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The Nd isotopic compositions (¢eNd) of mixed planktonic foraminifera have been analyzed in two sedi-
ment cores collected in the Nile deep-sea fan in order to reconstruct past eNd of the Eastern Mediter-
ranean Deep Water (EMDW) and to assess the relative contributions of Nile discharge and Modified
Atlantic Water (MAW) inflow to the Eastern Mediterranean Sea hydrology, as well as their potential
control on anoxic events over the last climatic cycle. The two foraminiferal eNd records are similar and
display an increase in eNd values during the African Humid Periods. Superimposed on this precession-
forced variability (insolation received by the Earth at low latitudes), the record of variations in forami-
niferal eNd indicates a 2-unit decrease in eNd during the interglacial Marine Isotope Stages (MIS) 5 and 1
compared to glacial MIS6, 4, 3 and 2. The ¢Nd results suggest that the long-term glacial to interglacial
changes in Nd isotopic composition of EMDW were not entirely induced by variations in Nile River
discharge and Saharan dust inputs. Decreases in ¢eNd during MIS5 and MIS1 interglacials indicate an
increase in the contribution of unradiogenic MAW to the eastern Mediterranean Sea related to high sea-
level stands and greater seawater exchange between the North Atlantic and Mediterranean basins. In
addition, radiogenic seawater eNd values observed during African Humid Periods (and sapropel events)
are associated with an intensification of Nile discharge and an increase in residence time of deep-water
masses in the eastern Mediterranean Sea, which induces an increase in the interaction between deep-
water masses and radiogenic sediments along the margin of the eastern Mediterranean Sea. Results
confirm that an intensification of the hydrological exchanges between the western and eastern Medi-
terranean basins during high sea-level stand and the subsequent higher proportion of Atlantic Water in
the Levantine Basin may have preconditioned the eastern Mediterranean Sea to sapropel depositions
during the last climatic cycle.
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1. Introduction the eastern Mediterranean basin; this water effectively becomes

denser and contributes to the formation of intermediate and deep

The Mediterranean Sea is a semi-enclosed basin, where an
excess of evaporation over precipitation and runoff induces a
characteristic eastward increase in the salinity of the surface
Atlantic water that enters through the Gibraltar Strait and flows to
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waters. The resulting Mediterranean thermohaline circulation has
been demonstrated to be highly sensitive to present-day and past
climate changes in both high and low latitudes (Rossignol-Strick
et al., 1982; Roether et al., 1996; Kallel et al., 1997; Pinardi and
Masetti, 2000; Rohling et al., 2002; Emeis et al., 2003; Scrivner
et al., 2004; Melki et al., 2009; Revel et al., 2010; Toucanne et al.,
2015; Filippidi et al., 2016; Tesi et al., 2017). This variability is
thought to be responsible for the deposition of organic-rich
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sapropel layers (characterized by >1% Corg) in the Eastern Medi-
terranean Sea (EMS) (Murat et al, 2000) and of Organic Rich Levels
(ORL) in the Western Mediterranean Sea (WMS) (e.g. Rohling et al.,
2015). However, paleo-hydrological processes and associated
ventilation dynamics related to sapropel deposition are still
debated because conventional water-mass proxies, such as 3'C
analyzed on benthic foraminifera, cannot be used systematically
due to the lack of benthic foraminifera in EMS sediments during
time intervals when bottom waters were characterized by anoxic
conditions.

Despite many unresolved problems, such as the processes
responsible for the sluggish thermohaline circulation during deep-
sea anoxic events, significant advances have been made over recent
decades in our understanding of sapropel formation since the
pioneering work of Rossignol-Strick et al. (1982). There is now a
common consensus that the formation of sapropels in the Medi-
terranean Sea is closely linked to: (1) reduced deep-water venti-
lation associated to freshwater input lowering surface water
salinity, thus causing stratification of the water masses with limited
or no oxygen renewal in deep water; or (2) nutrient-rich surface
freshwater inputs, which significantly increase surface productivity
and induce the mineralization of organic matter in deep water to a
level that exceeds oxygen inputs through deep water mass
renewal; or (3) a combination of both processes (Rohling, 1994;
Cramp and O’Sullivan, 1999; Rohling et al., 2015). The leading role of
stratification in most studied sapropels is revealed by the neo-
dymium (Nd) isotopic composition of biogenic/authigenic fractions
(e.g. Freydier et al., 2001; Cornuault et al., 2018; Wu et al., 2019),
benthic foraminifera carbon isotopic records, faunal assemblages
(e.g. Schmiedl et al., 2010; Cornuault et al., 2016), redox-sensitive
elemental compositions (e.g. Jilbert et al., 2010; Tachikawa et al,,
2015; Tesi et al., 2017), and circulation models (e.g. Myers et al.,
1998a, b; Myers, 2002; Stratford et al., 2000; Bianchi et al., 2006;
Grimm et al.,, 2015; Vadsaria et al., 2019).

Many studies have confirmed that periods of sapropel deposi-
tion are marked by high river runoff originating from the low-
latitude monsoonal system, whereas time intervals between sap-
ropel depositions are arid with reduced riverine runoff and
increased wind-blown sediment supplies (e.g. Wehausen and
Brumsack, 1999; Larrasoana et al., 2003; Zhao et al., 2012; Revel
et al,, 2014). A widely accepted explanation for the excess fresh-
water input during times of sapropel formation is related to heavy
monsoonal precipitation in North Africa which was channeled by
the Nile River and other North African paleo-rivers (e.g. Rossignol-
Strick et al., 1982; Fontugne et al., 1994; Rohling et al., 2002; Emeis
et al., 2003; Scrivner et al., 2004; Osborne et al., 2008, 2010; Revel
et al., 2010; Wu et al., 2016, 2017). In North Africa, these humid
periods have been attributed to the northward migration of the rain
belt associated with the Inter-Tropical Convergence Zone (ITCZ)
due to precession-driven insolation changes (Rossignol-Strick et al.,
1982; DeMenocal et al., 2000; Gasse, 2000; Arbuszewski et al.,
2013; Skonieczny et al., 2015, 2019). The last period of more
intense rainfall compared to the present, the so-called African
Humid Period (AHP: from ~14.8 to ~6 cal kyr BP; Shanahan et al,,
2015; Bastian et al., 2017), is thought to be responsible for the
formation of the organic-rich sapropel S1 in the EMS between 10.2
and 6.4 cal kyr BP (Mercone et al., 2000; De Lange et al., 2008).
Thus, the strong correspondence between sapropel formation and
periods of African monsoon intensification, when freshwater
discharge by North African rivers into the Mediterranean Sea
increased, suggests that the reduction in sea surface salinity and
deep-water convection could be the result of changes in the African
monsoon system (Revel et al., 2015; Rohling et al., 2015). However,
enhanced freshwater inputs from the northern margin of the
Mediterranean Sea related to precipitations driven by westerly

winds and the melting of glacial ice-sheets and linked to climate
changes in the high latitudes of the Northern hemisphere (e.g.
Kallel et al., 1997; Emeis et al., 2003; Melki et al., 2009; Toucanne
et al., 2015; Filippidi et al., 2016; Tesi et al., 2017) would have also
led to the reduction of deep-water formation in the EMS, limiting
the oxygen supply to the deep water (Rohling, 1994). Furthermore,
several studies have shown that the Mediterranean thermohaline
circulation is sensitive to rapid climatic changes in the northern
hemisphere (e.g. Heinrich and Dansgaard - Oeschger events)
(Rohling et al., 1995; Kallel et al., 1997; Allen et al., 1999; Bartov
et al., 2003; Martrat et al., 2004).

In addition, the narrow and shallow Siculo-Tunisian and
Gibraltar Straits tend to limit exchanges between the eastern and
western Mediterranean basins, and with the North Atlantic. It has
been proposed that water exchanges through the Straits may have
been significantly limited during the glacial low sea-level stands of
the late Quaternary. A general circulation model has shown that
Mediterranean water outflow was reduced by 50% during the Last
Glacial Maximum (LGM) (Mikolajewicz, 2011), and several studies
have pointed to a salinity increase in the eastern basin (Thunell and
Williams, 1989; Myers et al., 1998a). In particular, Mikolajewicz
(2011) has shown that the formation of deep waters in the
eastern basin during the LGM was strengthened and that these
waters were principally formed in the Aegean Sea and not in the
Adriatic Sea as is the case today. It has also been proposed that
rising global sea level during deglaciation led to greater exchanges
between the basins and a drop in surface salinity, thus pre-
conditioning the sapropel event by slowing down intermediate and
deep convections (Grimm et al., 2015).

Studies of past changes in Mediterranean thermohaline circu-
lation have mostly investigated the last glacial period, focusing on
the deposition of sapropel S1 (10.2—6.4 cal kyr BP; Mercone et al.,
2000) (e.g. Cacho et al., 2002; Sierro et al., 2005; Frigola et al.,
2008; Schmiedl et al., 2010; Toucanne et al., 2012; Angue Minto’o
et al., 2015; Jiménez-Espejo et al., 2015). Continuous 3'3C and
3180 records from epibenthic foraminifera of the last glacial —
interglacial climatic cycle are rare and difficult to obtain for bottom
suboxic or anoxic environments (e.g. sapropel events) in the EMS.
This is due to the lack of a continuous population of epibenthic
foraminifera species for which a calibrated vital effect for 83C an-
alyses is well established (Schmiedl et al., 2003, 2010). Conse-
quently, the hydrological pattern of the EMS is not well constrained
for periods of sapropel deposition and for the time intervals that
preconditioned such events.

In the present study, we have investigated the Nd isotopic
composition (¢eNd) of the diagenetic Fe—Mn coatings precipitated
on foraminifera shells. It has been demonstrated that eNd
measured on planktonic foraminifera shells represents mainly
bottom seawater and/or pore water ¢Nd (Tachikawa et al., 2013,
2014). Such eNd obtained from foraminiferal shells have been
previously used to provide information on water mass provenance
and mixing in the ocean (Molina-Kescher et al., 2014; Wu et al,,
2015b, 2019; Dubois-Dauphin et al., 2017; Cornuault et al., 2018).
Modern Mediterranean seawater displays a wide range of eNd
values, from —11 to —5, with unradiogenic surface water entering
the Mediterranean as Atlantic Water and more radiogenic inter-
mediate and deep waters originating from the Levantine Basin
(Henry et al., 1994; Tachikawa et al., 2004; Vance et al., 2004). With
aresidence time of 500—1000 years (Tachikawa et al., 2003; Siddall
et al., 2008) and distinct local basin-scale sources, eNd is assumed
to behave quasi-conservatively, with great potential to fingerprint
the provenance of Mediterranean water masses (Dubois-Dauphin
et al., 2017; Cornuault et al., 2018; Wu et al., 2019).

The eNd of mixed planktonic foraminifera from two sediment
cores collected in the Levantine Basin were investigated in order to
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Fig. 1. (A) Bathymetric map of the Mediterranean Sea showing locations of core MD90-964 (33°02.75'N; 32°38.57'E; water depth 1375 m, length 32.12 m), core MS27PT
(31°47.90'N, 29°27.70'E; water depth 1389 m, length 7.3 m) (blue dots) and all the other sites discussed in this study (black dots) (Freydier et al., 2001; Scrivner et al., 2004; Osborne
et al., 2008, 2010; Cornuault et al., 2018). The simplified modern Mediterranean water circulation is broadly indicated. Signatures of Nd isotopic composition are displayed for the
Nile River and aeolian dust (Padoan et al., 2011; Scheuvens et al., 2013). The potential pathways of North-African paleo-rivers are also depicted in light gray (Rohling et al., 2002; Wu
et al., 2017). (B) Longitudinal transect of annual mean salinity of the Mediterranean Sea (i.e. the red shading shown in (A); data from WOA13). ¢eNd values are represented by colored
dots (Henry et al., 1994; Tachikawa et al., 2004; Vance et al., 2004). The map and section were generated using Ocean Data View software. (For interpretation of the references to

color in this figure legend, the reader is referred to the Web version of this article.)

reconstruct past eNd of the EMDW over the last 145 kyr. Combined
with previous eNd records, the new results allow us to assess the
relative contributions of Nile discharge and inflow of Modified
Atlantic Water (MAW) to the thermohaline circulation of the EMS
over the last climatic cycle characterized by several anoxic events
and the deposition of sapropels S1 to S5. This allows us to constrain
the hydrology at the origin of these anoxic events under different
environmental conditions (different sea levels, different freshwater
supplies from the African rivers and different hydrological ex-
change conditions at the Gibraltar and the Siculo-Tunisian Straits).

2. Regional hydrological setting in terms of eNd

The Mediterranean Sea is an almost enclosed basin that ex-
changes surface and intermediate waters with the Atlantic Ocean
though the Gibraltar Strait (sill depth ~ 300 m) and surface water
with the Black Sea through the Dardanelles Strait (sill depth
~100 m). Driven by a negative water budget, an anti-estuarine
circulation occurs in the Mediterranean Sea. Hence, the relatively
fresh surface Atlantic Water (AW) (salinity ~ 36.5), which has an
unradiogenic eNd signature of ~ -9.7 (Tachikawa et al., 2004), flows
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into the WMS and is then modified by mixing with the ambient
surface water to reach ~ -10.4 in the Alboran Sea (Tachikawa et al.,
2004; Spivack and Wasserburg, 1988). During its eastward flow, AW
mixes with the surrounding surface waters and underlying inter-
mediate waters leading to the formation of the Modified Atlantic
Water (MAW) that flows along the basin at 50—200 m water depth
following a general cyclonic flow path with several eddies and
meanders (Fig. 1). The eNd values for MAW range from —10.8
to —9.0 in the western basin (Henry et al,, 1994) and from —9.8
to —4.9 in the eastern basin (Tachikawa et al., 2004; Vance et al.,
2004). Since evaporation exceeds precipitation and river runoff,
the relatively fresh surface AW flowing into the WMS also becomes
progressively saltier (~38.5) as it circulates eastward.

During winter time, intense cooling and strong wind-induced
heat loss produce denser waters that sink via convection and
form the intermediate waters in the Aegean Sea and the Levantine
Basin and deep waters in the Gulf of Lions and the Adriatic Sea
(Robinson et al., 2001; Schroeder et al., 2012). In particular, the
Levantine Intermediate Water (LIW) is formed in the Cyprus-
Rhodes area and it spreads westwards throughout the entire
Mediterranean Basin at depths of between ~150 and 700 m
(Lascaratos et al., 1993; Malanotte-Rizzoli et al., 1999). The LIW
acquires its eNd signature mainly from the partial dissolution of
particles from the Nile River and the Egyptian/Libyan margin sed-
iments of the EMS, which have eNd values ranging from —7 to —2
(Weldeab et al., 2002a; Tachikawa et al., 2004; Ayache et al., 2016).
This more radiogenic Nd signature is explained by sediment orig-
inating from the erosion of Ethiopian traps including Cenozoic
basaltic silicate rocks (eNd > 0) (Garzanti et al., 2015). The LIW is
thus characterized by a radiogenic eNd of ~ -4.8 in the eastern part
of the EMS and by an east-west ¢Nd gradient ranging from —4.8
to —9.2, resulting from mixing with overlying and underlying water
masses along its path (Henry et al., 1994; Tachikawa et al., 2004;
Vance et al., 2004). In the Adriatic Sea, LIW is involved in the for-
mation of Adriatic Deep Water (AdDW) that sinks into the deep
EMS contributing, together with the Aegean Deep Water (AeDW),
to the formation of the Eastern Mediterranean Deep Water
(EMDW). The EMDW ¢Nd values range from —7 to —6 with an
average value of —6.5 (Tachikawa et al., 2004). The Western Med-
iterranean Deep Water (WMDW) is formed in the Gulf of Lions in
winter, as a result of mixing between the relatively fresh surface
water and the saline LIW; it then spreads into the Balearic Basin and
Tyrrhenian Sea between ~ 2000 and ~3000 m (Millot, 1999;
Schroeder et al., 2012) (Fig. 1). The WMDW is characterized by an
average ¢Nd value of —9.4 + 0.9 (Henry et al., 1994; Tachikawa et al.,
2004). Between the WDMW and the LIW (from ~700 to ~ 2000 m),
the Tyrrhenian Deep Water (TDW) (Millot et al., 2006), which is
produced by mixing between WMDW and EMDW, has an average
eNd value of —8.1 + 0.5.

The Blue Nile and Atbara rivers represent together 97% of the
suspended sediment load and 68% of the freshwater supply of the
total annual Nile discharge (Foucault and Stanley, 1989; Williams
et al., 2000; Revel et al., 2015). eNd signatures of sediments from
the Nile Basin are characterized by contrasted signatures, ranging
from radiogenic values (eNd = 0) for the Cenozoic Ethiopian traps
to strongly unradiogenic values (eNd = —30) for the Precambrian
Central Africa Craton (Garzanti et al., 2015). Sediments from the
Bahr el Jebel (between Lake Albert and 10°N of latitude) are char-
acterized by a eNd value of —25, whereas Victoria-Albert Nile-
derived fluvial muds by a range from —29 to —36 (Padoan et al.,
2011). The Equatorial-White Nile sediment makes up approxi-
mately 3.5% of the present-day total sediment discharge of the Nile
and is fairly constant throughout the year (Blanchet et al., 2015;
Garzanti et al., 2015), with a very unradiogenic signature (from —30
to —35). In contrast, the Blue Nile sediment, which is mainly

transported during the humid phase, dominates the total sediment
discharge of the Nile (72%) and is characterized by very radiogenic
eNd values (from —3 to 5; Padoan et al., 2011; Blanchet et al., 2013;
Garzanti et al., 2015).

3. Material and methods
3.1. Studied cores

For this study, we have selected cores MD90-964 and MS27PT,
which are bathed by the Eastern Mediterranean Deep Water
(EMDW).

Core MD90-964 (33°02.75’N, 32°38.57’E; water depth 1375 m,
length 32.12 m) was collected on the eastern part of the Nile deep-
sea fan during the PROMETE IIl campaign on board R/V Marion
Dufresne in September 1990 (Fig. 1). Core MD90-964 sediments
consist of pale cream to yellowish brown foraminiferal and nan-
nofossil marl ooze, interbedded with sapropelic layers that vary in
thickness from 2 to 41 cm (Zhao et al., 2011). The 5'80 of Globi-
gerinoides ruber, clay mineralogy, total organic carbon (TOC) con-
tent and elemental intensities by X-ray fluorescence (XRF) have
been studied previously by Zhao et al. (2011). The age model of core
MD90-964 (Zhao et al., 2011) has been established by correlating
the G. ruber 3'80 record and the Mediterranean G. ruber stack
compiled by Lourens (2004), using Gaussian filtering at both
obliquity and precession, and cross-spectral analysis against a
target curve that reflects characteristics of orbital parameters (ETP
curve). According to the age model, the upper 7.30 m of core MD90-
964 investigated in this study cover the last 145 kyr and present a
linear mean sedimentation rate of 5 cm/kyr. Sapropels S1, S3, S4
and S5 are identified by an increase of Cyg content, which reaches
up to 6% during the deposition of sapropel S5 (Fig. 2; Zhao et al.,
2011).

Core MS27PT (31°47.90'N, 29°27.70'E; water depth 1389 m,
length 7.3 m) was retrieved on the western Nile delta, around
90 km from the mouth of the Rosetta Nile River, during the Medi-
flux MIMES cruise of the R/V Pelagia in 2004 (Fig. 1). The core site
lies directly under the influence of the Nile freshwater discharge.
For this study, we have investigated the upper 3.15 m of core
MS27PT which consist of carbonate-rich facies with coarse quartz
grains and clastic mud-rich facies where sapropel S1 has been
identified (Revel et al., 2010) (Fig. 2). The age model of the studied
interval of core MS27PT is based on 22 previously published AMS
14C dates (Revel et al., 2010, 2015; Bastian et al., 2017; Ménot et al.,
2020) (Fig. 2).

4. Methods

The samples investigated in this study consist of 15—30 mg of
mono-specific planktonic foraminifera G. ruber and mixed plank-
tonic foraminifera, hand-picked in the >150 pum size fraction.
Cleaning procedure and purification of Nd have been done in a class
100 clean laboratory using ultrapure reagents. All of the test sam-
ples were crushed between two glass slides to open the forami-
niferal chambers. The calcite fragments were then ultrasonicated
for 1 min before pipetting off the suspended particles with water to
separate the waste. This step was repeated until the water became
clear and free of clay. All samples were checked under a binocular
microscope to ensure that all particles had been removed. Most of
the samples were then analyzed after this preliminary physical
cleaning step (hereafter referred as “uncleaned foraminifera”) (Wu
et al.,, 2015b).

For this study, some physically cleaned samples were trans-
ferred to centrifuge tubes for an oxidative-reductive cleaning step
(hereafter referred as “cleaned foraminifera”). The oxidative-
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reductive foraminiferal cleaning procedure followed that described
by Vance and Burton (1999), using 10 ml reductive solution (1 M
hydrous hydrazine, 16 M NH40H, 0.25 M citric acid in a ratio of
1:6:3) and 5 ml oxidative solution (0.2 M NaOH and 30% H,0, in a
1:1 ratio) per sample to more efficiently remove authigenic Fe—Mn
coatings and organic material. For the reductive step, samples were
heated in a water bath at 80 °C for 30 min, and were ultrasonicated
every 3 min for 10 s. After transferring the reductive cleaning so-
lution to a centrifuge tube, the cleaned foraminifera were rinsed
with Milli-Q water. The analytical procedure for the oxidative step
was similar except that samples were ultrasonicated every 10 min
for a period of 30 s.

All samples, including uncleaned foraminifera, underwent weak
acid leaching for 5 min in 1 ml 0.001 M HNOj3 with ultrasonication.
After these cleaning steps, samples were transferred into a 1.5 ml
tube. 0.5 ml of Milli-Q water was first added to the tube, and then
the foraminifera were dissolved using stepwise 100 ul 0.5 M HNO3

until the dissolution reaction stopped. The dissolved samples were
centrifuged, and the supernatant was immediately transferred to
Teflon beakers to prevent leaching of any possible remaining pha-
ses. The dissolved foraminifera shell fractions and authigenic frac-
tions contained in the reductive cleaning solution were dried using
a hotplate for Nd extraction. Nd was purified using Eichrom TRU-
Spec and Ln-Spec resins following the detailed analytical proced-
ures described in Copard et al. (2010). The *3Nd/'#*Nd ratios were
measured using the ThermoScientific Neptune” lus Multi-Collector
Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS),
hosted at the Laboratoire des Sciences du Climat et de I'Envir-
onnement (LSCE) in Gif-sur-Yvette. For the Nd isotope analyses,
sample and standard concentrations were matched at 10 ppb.
Mass-dependent fractionation was corrected by normalizing
146Nd/144Nd to 0.7219 and applying an exponential law. During the
analytical sessions, every set of two samples was bracketed by
analyses of the La Jolla Nd standard solution, which is characterized
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by certified values of 0.511858 + 0.000007 (Lugmair et al., 1983).
The offset value between results and certified values of La Jolla
standard was lower than 0.4 epsilon units (¢Nd) for all of the an-
alyses presented in this study. The analytical errors reported herein
correspond to the external 2 sigma standard deviation (based on
repeated analyses of the La Jolla standard for the different analytical
sessions) and range from 0.1 to 0.5 eNd (Table 1 and Table 2). The
analytical blank values for Nd evaluated by using a quadrupole
ICPMS were <4 pg, which represents less than 0.1% of the minimum
Nd yield from foraminifera used in this study. As a result, no blank
correction was applied. Results are expressed as
eNd = [("3Nd/"*Nd )sampie/(“*>Nd/"**Nd)chur -1] *10,000, with the
present-day (3Nd/"Nd)cyur  of 0.512638 (Jacobsen and
Wasserburg, 1980).

5. Results
5.1. The eNd record of cores MS27PT and MD90-964

The eNd values from core MS27PT, obtained on both mono-
specific samples of planktonic foraminifer G. ruber and mixed
planktonic foraminifera, exhibit a wide range from —5.71 + 0.13
to —2.51 +£ 0.21 (Table 1 and Fig. 3). The eNd values of monospecific
and mixed samples from the same sediment volume are in agree-
ment within an uncertainty of 2 sigma (Table 1). It is worth noting
that mean eNd values obtained from foraminifera cleaning solu-
tions are similar or slightly more radiogenic than cleaned forami-
nifera. This confirms that oxidative-reductive cleaning procedures
applied to foraminiferal tests from our sampling sites are not
effective to fully remove the Nd associated with the authigenic

Table 1

Fe—Mn coating (Wu et al., 2015b). Therefore, eNd obtained in both
reductively cleaned and non-reductively cleaned foraminifera are
associated with bottom and/or pore-water eNd values as it has been
demonstrated elsewhere for a large compilation of eNd results
obtained from foraminifera (Tachikawa et al., 2014).

For core MS27PT, eNd displays lower values of —4.7 + 0.2
to —4.9 + 0.1 between 21 and 16.4 cal kyr BP (Fig. 3). It increases to
more radiogenic values (—2.5 + 0.2 to —4.4 + 0.3) in the time in-
terval between 14.1 and 6.8 cal kyr BP, corresponding to the AHP
which is associated with higher Nile flood discharges (DeMenocal
et al., 2000; Revel et al., 2015; Castaneda et al., 2016). The highest
value (—2.5 + 0.2) is recorded at 9.7 cal kyr BP. The ¢Nd values then
steadily decrease from —2.5 + 0.2 to —5.5 + 0.3 between 9.7 and
4.3 cal kyr BP. The time interval coeval with the period during
which sapropel S1 was deposited (10.2—6.4 cal kyr BP) is associated
with radiogenic eNd values (from —2.7 + 0.2 to —4.3 + 0.2). The
time interval between 4.3 and 1.5 cal kyr BP presents unradiogenic
eNd values (up to —5.9 + 0.1) which increase again thereafter to
reach —4.0 + 0.1 at the core top.

For core MD90-964, ¢Nd values were obtained for samples of
uncleaned mixed foraminifera from the Marine Isotope Stage (MIS)
6 to the Holocene (Fig. 4E). In general, glacial MIS6, MIS4, MIS3 and
MIS2 are characterized by high eNd values, ranging from —3.8 + 0.2
to —2.8 + 0.2. In contrast, interglacial MIS5 and the Late Holocene
display lower eNd values, from —4.5 + 0.2 to —2.8 + 0.3. Super-
imposed on this long-term glacial-interglacial variation, the
monsoon—precession induced signal is distinguished by more
radiogenic values related to the African Humid Periods (from 123.5
to 121.7 cal kyr BP, 102.3 to 99.3 cal kyr BP, 84.3 to 81.8 cal kyr BP;
55 cal kyr BP and 9.5 to 6.2 cal kyr BP) (e.g. Gasse, 2000; Zhao et al.,

Results of Nd isotopic composition obtained from planktonic foraminifera samples from core MS27PT. Nd isotopic composition were obtained from reductively cleaned
foraminifera, cleaning solution, or uncleaned foraminifera. Foraminifera are monospecific (G. ruber) or multispecific (mixed planktonic foraminifera). The age of sediments
have been determined by linear interpolation between 22 AMS'C dates of foraminifera (Revel et al., 2010, 2015; Bastian et al., 2017; Menot et al., 2020).

Depth Age 143Nd/1Nd +20 eNd +20 Samples

(cm) (cal kyr BP)

0.5 0.7 0.512432 +0.000008 —4.03 +0.17 uncleaned mixed planktonic foraminifera
25 13 0.512399 +0.000008 —4.67 +0.16 uncleaned mixed planktonic foraminifera
6 24 0.512345 +0.000007 -5.71 +0.13 cleaned mixed planktonic foraminifera

6 24 0.512351 +0.000007 —5.61 +0.13 cleaned G. ruber

6 24 0.512332 +0.000018 -5.97 +0.35 cleaning solution, mixed planktonic foraminifera
6 24 0.512335 +0.000008 —5.91 +0.15 uncleaned mixed planktonic foraminifera
9.5 3.0 0.512354 +0.000010 —5.53 +0.20 uncleaned mixed planktonic foraminifera
10 3.1 0.512357 +0.000008 -5.49 +0.16 cleaned mixed planktonic foraminifera
10 3.1 0.512360 +0.000012 —5.42 +0.23 uncleaned mixed planktonic foraminifera
10 31 0.512359 +0.000007 —5.44 +0.13 uncleaned mixed planktonic foraminifera
14.5 43 0.512358 +0.000009 —5.46 +0.18 uncleaned mixed planktonic foraminifera
18 5.1 0.512415 +0.000014 —4.36 +0.27 uncleaned mixed planktonic foraminifera
18 5.1 0.512430 +0.000013 —4.06 +0.25 uncleaned G. ruber

22 5.9 0.512417 +0.000009 —-4.31 +0.18 uncleaned mixed planktonic foraminifera
29 6.9 0.512455 +0.000011 —3.57 +0.22 uncleaned G. ruber

95 8.7 0.512450 +0.000012 —3.67 +0.23 uncleaned mixed planktonic foraminifera
102 8.9 0.512471 +0.000017 -3.26 +0.33 uncleaned mixed planktonic foraminifera
102 8.9 0.512490 +0.000015 -2.89 +0.29 uncleaned G. ruber

120 9.1 0.512468 +0.000009 -3.31 +0.17 uncleaned mixed planktonic foraminifera
200 9.7 0.512498 +0.000009 -2.72 +0.18 uncleaned mixed planktonic foraminifera
205 9.8 0.512509 +0.000011 -2.51 +0.21 cleaned mixed planktonic foraminifera
205 9.8 0.512529 +0.000008 -2.12 +0.16 cleaning solution, mixed planktonic foraminifera
273 12.3 0.512452 +0.000012 -3.63 +0.23 uncleaned mixed planktonic foraminifera
280 12.7 0.512482 +0.000013 -3.05 +0.25 uncleaned mixed planktonic foraminifera
293 14.1 0.512450 +0.000009 —3.66 +0.17 cleaned mixed planktonic foraminifera
293 14.1 0.512474 +0.000007 -3.20 +0.14 cleaned G. ruber

293 141 0.512459 +0.000023 -3.49 +0.44 cleaning solution, mixed planktonic foraminifera
293 141 0.512483 +0.000017 -3.02 +0.34 cleaning solution, G. ruber

299 16.4 0.512398 +0.000010 —4.68 +0.19 uncleaned mixed planktonic foraminifera
303 20.6 0.512390 +0.000007 -4.83 +0.14 cleaned mixed planktonic foraminifera
303 20.6 0.512386 +0.000007 —-4.91 +0.14 cleaned mixed planktonic foraminifera
315 25.8 0.512411 +0.000007 —4.44 +0.13 cleaned G. ruber
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Table 2

Results of Nd isotopic composition obtained from planktonic foraminifera samples
from core MD90-964. The age of sediments have been obtained by the correlation
between the G. ruber 3'80 record and the Mediterranean G. ruber stack compiled by
Lourens (2004) (Zhao et al., 2011).

Depth (cm)  Age (kyr) BNd/Nd +20 eNd +20

4 0.5 0.512441 +0.000011 -384  +021
8 0.9 0.512413 +0.000009 —439  +0.18
16 1.9 0.512410 +0.000008  —445  +0.17
28 3.3 0.512410 +0.000011 —445  +0.21
40 47 0.512438 +0.000010 —3.89  +0.19
52 6.2 0.512454 +0.000010  —358  +0.19
72 8.5 0.512450 +0.000011 -3.66  +0.22
80 9.5 0.512457 +0.000009  —353  +0.18
108 13.2 0.512476 +0.000009  —3.17  +0.18
128 15.8 0.512430 +0.000010  —4.07  +0.19
152 19.0 0.512464 +0.000009 —340  +0.18
160 20.0 0.512462 +0.000010 —343  +0.19
172 22.8 0.512537 +0.000009 -196  +0.17
200 29.5 0.512470 +0.000008  -327  +0.15
224 35.2 0.512483 +0.000008  —3.03  +0.16
236 38.0 0.512462 +0.000010  —343  +0.19
280 450 0.512478 +0.000010  -3.12  +0.19
304 488 0.512474 +0.000010  —320  +0.20
324 51.9 0.512473 +0.000009  -322  +0.18
380 60.8 0.512497 +0.000011 -275 1021
384 61.4 0.512483 +0.000009  —3.02  +0.18
420 67.1 0.512484 +0.000010  —3.00  +0.19
452 72.1 0.512442 +0.000010  —3.82  +0.20
484 77.2 0.512430 +0.000010  —4.06  +0.20
504 80.4 0.512440 +0.000008 —385  +0.16
512 81.8 0.512456 +0.000007  —355  +0.15
524 84.3 0.512459 +0.000008  —3.50  +0.16
556 91.0 0.512412 +0.000008 442  +0.15
580 96.0 0.512453 +0.000010  —360  +0.20
592 98.5 0.512455 +0.000009  —358  +0.18
596 99.3 0.512484 +0.000010  —3.00  +0.19
600 100.2 0.512462 +0.000011 -342  +022
604 101.0 0.512469 +0.000009  —3.30  +0.18
608 1023 0.512495 +0.000015  -279  +0.29
628 108.7 0.512439 +0.000009  —3.88  +0.17
632 110.0 0.512331 +0.000008  —599  +0.39
636 110.9 0.512454 +0.000009  —359  +0.16
652 114.5 0.512431 +0.000016  —4.03  +0.18
656 115.4 0.512432 +0.000010  —401  +032
660 116.3 0.512421 +0.000009  —423  +0.19
664 117.2 0.512427 +0.000008  —4.12  +0.17
668 118.1 0.512415 +0.000009 —435  +0.16
672 119.0 0.512397 +0.000010 —470  +0.17
676 119.9 0.512420 +0.000010  —425  +0.20
680 120.8 0.512405 +0.000011 —454  +0.20
684 121.7 0.512429 +0.000009  —407  +022
688 122.6 0.512436 +0.000009 -394  +0.17
692 1235 0.512429 +0.000013  —407  +0.18
700 128.0 0.512399 +0.000011 -466  +0.24
704 130.3 0.512421 +0.000009  —423  +0.21
708 1325 0.512418 +0.000012  -429  +0.18
712 134.8 0.512446 +0.000013  —375  +0.23
716 137.0 0.512483 +0.000008  —3.02  +0.26
720 139.8 0.512448 +0.000009 -3.71  =+0.16
728 145.4 0.512454 +0.000011 -359  +0.17

2012). These time intervals are also associated with an increase of
Corg in core MD90-964 and are coeval with the deposition of sap-
ropels S5 (128.0—117.7 cal kyr BP), S4 (102.3—100.6 cal kyr BP), S3
(81.8—79.7 cal kyr BP) and S1 (10.1-5.7 cal kyr BP) (Fig. 4F) (Zhao
et al., 2011). In particular, eNd values systematically increase
before the deposition of sapropels S4, S3 and S1.

For the last 20 cal kyr BP, the eNd record obtained on core MD90-
964 displays long-term variations that are consistent with those of
core MS27PT. Interestingly, higher eNd values from ~14 to ~6 cal kyr
BP are coeval with the timing of the AHP (Fig. 3). The time interval
between 9 and 6 cal kyr BP is marked by a steady decrease of eNd

during the Late Holocene (Fig. 3), whereas the interval between 4
and about 1.5 cal kyr BP displays lower values before they increase
again during the last 1.5 cal kyr BP.

5.2. Regional compilation of seawater eNd of the Levantine Basin

Previous studies of the Nd isotopic compositions of authigenic
oxy-hydroxides in the Levantine Basin have been conducted on
leached bulk sediment (Freydier et al., 2001; Cornuault et al., 2018;
Wu et al., 2019), fish debris/teeth (Wu et al., 2019) and on plank-
tonic foraminifera (Scrivner et al., 2004; Vance et al., 2004; Osborne
et al., 2010; Cornuault et al., 2018; Wu et al., 2019). Past seawater
eNd has been obtained from bulk sediment leachates using
different analytical procedures such as bulk sediment leached with
1 M HCl (Freydier et al., 2001; Wu et al., 2019) and hydroxylamine
hydrochloride of non-decarbonated samples (Tachikawa et al.,
2004; Cornuault et al., 2018). eNd analyses of foraminifera have
previously been conducted on both uncleaned foraminifera
(Cornuault et al., 2018) and samples treated with an oxidative-
reductive leaching procedure (Scrivner et al., 2004; Vance et al.,
2004; Osborne et al., 2010). All of these analytical procedures
have been debated within the scientific community and have been
deemed suitable for extracting the eNd signature of the deep-water
masses of the ocean.

Previous eNd records based on cleaned foraminifera collected in
the eastern Levantine Basin (ODP Site 967C - 34°04.270'N;
32°43.528'E; 2552.8 m; Scrivner et al, 2004), in the western
Levantine Basin (OPD Site 971A - 33°42.818'N; 24°42.108E;
2140.9 m; Osborne et al.,, 2008) and in the south-eastern Aegean
Sea (core LC21 - 35°39.7'N; 26°35.0'E; 1520 m; Osborne et al., 2010)
were used to reconstruct past eNd of surface waters. However, it has
been recently demonstrated that eNd of fossil planktonic forami-
nifera is not related to the ambient seawater at calcification depths,
but instead reflects bottom and/or pore-water ¢Nd values due to
the presence of residual authigenic Fe—Mn coatings precipitated
onto the carbonate shells that cannot be removed by chemical
cleaning procedures (Piotrowski et al., 2012; Roberts et al., 2012;
Wau et al., 2015b; Xu et al., 2018). eNd results obtained from cleaned
foraminifera of core LC21 and ODP sites 967C and 971A should be
interpreted as bottom/pore water eNd.

ODP Site 967C is also located within the EMDW (2551 m) and
about 100 km away from core MD90-964 making it possible to
directly compare their eNd records for time intervals corresponding
to sapropels S1 and S5 (Figs. 5 and 6). eNd records for core MD90-
964 and Site 967C, display more radiogenic values during African
Humid Periods than before and after these time intervals. For core
MD90-964, the highest ¢eNd value is observed in the early African
Humid Period (at 13.2 cal kyr BP) before the deposition of sapropels
S1. Except this highest eNd value, both sapropels of core MD90-964
(S5 and S1) display a range from —3.5 + 0.2 to —4.8 + 0.2, charac-
terized by slightly more radiogenic values compared to those ob-
tained in the ODP Site 967C (—5.5 + 0.5 to —3.1 + 0.2; Scrivner et al.,
2004).

For the last 20 cal kyr BP, core MS27PT is also characterized by
similar long-term variations of eNd with an interval of more
radiogenic values between 14 and 6 cal kyr BP followed by a pro-
gressive return to unradiogenic values from 6 to 4 cal kyr BP. For
cores MS27PT and MD90-964, the last about 1.5 cal kyr BP show
more radiogenic values. The good agreement observed in the long-
term changes of the eNd during the S5 (for core MD909-964 and
ODP Site 967C) and the last 18 cal kyr BP (for core MS27PT, core
MD909-964 and ODP Site 967) suggests that all these cores provide
a regional Nd isotopic signature of the EMDW.

Core MDO04-2722 located south of Cyprus at 1780 m water depth
in the eastern Levantine Basin (Fig. 1) presents radiogenic LGM eNd
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Fig. 3. (A) Nd isotopic composition (eNd) obtained from foraminifera of core MS27PT: ¢Nd values obtained from cleaning solution of G. ruber (solid green triangle), reductively
cleaned G. ruber (solid blue triangle), non-reductively cleaned G. ruber (solid red triangle), reductively cleaned mixed planktonic foraminifera (solid blue rectangle), cleaning so-
lution of mixed planktonic foraminifera (solid green rectangle), non-reductively cleaned mixed planktonic foraminifera (solid red rectangle); (B) eNd obtained on non-reductively
cleaned mixed planktonic foraminifera (solid black square) of core MD90-964 for the last 23 cal kyr BP. The Marine Isotope Stages (MIS) and time intervals of sapropel S1 and AHP
are also reported. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

values (around —3), comparable to those observed for cores located
along the Nile deep-sea fan. eNd values decrease between 17.5 and
15 cal kyr BP followed by a time interval characterized by radio-
genic isotopic composition between 14.5 and 5 cal kyr BP (Fig. 5).
The time interval thereafter (between 5 and 3 cal kyr BP) is asso-
ciated with a slight decrease in the eNd values. Such long-term
variations in eNd are quite similar to those observed in cores
MD90-964 and MSPT27 located upstream of the general counter-
clockwise deep-sea circulation of the eastern Mediterranean basin
(Fig. 1). Superimposed on this long-term trend, core MD04-2722 is
characterized by shifts of eNd to unradiogenic values around 13.5
and 6.8 cal kyr BP that are not observed in other eNd records of the
Levantine Basin (MD90-964, MS27PT and ODP Site 967C), with the
exception of one shift to a single unradiogenic value at 6.8 cal kyr
BP which is also observed in the ODP Site 967C (Fig. 5). This may
reflect different time resolutions or a potential local effect on Nd
isotopic signature. This implies that long-term variations of eNd
below approximatively 1300 m water depth reflect a regional eNd
signal of the Levantine Basin. We note a slight decrease of the eNd
range along the north-eastward circulation pattern of the deep-
water masses that could be the result of a slight modification of
the Nd isotopic signature of deep-water masses through lithogenic
Nd input from the volcanic margin of the eastern Levantine Basin.

In contrast, the eNd record of core BC0O7, located closer to core
MD90-964 and at shallower depth (893 m), displays variations
from —6.2 + 0.3 to —4.2 + 0.3 (Freydier et al., 2001) that differ
somewhat from those of ODP Site 967C and core MD90-964 during
the AHP (Fig. 5). While time intervals before 15 cal kyr BP and after

6 cal kyr BP are characterized by similar eNd variations as ODP Site
967C and cores MD90-964 and MS27PT, the AHP is instead asso-
ciated with more unradiogenic eNd, with values as low
as —5.9 + 0.3 during the sapropel S1. This suggests that the eNd
record of water masses at ~900 m differs from those obtained at
greater water depths (below ~1300 m) for a time interval between
14 and 6 cal kyr BP. The difference between ¢Nd records above and
below ~1300 m reaches its maximum during the time interval of
sapropel S1 deposition.

6. Discussion

The ¢Nd record obtained from uncleaned foraminifera of core
MD90-964 allows us to establish, for the first time, the Nd isotopic
signature of the EMDW of the Levantine Basin over the last climatic
cycle and to extend our knowledge of the ¢Nd variability for sap-
ropels S1 and S5 to those of S3 and S4. The ¢Nd record of core
MD90-964 also displays glacial-interglacial variability with more
radiogenic values during glacial MIS (Fig. 4).

A prerequisite for interpreting such seawater ¢Nd variations
through time is the characterization of present-day and past Nd
isotopic composition of the main water masses circulating in the
eastern Mediterranean basin. Thus, we can evaluate potential
temporal changes in the eNd of the end-members during the last
climatic cycle, and assess the potential influences of lithogenic Nd
input and regional “boundary exchange” on eNd of deep-water
masses.
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Fig. 4. Variations in (A) the Relative Sea Level (RSL) (Grant et al., 2014) and (B) the summer insolation (June and July) received by the Earth at 20°N, calculated using Analyseries
software (Paillard et al., 1996) for the last 160 kyr. (C) Variations of the 5'80 obtained from G. ruber of core MD90-964 (Zhao et al., 2011); (D) Variations of the smectite/illite ratio of
core MD90-964 (Zhao et al., 2011); (E) Variations of the Nd isotopic composition (eNd) obtained from uncleaned mixed planktonic foraminifera of core MD90-964 (this study); (F)
Variations of the Total Organic Carbon (wt%) of sediments from core MD90-964 (Zhao et al., 2011). The Marine Isotope Stages (MIS) and time intervals of Sapropel S1 to S5

deposition are also reported.

6.1. Possible impact of changes in lithogenic Nd input on the eNd of
the Eastern Mediterranean Deep Water in the Levantine Basin

At the present time, the EMS is characterized by contrasting
seawater eNd values (~-10 to —5) with strong zonal and vertical
gradients which are attributed to a mixing between the inflowing
MAW (~-10) and the more radiogenic underlying LIW (~-5) and
EMDW (~-6.5) (Tachikawa et al., 2004) (Fig. 1b). The latter acquires
its eNd signature from boundary exchange with radiogenic basaltic

material originating from the Ethiopian traps, which is transported
to the EMS by the Nile river (eNd = —3 to +3, Tachikawa et al.,
2004), and from the volcanic arc of the Aegean Sea (eNd ~ -2.5),
with the most radiogenic material being located at the eastern
border of the Levantine Basin (eNd = +3.5 to +6) (Ayache et al,,
2016).

In this regard, previous studies have explored past variations of
seawater ¢Nd in the Levantine Basin as a balance between unra-
diogenic aeolian Saharan dust and radiogenic Nile river discharge
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Fig. 5. Comparison between eNd records obtained in this study (cores MD90-964 and MS27PT) and published records for the last 25 kyr. Core MD04-2722: Cornuault et al. (2018);

core BCO7: Freydier et al. (2001) ODP Site 967C: Scrivner et al. (2004).

(Scrivner et al., 2004; Revel et al., 2015; Cornuault et al., 2018; Wu
et al,, 2019), including the possibility of a significant contribution
from paleo-rivers along the African margin (Osborne et al., 2010), or
a predominant contribution through the mechanism of boundary
exchange (Ayache et al., 2016; Vadsaria et al., 2019; Wu et al., 2016).
Tachikawa et al. (2004) have suggested that the Nd flux from Nile
River freshwater has a minor influence on the present-day Medi-
terranean seawater ¢Nd, with its Nd concentration being low and
the water input 10 times smaller than the unradiogenic AW flowing
from the Western Basin to the shallow waters of the Levantine
Basin. Several previous studies have demonstrated that detrital
material in the Nile deep-sea fan results from the mixing of sedi-
ments derived from Saharan/Libyan dusts and Nile sediments
(Weldeab et al., 2002a; Scheuvens et al., 2013; Garzanti et al., 2015;

Revel et al., 2015). Cores MD90-964 and MS27PT, located on the
Nile deep-sea fan, are then suitable for assessing lithogenic Nd
input to the EMDW.

6.1.1. Contribution of the Nile river

Past humid periods, corresponding to the sapropels, were sys-
tematically accompanied by higher deposition of iron/smectite-rich
sediments in the Nile deep-sea fan, reflecting enhanced physical
erosion and transport of sediments from the Ethiopian Highlands
(Krom et al., 1999, 2002; Weldeab et al., 2002b; Revel et al., 2010,
2014, 2015; Langgut et al., 2011; Zhao et al., 2012). In contrast, past
arid periods are associated with a lower contribution from the Blue
Nile and a higher relative proportion of sediments derived from the
White Nile, along with a peak in the aeolian dust component (Revel
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Fig. 6. (A) Variations in Relative Sea Level (RSL) (Grant et al., 2014); (B) summer insolation (June and July) received by the Earth at 20°N, calculated using Analyseries software
(Paillard et al., 1996) for last 160 kyr. (CC) eNd record obtained from ODP Site 967C (Osborne et al., 2010); (DD) eNd record obtained from non-reductively cleaned mixed planktonic
foraminifera of core MD90-964 (this study); (EE) eNd record obtained from non-reductively cleaned mixed planktonic foraminifera of core MS27PT (this study); (FFG) compilation
of 3'3C obtained from benthic foraminifera from Mediterranean cores. Records of 3'>C obtained from benthic foraminifera are published as followed: MD04-2722 by Cornuault et al.
(2016); MDO01-2472 by Toucanne et al. (2012); ODP Site 963 by Incarbona et al. (2011); MD95-2043 by Cacho et al. (2000).
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et al,, 2015; Zhao et al., 2012). Large smectite contents recorded in
cores MD90-964 (Zhao et al., 2012) (Fig. 4D) and MS27PT, combined
with Sr and Nd isotopic compositions (Revel et al., 2014) indicate
the dominant contribution of the Blue Nile (smectite) to the Nile
discharge, at least during the last climatic cycles. The low propor-
tion of sediment derived from the White Nile is mainly due to the
Sudd marshes in Southern Sudan which efficiently trap sediments
from tributaries of the White Nile (Padoan et al., 2011; Garzanti
et al,, 2015). In addition, during the African Humid Periods, it has
been suggested that large lakes formed in the region extending
from Sudd to the confluence at Khartoum (Barrows et al., 2014).
These lakes likely further limited the northward transport of
unradiogenic Nd sediments to the Nile deep-sea fan. Thus, there is
no argument to support the hypothesis that changes in the relative
contribution of the Equatorial-White Nile and Blue Nile tributaries
triggered the seawater ¢Nd variations observed in cores MD90-964
and MSPT27.

6.1.2. Contribution of African dust

The Saharan dust transported to the EMS is characterized by an
unradiogenic eNd values (—15 to —11; Padoan et al, 2011;
Scheuvens et al., 2013), potentially contributing to the unradiogenic
Nd isotopic signature of surface and intermediate water masses
(e.g. Tachikawa et al., 2004; Ayache et al.,, 2016). However, the
present-day distribution of eNd in the surface and intermediate
water masses of the Mediterranean Sea is mainly attributed to the
mixing of the AW and the LIW and suggests a negligible contribu-
tion of Nd lithogenic input from aeolian dusts (Wu et al., 2019).

In addition, core MD90-964, located at a distal position on the
deep-sea fan, is characterized by lower mean sedimentation rates
(5 cm/kyr) compared to core MS27PT (12 cm/kyr) and may be
associated with a higher proportion of Saharan dust components.
Variations in the mineralogical ratio of smectite/illite obtained on
the clay fraction of core MD90-964 have been used to track the
relative proportions of Saharan dust (characterized by high illite
contents) and Nile contributions (dominated by smectite, 90%,
derived from the Blue Nile and Atbara River draining the Ethiopian
Plateau flood basalts) (Zhao et al., 2011) (Fig. 4D). The transport of
Saharan dust to the Levantine Basin, reconstructed from the
smectite/illite ratio, displays slight glacial-interglacial variations
with elevated dust inputs during glacial periods. Such results are in
agreement with previous studies reporting an increase in dust
input to the Mediterranean Sea during this time span induced by
the southward migration of the ITCZ (Weldeab et al., 2002b; Revel
et al,, 2010; Ehrmann et al., 2016, 2017; Lamb et al., 2018) (Fig. 4D).
Such glacial increases of unradiogenic eNd dust inputs to the
eastern Mediterranean Basin do not appear to have significantly
modified the seawater eNd record obtained in core MD90-964,
since glacial periods (MIS6 and MIS2-4) are systematically associ-
ated with more radiogenic eNd values than those of interglacial
periods (MIS5 and MIS1) (Fig. 4D and E).

In addition, the seawater ¢Nd record obtained in core BCO7,
which was collected at a shallower depth (893 m), could have been
slightly more affected by the dissolution of Saharan dust relative to
the other deeper cores. Such higher contribution of dust dissolution
in the upper water column has been demonstrated in previous
studies (e.g. Ayache et al., 2016). Yet, this core does not exhibit
variations in seawater eNd that might have been induced by a
glacial increase in dust fluxes. The time interval corresponding to
the AHP (from ~14.8 to ~6 cal kyr BP), when a decrease of aeolian
dusts has been demonstrated (DeMenocal et al., 2000; Ehrmann
et al,, 2013), is in fact associated with more unradiogenic eNd
(Fig. 5). A negligible contribution of the dissolution of African dust
on past seawater eNd since the last glacial period has been also
proposed by Cornuault et al. (2018) and Wu et al. (2019) for several

seawater eNd records obtained from cores located between ~800
and ~3400 m water depth in the western part of the EMS.

6.1.3. Contribution of African paleo-rivers

A vast fossil river channel network has been identified in the
Libyan Sahara, which was active during African Humid Periods
(Rohling et al., 2002). These paleo-rivers carried alteration products
originating from basalts of the Tibesti mountains, (eNd = 5 to 7;
Allegre et al.,, 1981). Some lake mollusks analyzed in Wadi Behar
Belema and Wadi Quoquin (two of these paleo-rivers) have shown
that the freshwater was significantly radiogenic (eNd = —-2.2
to —1.8) compared to the Saharan dust (Osborne et al., 2008).
Therefore, it has been suggested that these Libyan paleo-rivers
contributed an additional source of radiogenic Nd to the eastern
Mediterranean Basin during African Humid Periods (Scrivner et al.,
2004). Seawater ¢Nd records for core ODP site 971A (proximal to
the mouths of these paleo-rivers compared to more distal ODP Site
967C or core LC21), were used to support this hypothesis during
sapropel S5 (Osborne et al., 2008, 2010). However, for different
reasons, variations in the foraminiferal eNd obtained from cores
located in the eastern EMS cannot be entirely explained by changes
in the Nd isotopic composition of the water masses induced by
lithogenic input from the African paleo-rivers. First, Sr and Nd
isotopic signatures of the detrital fraction of sediments close to the
mouth of these Libyan paleo-rivers (core CP10BC), have shown
maximum sediment discharges during the sapropel S1b time in-
terval (Wu et al., 2016) whereas ¢Nd records display more radio-
genic values at the beginning of the AHP (~14.8 cal kyr BP), reaching
a maximum at ~13.5 cal kyr BP for core MD90-964 and at
~9.7 cal kyr BP for core MS27PT (Fig. 5). Second, the sapropel time
interval in cores MD90-964 and MS27PT, as well as in several cores
previously investigated throughout the EMS (Wu et al., 2019), is
associated with a continuous decrease in ¢Nd values during the
deposition of sapropel S1 indicating a more radiogenic signature for
the S1a than for the S1b time interval (Fig. 5). Finally, core CP10,
which should be susceptible to a significant influence from the
discharge of Libyan paleo-river sediments due to its proximal
location does not in fact exhibit any influence on its seawater eNd
record (Wu et al., 2019). Therefore, while we cannot fully rule out a
local influence of detrital discharge from the Libyan paleo-rivers on
seawater eNd, its contribution to Levantine deep-water masses can
be considered negligible.

In conclusion, the process of “boundary exchange” between
water masses and volcanic sediment along the margin of the
eastern and northern Levantine Basin is one of the major sources of
lithogenic Nd to the Mediterranean Sea (Ayache et al., 2016), but
neither changes in the inputs of lithogenic Nd from the Nile River
nor from the paleo-rivers of the North African margin can explain
the glacial-interglacial variability observed in the seawater eNd
records of core MD90-964.

6.2. Paleo-hydrological implications of the eNd records during
glacial-interglacial transitions and terminations I and Il

The eNd records for the EMS display significant glacial and
interglacial variations, ranging from —2.0 + 0.2 to —4.3 + 0.2, with
more radiogenic values during glacial MIS6, 4, 3 and 2 (Fig. 4) that
may have been induced by the result of an increase in the residence
time of deep-water masses in the EMS and/or a decrease in the
proportion of unradiogenic MAW flowing into the EMS.

Using a regional ocean-atmosphere coupled climate model,
Vadsaria et al. (2019) have shown that a reduction in the formation
of deep water in the Eastern basin is associated with an increase in
deep-water eNd due to a longer interaction between the water
masses and the radiogenic sediments along the eastern margins of
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the EMS (Ayache et al., 2016). However, since the ventilation of the
EMDW was enhanced during glacial MIS2, 4 and 6, due to saltier
and denser surface water (Thunell and Williams, 1989; Béthoux
et al,, 1990; Myers et al., 1998a), the more radiogenic eNd values
for the EMDW during glacial periods cannot be attributed to a
modification of the residence time of deep-water masses. More-
over, several models have shown that exchange between the
Atlantic Ocean and the Mediterranean Sea may have been reduced
by as much as half during the glacial low sea-level stands, resulting
in a higher longitudinal salinity gradient in the Mediterranean Sea
(Bryden et al., 1994; Myers et al., 1998b; Mikolajewicz, 2011; Grimm
et al.,, 2015). Periods of glacial low sea level may have caused a 50%
reduction in water exchange between the eastern and the western
Mediterranean basins through the Sicilo-Tunisian Strait
(Mikolajewicz, 2011; Grimm et al., 2015). Consequently, taking into
account that glacial periods were associated with enhanced con-
vection of deep water in the EMS, the more radiogenic eNd
observed for the glacial EMDW can be attributed to a decrease in
the contribution of the Modified Atlantic Water (MAW) to the
eastern Mediterranean Basin. In this case, therefore, there is an
entrainment of radiogenic eNd surface water to the deep basin at
the center of production of deep-water masses. However, we
cannot exclude that the decrease in zonal water exchange between
the WMS and the EMS during the glacial period favored also a
longer contact time between the EMDW and the radiogenic sedi-
ment draping the eastern Mediterranean continental margin dur-
ing this time. This hypothesis would need to be tested further using
a regional modeling approach.

However, we have tried to estimate the reduction of MAW to the
EMS necessary to explain an increase of 1.5 eNd unit observed in
core MD90-964 during glacial time relative to the low values of the
MIS1 and 5 (out of sapropel and African Humid Periods) using a
simple box-model for Nd in the EMS established by Wu et al.
(2019). We have used the present-day input of Nile river and dust
to the EMS (Nile x 1, Dust x 1; Fig. 5 of Wu et al., 2019). Results
suggest that the observed glacial increase of eNd could be attrib-
uted to a decrease of MAW by 55% relative to today. Such variations
are likely overestimated as the radiogenic Nd contribution from
Nile could have also been reduced during glacial period. Never-
theless, the calculated reduction of MAW inflow into the EMS
during glacial low sea-level stands agrees with the 50% reduction in
water exchange between the eastern and the western Mediterra-
nean basins through the Siculo-Tunisian Strait quantified by
Mikolajewicz (2011) for the LGM.

The eNd record of core MD90-964 covers the last Terminations I
and IL. The significant decrease in the ¢Nd value (from —3.2 + 0.2
to —4.4 + 0.2) during Termination I begins at around 18 cal kyr BP
and is coeval with a similar decrease in 8'3C obtained from benthic
foraminifera (Incarbona et al., 2011; Sprovieri et al., 2012; Toucanne
et al,, 2012; Cornuault et al., 2016) (Fig. 6). The decrease of the eNd
during Termination Il observed in core MD90-964 is also associated
with a decrease of benthic 3'3C, which is particularly well marked
in the lonian Basin, close to the Siculo-Tunisian Strait (Incarbona
et al, 2011). The decrease in 3'C obtained on benthic forami-
nifera has been linked to a reduction in deep-water convection in
the Mediterranean Sea, but the influence of an increase in surface
productivity cannot be excluded (Incarbona et al., 2011; Cornuault
et al., 2016). During both terminations, the decrease in ventilation
suggested by the benthic foraminifera 3'3C record is not associated
with more radiogenic values, as expected if the seawater residence
time in the EMS had increased. On the contrary, the ¢Nd record
shows a decrease suggesting a higher contribution of unradiogenic
AW to the Eastern Basin linked to the rise of the relative sea level
and enhanced water mass exchange between the eastern and
western Mediterranean basins. The timing of reduced ventilation

and increase in Atlantic Water contribution to the eastern Medi-
terranean basin is consistent with the ocean-biogeochemical model
results obtained by Grimm et al. (2015), which indicate that deep-
water anoxia requires a long prelude of deep-water stagnation of
about 6 kyr, with no particularly strong eutrophication. The timing
and duration of the stagnation prelude agree with the mechanisms
for ORL1 (organic-rich layer) deposition in the western Mediter-
ranean Sea proposed by Sierro et al. (2005).

In particular, the decreases in both benthic 3'3C and eNd before
the sapropels S1 and S5 are coeval with the end of Henrich Stadial 1
and 11 (HS1 and HS11), respectively. It has been postulated that an
enhanced inflow of less salty seawater in the Mediterranean Sea
during the HS1 time interval favored a reduction in deep-water
convection in the western basin and caused the ORL1 deposition
between 14.5 and 8.2 cal kyr BP (Cacho et al., 2002; Martinez-Ruiz
et al., 2003). However, this time interval is still associated with
deep-water convection allowing the transfer of unradiogenic eNd
from MAW to the EMDW at the center of deep-water production in
the EMS. Our new eNd record from core MD90-964 suggests similar
mechanisms during Termination II, with a potential reduction in
the salinity of the Atlantic Water flowing into the Mediterranean
Sea during the HS11 (Kandiano et al., 2014; Jiménez-Espejo et al.,
2015; Grant et al., 2016) and an increase in the proportion of
MAW in the deep-water masses of the EMS, 5—6 kyr prior to the
deposition of sapropel S5.

6.3. Variability of the EMS during the African Humid Periods

The ¢Nd record of core MD90-964 reveals that African Humid
Periods (maximum of summer insolation) of the last climatic cycle
are generally associated with more radiogenic eNd values of the
EMDW (Fig. 4). The sample from core MS27PT dated at ~9.7 cal kyr
BP displays the most radiogenic eNd value (—2.5 + 0.2), which
corresponds to the maximum of summer insolation received by the
Earth at 20°N (Figs. 4 and 6). The planktonic foraminifera 5'80 re-
cord from core 9509, located under the River Nile plume in the
southeastern Levantine Basin (Fig. 1) (Almogi-Labin et al., 2009),
shows the most negative values (—1%o) at ~9.3 cal kyr BP, sug-
gesting a large input of freshwater from the Nile during this time.
Such variations may therefore involve (i) a more efficient exchange
of Nd from seawater and river sediment plumes associated with an
intensification of the Nile River sediment discharge during the Af-
rican Humid Periods (Revel et al., 2010; Cornuault et al., 2016) and/
or (ii) a longer residence time of water masses in the EMS during
time intervals of stratification of the water column that could have
led to increased boundary-exchange processes at the continental
margin (Lacan and Jeandel, 2005).

Recent studies have shown that river sediment discharges can
modify the Nd isotopic composition of surrounding water masses
(Singh et al., 2012; Chen et al., 2013; Goswami et al., 2014; Osborne
et al., 2014; Rousseau et al., 2015; Wu et al., 2015a), as recently
observed in the Bay of Bengal for a water depth greater than 2000
m (Yu et al., 2018). However, the ¢eNd values of core BCO7, collected
at a shallower water-depth (893 m) in the lower portion of the LIW,
are less radiogenic by 2 eNd units during the sapropel S1 time in-
terval relative to the other eNd records available nearby (core
MD90-964). This suggests that lithogenic Nd from Nile river sedi-
ment plumes did not play a major role in eNd variations of inter-
mediate and deep-water masses in the eastern Mediterranean
Basin during the African Humid Period. However, Nile river sedi-
ment plumes could partially explain the eNd variations during the
deposition of sapropel S1 given that core MS27PT, located closer to
the Nile river month, is characterized by higher eNd amplitude
compared to what observed in core MD90-964.

Results from the recent regional circulation model developed by
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Vadsaria et al. (2019), using a five-fold increase in Nile runoff
during the deposition of sapropel S1, show more radiogenic eNd
values (by 2 eNd units) for the deep-water masses below 1200 m,
associated with a sluggish circulation, stagnation of deep water and
consequent longer interaction with the surrounding radiogenic
margins. This result agrees well with eNd records obtained for
sapropels S1 to S5 (cores MS27PT and MD90-964) that display an
increase of up to 2.5 eNd units (Figs. 5 and 6). In addition, the less
radiogenic values observed in core BCO7 during sapropel S1 are also
consistent with model results for intermediate waters (near the
LIW) (Vadsaria et al, 2019). Modeling outputs have shown a
modification of the sea surface circulation pattern favorable to the
propagation of unradiogenic western Mediterranean Sea waters
into the intermediate waters of the Levantine Basin. The resulting
eNd decrease observed at intermediate water depth is related to
less vigorous circulation that also induces a reduction of the ex-
change with high-radiogenic material from the east of the EMS.
Consequently, distinct variations of eNd records for intermediate-
and deep-waters observed in cores BCO7 and MD90-964 during the
interval of sapropel S1 deposition are supported by models and
suggest deep-water stagnation and less vigorous circulation of the
LIW.

The eNd record of core MS27PT shows an increase around 4 kyr
before the deposition of sapropel S1 (from 10.5 to 6.5 cal kyr BP,
Bar-Matthews et al., 2000). This is in agreement with the recent
Nile sediment discharge records that indicate an increasing
discharge at ~15 cal kyr BP that could have induced a freshening of
the Mediterranean Sea and a slow-down of the circulation (Revel
et al,, 2010). Our new results allow us to investigate the potential
for a time lag between seawater ¢Nd rise and sapropel onset for the
previous sapropels S3, S4 and S5. The smectite/illite mineralogical
ratio of core MD90-964 (Fig. 4) enables estimating the Nile
discharge over the last climatic cycle (Zhao et al,, 2011). This
mineralogical ratio increases at about 15 cal kyr BP, in agreement
with an intensification of Nile river discharge prior to the deposi-
tion of sapropel S1 (Revel et al., 2010). Taking into consideration the
relatively low time resolution of the record, similar time lags can be
observed between the seawater eNd record and the deposition of
sapropels S3 and S4 (Fig. 4). The seawater eNd values systematically
increase before the intervals of sapropels deposition but these
shifts to more radiogenic values are not always associated with
variations in the smectite/illite ratio. The lower time resolution of
the eNd record of core MD90-964 around sapropel S5 does prevent
us from clearly identifying a similar time lag.

The time interval coeval with sapropel S5 is characterized by
lower eNd values relative to those of sapropels S1 and S4, and to a
lesser extent to those of sapropel S3. ODP Site 967C, which is at a
more distal position relative to the Nile River mouth, also displays
comparable eNd values during the S5 mid-point, with slightly less
radiogenic values (of about 0.5 eNd units) at the limits of S5 (Fig. 6).
African monsoon rainfall has been more intense during the time
interval of the S5 deposition than during sapropels S1 or S4 (Bar-
Matthews et al., 2000), likely leading to more intense Nile sedi-
ment and freshwater discharges. The lower 580 G. ruber values
obtained from core MD90-964 during S5 compared to S1 points to a
more significant freshwater discharge from the Nile to the studied
site (Fig. 2C). This suggests that the higher contribution of unra-
diogenic MAW in this period of particularly high relative sea level
(Fig. 6A), may have overtaken the influence of an increase in
radiogenic Nd from the Nile input and/or of a lesser vigorous deep-
water circulation in the EMS during the deposition of sapropel S5.
This would explain why the development of sapropel S5 is not
related to higher eNd values compared to other sapropels, such as

S1 and S4. For sapropel S4, the eNd record may indicate enhanced
Nile river discharge, or more likely, a reduction in EMS-WMS ex-
change induced by lower sea level during MIS5c compared to
MiIS5e (Fig. 6A). Further modeling studies are needed to estimate
the relative contribution of the MAW to the eastern Mediterranean
Basin under the environmental conditions prevailing during the
different sapropel depositions and particularly during the high sea-
level of S5.

7. Conclusions

Based on the foraminiferal eNd record of cores MD90-964 and
MS27PT, located in the eastern Levantine Basin, we provide evi-
dence of significant glacial-interglacial variations in the inflow of
Atlantic Water to the EMS during the last climate cycle (last 145
kyr). We have demonstrated for the first time that eNd values for
the EMDW are systematically associated with more radiogenic
values during glacial Marine Isotope Stages. Such long-term glacial
to interglacial variations in eNd values cannot be solely the result of
changes in Nile river discharge and Saharan dust inputs. Decreases
in eNd values during MIS5 and MIS1 interglacials have been
attributed to an increase in the contribution of unradiogenic MAW
to the EMS related to high sea-level stands and enhanced seawater
exchange between the North Atlantic and the Mediterranean ba-
sins. Termination I and II are associated with a decrease in seawater
eNd in line with a decrease in the 3'C obtained from benthic
foraminifera, suggesting a sluggish deep-sea ventilation in the EMS
related to a higher contribution of Atlantic Water in the EMS
through the Siculo-Tunisian Strait during sea-level rise.

Superimposed on this long-term glacial-interglacial variation, a
monsoon—precession induced signal is distinguished in eNd re-
cords by more radiogenic values related to African Humid Periods
(and sapropel events). These periods of radiogenic eNd of the
EMDW have been associated with an intensification of Nile
discharge and an increase in the residence time of deep-water
masses in the EMS, leading to an increase in the contact time be-
tween deep-water masses and radiogenic sediments along the
continental margin of the EMS.

Overall, our eNd records combined with previous eNd values
obtained in the EMS reinforce the hypothesis that a drastic reduc-
tion in the hydrological exchanges between the western and
eastern Mediterranean basins, and a subsequent higher proportion
of Atlantic Water during sea level rise may have preconditioned
sapropel deposition in the EMS during the last climatic cycle, as
proposed by Grimm et al. (2015).
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