W/m K) ρ (kg/m3) cP (J/kg K) ε

Thermistor (W) 174 19300 132 0.02
Membrane (Si3N4) 2.3* 3000 700 0.18
Sample (Cu) 401 8960 384 0.01

* Value is from a SiNX / SiO2 / SiNX film stack.
Analysis of the FEM data allows for verification of the data reduction
method by accurate reproduction of input values; analysis of the
measured data produces the desired materials properties that are the
goal of this investigation. The following discussion is based on the FEM
data, but the analysis of experimental data proceeds along the same
line.

The data reduction begins with the temperature history of the
thermistor obtained from the FEM calculations. To simulate experi-
mental noise in the FEM results, a normally distributed temperature
error σT[p] was added to the FEM temperature results at each time
step in the temperature report. Thewidth of the σT[p] distributionwas
representative of the measurement noise observed experimen-
tally. Eq. (17) can be used with this data set to estimate the thermal
parameters CP and ϕM. For each time step t[N], the function f [t′] and
the ai in Eq. (16) are found from a polynomial fit to the temperature
history up to that particular point N. The fit is obtained by minimizing
the merit function,

χ2
a = ∑

N

p=1

T ½p�−ða0½N� + a1½N� t½p� + … + an½N� tn½p�Þ
σT ½p�

� �2

: ð18Þ
Fig. 5. FEM average temperature history of control volume nodes. Data is shown as
dashes and the 5th order and 7th order polynomial fits are shown for the bare cell and
the cell with 50 nm Cu, respectively.
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Fig. 6. Radiation from CV and membrane relative to the power dissipated in the
thermistor for the bare cell.
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The order of the polynomial is determined by the linearity of the
temperature history. For the bare cell, n=5 is sufficient to represent
the simulation results; for the cell with sample, n=7 is required. The
merit function χa

2 is minimized by applying the normal equations in a
matrix formulation. Following this approach, we define the matrices,

υ½N� =

∑
N

p=1

1
σ2
T ½p�

∑
N

p=1

t½p�
σ2
T ½p�

… ∑
N

p=1

tn½p�
σ2
T ½p�

∑
N

p=1

t½p�
σ2
T ½p�

∑
N

p=1

t2½p�
σ2
T ½p�

⋮ ⋱

∑
N

p=1

tn½p�
σ2
T ½p�

∑
N

p=1

t2n½p�
σ2
T ½p�2

2
6666666666664

3
7777777777775
; ð19Þ

and

ω½N� = ∑
N

p=1

T ½p�
σ2
T ½p�

∑
N

i=1

T½p� t½p�
σ2
T ½p�

… ∑
N

i=1

T½p� tn½p�
σ2
T ½p�

" #
: ð20Þ

Then the ai are given by,

ai N½ � = ∑
n+1

j=1
υ−1

i+1ð Þj N½ �ωj N½ �: ð21Þ

Eq. (21) is used to evaluate the function g[t] in Eq. (17). The error σg

on g[t] is then given by

σ2
g = ∑

n

j=1
∑
n

i=1

∂g
∂ai

∂g
∂aj

υ−1
ði + 1Þðj + 1Þ: ð22Þ

The covariances of the ai parameters are significant and must be
included for an accurate estimation of σg.

The average heating rate of the control volume, r[t], is the
derivative of the temperature history. In the data analysis, this
derivative is calculated by performing a linear least square fit of the
temperature data around the time step of interest. The fit is found by
minimizing the merit function

χ2
c ½N� = ∑

N+M

p=N−M

T½p�−ðc0½N� + c1½N� t½p�Þ
σT ½p�

� �2
; ð23Þ

using the normal equations in a matrix formulation. The corresponding
right hand side (RHS) of Eq. (19) is now a 2×2 matrix, and the RHS
of Eq. (20) is a 2-component vector. In both equations, the upper and
lower limits for the summations are the same as in Eq. (23), i.e., N−M
and N+M, respectively. The heating rate is then,

r½N� = c1½N� = υ−1
21 ½N�ω1½N� + υ−1

22 ½N�ω2½N�; ð24Þ

with associated error,

σ2
r ½N� = υ−1

22 ½N�: ð25Þ

Before CP and ϕM can be determined from Eq. (17), it is necessary
to know β and εCV. We will show later in this section how these
parameters can be estimated from experiments. In many cases,
however, the effects of β and εCV are small enough that they can be
neglected without significant loss of accuracy. Alternately literature
values can be used. Fig. 6 shows the radiation loss from the CV and the
membrane of a bare thermal cell relative to the total power input for a
heating rate of 7.5 K/ms. In the analysis of the FEM data, the FEM
input values were used for εCV and β. Because radiation from the
membrane in the sample cell was insignificant, βwas taken as zero for
the sample cell.
All parameters in Eq. (17) are now known except for CP and ϕM,
which are determined by a least squares fit of Eq. (17) to the P data.
The error on the electrical power, σP, is typically much smaller than
the errors on g[t] and r[t]. To account for the uncertainty in these two
terms, an effective error is defined for the electrical power, σeff, as
[18],

σ2
eff = σ2

P +
∂P
∂r σr

� �2
+

∂P
∂g σg

� �2
; ð26Þ

and used in the merit function for the fit. The partial derivatives in
Eq. (26) require some knowledge about the unknown parameters CP
and ϕM. For the FEM data, the input values are used; for the
experimental analysis, CP and ϕM are first estimated with a least
squares fit using σP only and then σeff is evaluated using the estimated
values. The merit function for the least squares fit of the thermal
parameters is defined as,

χ2
t = ∑

N

p=1

P½p�−2AzεCVσ f ½p� + T0ð Þ4−T4
0

� �
− CP ½N�r½p� + 2AMϕM ½N�g½p�ð Þ

σ eff ½p�

0
@

1
A
2

:

ð27Þ

Eq. (27) is minimized as described above to produce the best-fit
values of CP and ϕM. These terms can be written explicitly as,

CP ½N� =
1

Γ½N� ∑
N

p=1

Peff ½p�r½p�
σ2
eff ½p�

∑
N

p=1

g2½p�
σ2
eff ½p�

− ∑
N

p=1

g½p� r½p�
σ2
eff ½p�

∑
N

p=1

Peff ½p�g½p�
σ2
eff ½p�

 !
;

ð28Þ

and

φ½N� = 1
2AMΓ½N�

∑
N

p=1

r2½p�
σ2
eff ½p�

∑
N

p=1

Peff ½p�g½p�
σ2
eff ½p�

− ∑
N

p=1

Peff ½p�r½p�
σ2
eff ½p�

∑
N

p=1

r½p�g½p�
σ2
eff ½p�

 !
;

ð29Þ

with associated errors,

σ2
CP
½N� = 1

Γ½N� ∑
N

p=1

g2½p�
σ2
eff ½p�

; ð30Þ

and

σ2
ϕ½N� =

1
2AM

� �2 1
Γ½N� ∑

N

p=1

r2½p�
σ2
eff ½p�

: ð31Þ
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Fig. 7. Results of the analysis of the FEM results (data points with error bars) compared to input values (solid line): heat capacity of the CV of a bare cell (a), effusivity of a bare-cell
membrane (b), heat capacity of the CV of a cell with a 50 nm Cu coating (c), effusivity of a membrane with a 50 nm Cu coating (d).

7099P.J. McCluskey, J.J. Vlassak / Thin Solid Films 518 (2010) 7093–7106
In these equations,

Γ½N� = ∑
N

p=1

r2½p�
σ2
eff ½p�

∑
N

p=1

g2½p�
σ2
eff ½p�

− ∑
N

p=1

r½p�g½p�
σ2
eff ½p�

 !2

; ð32Þ

and Peff=P−Qz. Analysis results of CP and ϕM are plotted along with
input values for the bare cell in Fig. 7(a) and (b), while the values for
the cell with the sample are plotted in Fig. 7(c) and (d), respectively. It
is evident that the analysis results converge rapidly to the input
values. The average analysis result is calculated with an error-
weighted mean and shown in Table 3 along with input values and
reproducibility error. A reproducibility error of approximately 3% or
less provides confidence in the analytical model and the data
reduction scheme. The error analysis presented here is extended to
a sensitivity analysis in Appendix B that provides relative errors for
the effusivity, heat capacity, and thermal conductivity. These relative
errors can be used to judge the capability of the device and to guide
experimental work on other materials systems.

The FEM results have also been used to simulate measurement of
the emissivity εCV of the CV. This is achieved by heating narrow
(400 μm) and wide (1000 µm) heating elements at approximately the
same rate of 20 K/ms to a temperature of 400 °C. Under these
conditions the difference in conductive loss between the two sensors
is small, while the difference in radiation loss is significant. By taking
the difference in the power balance for each heater (Eq. 17) and
assuming that conductive losses cancel exactly, the effective emis-
sivity of the CV can be written as,

εCV =
ΔP−Δ CPðdT = dtÞð Þ
lΔwσ T4−T4

0

	 
 : ð33Þ

Using this method, the effective emissivity of a bare cell is
determined to be εCV=0.104, which differs from the input value by
1% (Fig. 8). Thismethod of evaluation can be usedwhen the εCV term is
significant and measured values are preferred over literature values.
The emissivity of the tungsten film, which is used for the heating
element, can be obtained from thismethod by depositing tungsten as a
sample film. In this case the εCV is the emissivity of tungsten. Once the
emissivity of tungsten is known, then the emissivity of the membrane
can be estimated from the effective emissivity of the bare cell CV.

Determination of CP by fitting Eq. (17) to the power data requires a
value for εCV. Determination of εCV from Eq. (33), on the other hand,
requires a value for CP. For the finite elementmodel the input values can
be used, but for experiments these values are not known a priori. They
are, however, easily determined iteratively. More specifically, Eq. (17)
is fitted to the experimental data using literature values for εCV; then
the CP result from this fit is used to calculate an experimental value for
εCV. This value of εCV is then used in Eq. (17) to produce the final result.
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Table 3
FEM measurement simulation results.

Parameter Input Result Error (%)

Bare cell CP (nJ/K) 134.8 133.4 1.1
ϕ (J/m2s1/2 K) 2198 2257 2.7

Cell with 50 nm Cu coating CP (nJ/K) 198 192 3.1
ϕ (J/m2s1/2 K) 21820 21480 1.5

Fig. 9. nTTA fabrication flow. One thermal cell is shown for clarity. Detailed step-by-step
procedures can be found in the text of the paper.

7100 P.J. McCluskey, J.J. Vlassak / Thin Solid Films 518 (2010) 7093–7106
Because the effect of radiation is very small in the temperature and
heating rate range considered, one iteration is sufficient.

The accurate reproduction of FEM input values with the analytical
model and data reduction scheme validates the assumptions made in
the analytical model and lends credibility to the measurement
approach. The same analysis method can now be applied to
experimental results obtained for real devices. The following sections
describe how the device is made and the measurements are
performed, as well as the results of the measurements.

6. Device fabrication

The fabrication process starts with (100) oriented Si wafers,
200 mm in diameter and polished on one side. These wafers are
delivered with a coating of approximately 80 nm of Si3N4 grown on
both sides using low-pressure chemical vapor deposition (Fig. 9(a)).
Special care is taken throughout the fabrication process to protect the
Si3N4 on the polished side of the wafer. This film will eventually form
the membranes of the nTTA and even shallow scratches result in
ruptured membranes.

Each Si wafer is cleaved into seven 55 mm×55 mm square
substrates. The substrates are rinsed in deionized water and blown
with nitrogen to remove any particles. Then 125 nm of tungsten and
1.2 µm of copper are deposited on the polished side of a square
substrate using direct current (DC) magnetron sputtering (Fig. 9(b)).
Immediately prior to film deposition, the substrates are sputter-
cleaned using an Ar plasma to remove any contamination and to
improve adhesion of the sputtered coatings.

With the materials necessary for forming the sensors in place,
material is now selectively removed to form the appropriate
structures using standard photolithography and etch processes.
After the wafer is baked at 150 °C for 5 min, Shipley 1805 photoresist
(S1805) is spin-coated and patterned on both sides of the wafer. The
front side of the substrate is exposed to UV light through amask with
Fig. 8. Emissivity calculated from the FEM simulations along with FEM input value. The
error on the calculated emissivity is large at low temperatures, but the emissivity
quickly converges to the input value at elevated temperatures where radiation is a
more important heat loss mechanism.
the metallization artwork, and the backside is exposed through a
mask with the cavity window artwork. Both sides of the substrate
are developed simultaneously in Microposit CD-30 for 1 minute
(Fig. 9(c)). The Si3N4 on the backside of the wafer is reactively
etched in CF4 to create rectangular openings in the silicon nitride
layer. Copper is etched in a solution of phosphoric, nitric, and acetic
acid at 50 °C. The Cu etch exposes the underlying W, which is then
etched in 30% H2O2 at 50 °C (Fig. 9(d)). Both etch steps take
approximately three minutes. After the wet-etch processes, the
remaining resist is exposed and removed. Next S1805 is re-applied
to the metallization side and patterned with the rectangular cavity
artwork (Fig. 9(e)). Copper is then etched from the membrane area,
leaving only W within the area that will form the membrane. After
patterning of the metallization, the freestanding membranes are
created by anisotropically etching the Si in a solution of 15 g KOH in
50 ml H2O at 85 °C for approximately 9 h. The patterned Si3N4

coating on the backside of the substrate serves as a hard mask for
this step. During this procedure, the metallization is protected by a
sample holder that exposes the backside of the device to the KOH
solution, while isolating the front side from the KOH solution. For
added protection, a layer of Cyclotene resist (Dow Chemical) is spin-
coated on top of the metallization and cured at 130 °C for 70 min.
After the Si etch, the Cyclotene is removed in a bath of Primary
Stripper A at 75 °C for 1 hour (Fig. 9(f)). The device fabrication
process is completed with an anneal at 450 °C for 8 hours in a
vacuum furnace with a base pressure of 10−5 Pa.
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Fig. 10. Schematic of the experimental setup.
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7. Measurement setup and calibration of thermistor

nTTA measurements are controlled and recorded with a personal
computer and a National Instruments PCI-6221 data acquisition card
(DAQ) (Fig. 10). The DAQ is used to send a control voltage to a voltage-
to-current converter, with a linear mapping of 1 V to 10 mA. The
current source consists of a precision operational amplifier (OPA227),
a power operational amplifier (OPA549), and a differential amplifier
(INA133) arranged in a modified Howland configuration. It is
powered by a Protek 3030D dual DC power supply running in series
mode, providing a constant 30 V controlled power. Excluding internal
losses, the current supply is limited by approximately 20 V of
compliance and can supply 100 mA of current.

The output of the current source is monitored by the DAQ via the
voltage drop VI across a 100 Ω precision resistor RI. The DAQ also reads
the voltage drop V across the thermistor. This is shown in schematic
form in Fig. 10 and a typical result is shown in Fig. 11. All signals are
recorded at a sampling rate of 100 kHz and with a 16-bit resolution.
Voltage signals are used to determine the resistance of the thermistor
by R=RIV/VI and the electrical power dissipated in the thermistor by
P=VIV/RI. The temperature of the thermistor is then calculated from,

T = T0 +
ΔR
λR0

; ð34Þ

where λ is the temperature coefficient of resistance of the heating
element, R0 is the room temperature resistance, ΔR is the change in
resistance, and T0 is the ambient temperature.

Prior to depositing sample material onto the nTTA substrate, the
thermal sensors need to be calibrated. To measure the temperature
coefficient of resistance, the nTTA substrate is placed in an oven and
Fig. 11. Raw voltage data recorded from a 5 mA, 20 ms current pulse across the 100 Ω
precision resistor and a narrow thermistor.
stepped through a temperature range, while the temperature of the
substrate is measured with a thermocouple. The resistance of the
thermistor is recorded at each temperature step by applying a 1 mA
monitoring current for 20 ms. This current pulse causes a small
amount of Joule heating (∼0.3 °C). To eliminate this effect, R is
measured as a function of time and back extrapolated with a linear fit.
R0 and the ratioΔR/ΔT are determined from a linear least squares fit of
the resistance data as a function of temperature. The value of λ is then
calculated using Eq. (34), yielding a value of (1.65±0.02)×10−3 K−1

for the W thermistors in the cells. The value of λ is typically
determined for one cell on each substrate, while the value of R0, is
measured for each cell on a substrate.

All thermal transport measurements are conducted in a vacuum
chamber with a vacuum level of 10−3 Pa to eliminate convection
losses. Bare cells with narrow heating elements are subjected to a
current of 5 mA, while the wide heating elements receive an 80 mA
pulse. The voltage response of the thermistor is recorded and
transformed into a temperature history. This temperature history is
then analyzed as described previously. Emissivity measurements are
performed in a similar fashion. In this case, however, the current of
the narrow thermistor is varied (11–12 mA) to match the tempera-
ture history of the neighboring wide thermistor. After bare cell
measurements are completed, samples are deposited on the thermal
cells and the measurements are repeated.

8. Sample fabrication and measurements

We have demonstrated the capability of the nTTA device by
measuring the thermal transport properties of thin Cu films as a
function of film thickness. After the sensors in an nTTA device were
characterized as described in the previous section, Cu films were
deposited using DCmagnetron sputtering and a 50.8 mm diameter Cu
target. The depositions were performed at a power of 100 W and a
pressure of 0.67 Pa using Ar as a working gas. The deposition rate was
calibrated at each sensor location by depositing for a known length of
time and measuring the resulting thickness with a Veeco Dektak
profilometer. The thickness of each sample was then determined from
the sample deposition time. The substrate was not rotated during the
deposition so that the natural sputtering flux distribution would
create a Cu thickness gradient along the columns of the nTTA (Fig. 1).
A larger thickness gradient was created between the columns of the
nTTA by stepping a shadow mask from left to right (Fig. 1). This
process required a vacuum break and proceeded in such a way that
the leftmost column (cells 1–5) had four discrete layers of copper, the
next (cells 6–10) had three, the middle (cells 11–15) had two, and the
two rightmost columns (cells 16–25) had just one layer. Cells 16–20
have narrow thermistors and cells 21–25 have wide thermistors.
Neighboring thermistors in these columns form emissivity measure-
ment pairs. Emissivity measurement pairs had the same Cu film
thickness to ensure that the conductive heat losses would cancel as
required for forming Eq. (33). The copper film thicknesses that
resulted from this process are shown in Fig. 12.

As with the bare thermal cells, the thermal transport measure-
ments on the Cu-coated sensors were performed in vacuum. The
currents that were used for the measurements were chosen to
approximately match the heating rates of the bare thermal cell
measurements and can be found in Table 4. The emissivity measure-
ments were performed by varying the current applied to the narrow
thermistor of the pair tomatch the heating rate of thewide thermistor.

9. Results and discussion

Initial resistance measurements taken at various instances through-
out the experimentation demonstrate that the tungsten thermistors are
stable during storage and low-temperature measurements, up to
450 °C, the temperature at which the device was annealed. The error
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Fig. 13. Typical temperature history for a bare cell and cell with 61 nm sample (a).
Typical heating rate for bare cell and cell with 61 nm sample (b).

Fig. 12. Thickness of the copper sample multilayers.
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on each R0 measurement is approximately 8×10−3 Ω, while the
standard deviation of the R0 results for cells 1–20 is 2Ω (i.e., 4%). Since
the measurement error is much smaller than the standard deviation of
the group, we conclude that the cell-to-cell variation in resistance is
real and most likely caused by slight variations in the thermistor
dimensions as a result of the fabrication process.

With R0 known for each cell, the temperature history of the CVs
can be calculated from the voltage measurements using Eq. (34).
Representative temperature curves for a bare cell and a cell with
sample are shown in Fig. 13(a). Typical heating rates are shown in
Fig. 13(b). The effective emissivity of the CV was determined from the
heating curves of the narrow-wide thermistor pairs 16–21, 17–22,
and 20–25. Pairs 18–23 and 19–24 were not included because cell 23
was broken and the data obtained from cell 24 was corrupted. The
measured emissivity values are εCV=0.14±0.01 for the bare cells and
εCV=0.17±0.01 for the cells with Cu samples. These results compare
well with literature values of 0.10–0.17 and 0.03–0.15 respectively
[19–22]. The literature results vary considerably, typically explained
by surface conditions. Our Cu films emit around the upper end of
reported emissivity values, which is most likely due to slight oxidation
of the film surface. The temperature curves of the other sensors were
analyzed to determine CP and ϕM using the appropriate emissivity
values listed above. Fig. 14 shows representative fits of Eq. (17) to the
power dissipated in the thermistors by minimizing the merit
parameter χt (Eq. 27). Typical CP results for bare cell and cell with
61 nm Cu sample are shown in Fig. 15(a) and (b) respectively. Typical
ϕM results for the same cell conditions are shown in Fig. 15(c). It is
evident that after some initial variability the parameters quickly
converge to specific values. It should be noted that the CP result for the
cell with the Cu sample was obtained by doubling the current over the
ϕM measurements (Table 4) and reducing the considered time scale
(1 ms) because of the large amount of heat conducted away by the Cu
films.

The results for all bare cells and cells with samples are compiled in
Fig. 16. The CP results of the bare cells (Fig. 16(a)) show a similar
Table 4
Applied current in milli-Amperes for a given cell and measured quantity.

Cells 1–5 Cells 6–10 Cells 11–15 Cells 16–20 Cells 21–25

R0 1 1 1 1 8
ϕM, CP (cell) 5 5 5 5 80
ϕM (sample) 12 10 8 6 –

CP (sample) 24 20 16 12 80–90
εz (cell) – – – 11–12 80
εz (sample) – – – 14.5–18 80–90

Fig. 14. Typical fit to the power data for a bare cell and a cell with a 61 nm copper film.
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Fig. 15. Typical thermal parameter fit results for bare cell (a) and cell with 61 nm Cu (b)
heat capacity; effusivity results for the same cases (c).

Fig. 16. Heat capacity (a) and effusivity (b) results for cells with and without copper
samples.
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distribution as the R0 results with a standard deviation of approxi-
mately 3.7%. This observation suggests that the distribution is again
caused by variability in the fabrication process and not measurement
error. The average value of the heat capacity, 126±6 nJ/K, compares
well to the value of 123 nJ/K obtained from the literature values of the
constituents (see Table 2). The average measured effusivity value of
the bare membrane is 2580±90 J/m2s1/2 K, which compares closely
with reported silicon nitride values on the order of 2600 J/m2s1/2 K
[23]. The results for the cell with the Cu samples (Fig. 16) show the
expected trend considering the Cu film thickness. The total heat
capacity CP is an extrinsic materials property and the variation shown
is caused by a change in sample mass; ϕM is an intrinsic materials
property and the variation is caused by a change of the membrane
effusivity as the film thickness varies.

The experimental values of CP and ϕM can be used to determine
the volumetric heat capacity and the thermal conductivity of the Cu
films: the volumetric heat capacity (ρ cP) of the films is readily found
by taking the difference between the total heat capacities of the cells
with and without samples and by normalizing that value with the Cu
sample volume. The average experimental value thus obtained is
(3.7±0.2)×106 J/m3 K, which is larger than the reported bulk value
of 2.6×106 J/m3 K [19]. Similar increases in specific heat for
nanocrystalline copper have been reported previously [24,25]. The
error in the volumetric heat capacity of each Cu sample is relatively
large for the thinnest samples, approximately 25%, and reduces
with film thickness to approximately 10% for the thickest samples.
Errors result from the small volume of material measured and the
significant amount of heat conducted away through the Cu film — in
a sense Cu is probably one of the most challenging materials for
these experiments (e.g., Appendix B). Further increasing the heating
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Fig. 18. TEM cross-section of a 3-layer Cu film showing scattering interfaces.
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rates and decreasing the measurement times reduces this error.
Samples with smaller thermal conductivity evidently result in
smaller (ρcP) errors. If necessary, very accurate and precise
measurements of the heat capacity can also be made with a parallel
nano-scanning calorimeter [26], a device similar to the nTTA but
with slightly different thermistor and sample geometry.

The thermal conductivity of the copper films is calculated as,

kCu =
hsϕsð Þ2−hSiN kSiN hρcPð ÞCu− hSiN ϕSiNð Þ2

hCu hρcPð ÞCu + hρcPð ÞSiN
	 
 ; ð35Þ

where the subscript S refers to a value for a Si3N4/Cu multilayer
membrane (Fig. 17). Also shown in Fig. 17 are additional measure-
ments for thicker multilayer Cu films (approximately 180 to 480 nm)
obtained from a second nTTA device. Evidently the error introduced
by any uncertainty in the copper heat capacity is quite small for the
thinnest films and it increases slightly with increasing film thickness
(Eq. 35). The thermal conductivity of the copper films increases non-
monotonically from approximately 15 to 300 nm, where the values
apparently plateau around 300 W/m K, well below the bulk value of
410 W/m K [19]. This behavior can be explained by the multilayer
structure of the Cu films and by scattering of electrons from the
surfaces and interfaces of the copper films (Fig. 18).

To gain further insight into these results we consider the model by
Qiu and Tien [27],

kfilm
kbulk

= 1 +
3
8
B
η

+
7
5

G
1−G

� �
B
D

� �−1
: ð36Þ

Eq. (36) relates the thermal conductivity of a metal film to its bulk
thermal conductivity based on the bulk electron mean free path B, the
film thickness η, the grain boundary reflection coefficient G, and the
grain boundary diameter D. This formulation of the model assumes
diffuse reflections at the interfaces. We use literature values for B and
G – B=42 nm [28], G=0.25 [27] – and take D=η based on our TEM
observations. Finally we define the normalized conductivity as
κ=kfilm/kbulk, and the effective normalized thermal conductivity of
a multilayer film as,

κeff =
η1 κ1 + η2 κ2 + ::: + ηn κn

η1 + η2 + ::: + ηn
; ð37Þ

for an n-layer stack of films, where κi and ηi represent the thermal
conductivity and thickness of the ith layer. Our measured results and
Fig. 17. Calculated thermal conductivity of thin copper films from measured thermal
parameters, with kSiN=3.2 W/m K and (ρ cP)SiN=2.1 MJ/m3 K [23].
the model predictions are compared in Fig. 19. The good agreement
indicates that the internal copper interfaces and grain boundaries
indeed act as scattering surfaces for electrons. They clearly replicate
the non-monotonic behavior and the relatively low plateau value of
the films, indicating that both are caused by the multilayered
structure of the Cu coatings.
10. Conclusions

Many capable in-plane thermal conductivity measurement devices
exist. Some of these devices have better accuracy than the nTTA
because they use multiple measurement points. Other devices that rely
on a steady state have no dependence on volumetric heat capacity,
simplifying data reduction. The nTTA technique, however, has the
unique feature that it can be used as a combinatorial device. To
accomplish this, it is necessary to trade multiple measurement
locations for a single line measurement. Extraction of material
parameters can be accomplished using an analytical model for the
thermal behavior of the sensors. This analyticalmodel was verifiedwith
finite element simulations and input parameters were reproducedwith
high accuracy. The capabilities of the nTTA were demonstrated by
Fig. 19. Normalized thermal conductivity measurements of thin copper multilayer
films, compared to Qiu's thermal conductivity model [27] for multilayer copper films.
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Fig. B1. Relative errors of measured thermal parameters as a function of the value of
these thermal parameters, (a) relative error of effusivity and (b) relative error of heat
capacity. Data reduction used a moving 0.3 ms time-span for the heating rate fit and a
4 ms time-span to fit a 5th order polynomial to the temperature history.
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measuring thermal transport properties of Cu films with thicknesses
less than the mean free path of the dominant heat carriers.
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Appendix A. Coefficients of Eq. (16)

Expressions for the coefficients in Eq. (16) for βN0 and n=5.
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Expressions for the coefficients in Eq. (16) for β=0 and n=7.

b1 = 2
t1=2ffiffiffi
π

p

b2 =
8
3
t3=2ffiffiffi
π

p

b3 =
16
5

t5=2ffiffiffi
π

p

b4 =
128
35

t7=2ffiffiffi
π

p ;

b5 =
256
63

t9=2ffiffiffi
π

p

b6 =
1024
231

t11=2ffiffiffi
π

p

b7 =
2048
429

t13=2ffiffiffi
π

p

Appendix B. Measurement sensitivity analysis

Eq. (28–32) from the main body of the paper can be used to define
the relative errors for the heat capacity and effusivity, i.e.
δCP = σCP = CP and δφ=σφ/φ, which are metrics for the sensitivity of
the technique. Fig. B1 shows contour plots of the relative errors as a
function of the thermal parameters assuming a constant heating rate
of 3000 K/s for 5 ms and a temperature error σT=0.1 °C. It is evident
from the figure that the relative error on the effusivity increases with
increasing CP and decreasing AM×ϕM. Conversely, the relative error on
the heat capacity decreases with increasing CP and decreasing
AM×ϕM. Similar plots are readily created for other experimental
conditions to evaluate the effects on measurement sensitivity of
experimental parameters such as the heating rate or sensor
dimensions.

The relative errors on CP and ϕM can be used to estimate the errors
on the thermal properties of the materials. Eq. (B1) defines the error
on the heat capacity of a Cu sample deposited on the nTTA,

δCP ;Cu =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δCP ;SCP;S

� �2
+ δCP ;BCP;B

� �2r
CP;S−CP;B

: ðB1Þ

Here the subscripts B and S indicate a bare thermal cell and a cell
with sample, respectively. Applying Eq. (B1) to the example of a
61 nm thick Cu sample gives, CP,B=126 nJ/K and CP,S=173 nJ/K, with
respective errors from Fig. B1 δCP ;B = 1:6% and δCP ;S = 2:7%, so that

image of Fig. B1
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δCP ;Cu = 11%. The determination of (ρ cP) requires a volume mea-
surement of the sample, which has a relative error of 10%. Combining
these errors gives a relative error of 15% on (ρ cP) for the 61 nm Cu
film. The relative errors on (ρ cP) for 23 nm and 120 nm Cu films are
estimated at 22% and 12% respectively.

Similarly, the relative error of the thermal conductivity of thin-
films deposited on the nTTA can be defined in terms of the errors on
the measured thermal properties. The relative error on the thermal
conductivity of the sample film follows from the effective thermal
conductivity of a multilayer film (Eq. 35). Using the example of the
61 nm Cu film, from Fig. B1 δφ,S=0.75%, δðρcpÞ;Cu = 15%, δφ,SiN=2.9%,
and δðρcP Þ;SiN = 1:6%, produces an error on the thermal conductivity of
the Cu film of δk,Cu=8.6%, in good agreement with the experimental
results. The error analysis can be used to estimate errors in thermal
parameters and thermal materials properties; it serves as a guide
when planning measurements on other materials systems and for
optimizing the measurement technique.
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