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Present-day bottom-water ventilation in the Eastern Mediterranean basin occurs through deep-water
convection originating from the two marginal basins, i.e. Adriatic and Aegean Seas. In the paleo re-
cord, long periods of enhanced deep-water formation have been alternating with shorter periods of
reduced deep-water formation. The latter is related mainly to low-latitude humid climate conditions and
the enhanced deposition and preservation of organic-rich sediment units (sapropels). This study focuses
on sedimentary archives of the most-recent sapropel S1, retrieved from two sites under the direct in-
fluence of the two deep-water formation areas. Restricted oxygen conditions have developed rapidly at
the beginning of S1 deposition in the Adriatic site, but bottom-water conditions have not persistently
remained anoxic during the full interval of sapropel deposition. In fact, the variability in intensity and
persistence of sedimentary redox conditions at the two deep-water formation sites is shown to be
related to brief episodes of climate cooling. In the Adriatic site, sapropel deposition appears to have been
interrupted twice. The 8.2 ka event, only recovered at the Adria site, is characterized by gradually
increasing suboxic to possibly intermittently oxic conditions and decreasing Cog fluxes, followed by an
abrupt re-establishment of anoxic conditions. Another important event that disrupted sapropel S1 for-
mation, has taken place at ca. 7.4 cal ka BP. The latter event has been recovered at both sites. In the
Adriatic site it is followed by a period of sedimentary conditions that gradually change from suboxic to
more permanently oxic, as deduced from the Mn/Al pattern. Using the same proxy for suboxic/oxic
sedimentary redox conditions, we observe that conditions in the Aegean Sea site shift to more perma-
nently oxic from the 7.4 ka event onwards. However, at both sites the accumulation and preservation of
enhanced amounts of organic matter have continued under these suboxic to intermittently oxic sedi-
mentary conditions. It seems thus, that after 7.4 cal ka BP sapropel-like surface or deep-chlorophyll-
maximum conditions including enhanced productivity continued, whereas bottom-water conditions
were at least intermittently oxic. The latter is related to decreasing precipitation, i.e. run-off, and thus a
progressive development and deepening of deep-water formation. The shallower Aegean site, would be
affected earlier by such deepening ventilation than the slightly deeper Adriatic site. Finally, termination
of sapropel S1 formation as deduced from diminished organic matter contents and Ba/Al, appears to have
occurred almost simultaneously in the two areas, namely at 6.6 + 0.3 and 6.3 + 0.5 cal ka BP in Adriatic
and Aegean sites, respectively.
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1. Introduction
1.1. Circulation in the Mediterranean Sea
The present-day Eastern Mediterranean is a well-ventilated and

oligotrophic system [Bethoux, 1989; Wu and Haines, 1996]
following a density-driven, anti-estuarine circulation pattern. The
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low-latitude climate-related excess evaporation and mid-latitude
originating cold spells result in frequent deep-water formation.
This occurs in the two northern-most marginal seas of the Eastern
Mediterranean, i.e. the Adriatic and Aegean Seas [Schlitzer et al.,
1991]. In view of this subtle interaction between two climate
zones, the Mediterranean region is one of the most suitable areas
for high-resolution paleoclimatic studies. Its geographic and
oceanographic setting contributes to the enhanced imprint and
preservation of climatic perturbations associated with mid- and
low-latitude climate conditions.

1.2. Deposition of sapropel S1

Periods of precession minima/insolation maxima are charac-
terized by increased humid conditions associated with the inten-
sification of N. African monsoonal activity [Rossignol-Strick, 1985;
Hilgen, 1991]. It is only during these humid periods that distinctly
organic-rich units, called sapropels, have been deposited and pre-
served basin wide in a repetitive pattern [Olausson, 1961; Kidd
et al, 1978; Emeis and Shipboard Scientific Party, 1996; Emeis
et al., 1998].

Deposition of the most-recent sapropel S1 coincides with the
development of the Last African Humid phase [De Menocal et al.,
2000]. Lower surface-water salinity and relatively warm winter
conditions are thought to have led to the restriction of deep-water
formation [Aksu et al., 1995; Emeis et al., 1998; Rohling et al., 2015].
In addition, the enhanced pluvial conditions have promoted
nutrient input by the borderlands’ rivers [Rossignol-Strick, 1985;
Rohling and Hilgen, 1991; Mélieres et al., 1997], and may thus
have resulted in elevated primary productivity and organic matter
fluxes to the sea floor. The higher oxygen demand for the decom-
position of surplus organic matter and the restricted circulation are
considered to have further sustained lower oxygen levels in the
deep water column and at the sediment/water interface. This must
have contributed to the enhanced preservation of organic matter
[e.g. Reed et al., 2011].

Despite the numerous multi-disciplinary studies, the exact
mechanism for sapropel formation is still debated. There is, how-
ever, a widely accepted consensus that elevated primary produc-
tivity and reduced oxygen conditions must both have been
prerequisites for sapropel formation and preservation [e.g. De
Lange and Ten Haven, 1983; Rohling and Gieskes, 1989; Emeis
et al., 1991; De Rijk et al., 1999; Calvert and Fontugne, 2001;
Moodley et al., 2005]. The latter is related to the intensity of
deep-water formation, i.e. redox conditions.

1.3. Trace metals and redox conditions

The sapropelic layers exhibit a distinct geochemical composition
that reflects the redox sedimentary conditions as well as the
increased levels of primary productivity. The characteristic en-
richments of S, Fe and redox-sensitive elements such as V, Mo and
Cu in sapropelic layers imply that low oxygen or even anoxic con-
ditions must have been established at the sediment/water interface
[e.g. Calvert, 1983; Pruysers et al., 1991; Passier et al., 1997; Jilbert
et al, 2010]. Conversely, manganese appears to be commonly
depleted in the sapropel sediments. This is due to its mobilization,
under suboxic to anoxic conditions [Mangini et al., 2001]. This is
thought to have resulted in enhanced fluxes of dissolved Mn?* to
the bottom waters and to its re-precipitation as solid phase
manganese-oxides under oxygenated conditions [De Lange et al.,
1989; Pruysers et al., 1993; Van Santvoort et al., 1996; Thomson
et al,, 1999; Reitz et al., 2006a; Ni Fhlaitherta et al., 2010].

The elevated Ba concentrations in sapropel layers have been
linked to the excess amount of organic matter exported from the

surface water and hence are considered as a reliable paleo-
productivity proxy for this environment [Van Santvoort et al., 1996;
Thomson et al., 1999; Martinez-Ruiz et al., 2000; Paytan et al., 2004;
Jilbert et al., 2010]. Furthermore, in the Mediterranean, Ba preser-
vation is usually not affected by diagenetic mobilization, thus Ba/Al
can be used to determine the initial sapropel extent [Van Santvoort
et al., 1996; Reitz et al., 2006a; De Lange et al., 2008].

Another well-described feature of the most-recent S1 sapropel
in particular, is the distinct dark-brown layer, “marker bed”, often
present above it [Murat and Got, 1987; De Lange et al., 1989;
Pruysers et al., 1993; Thomson et al., 1995; Van Santvoort et al.,
1996; Reitz et al,, 2006a]. This manganese-rich layer depicts the
re-oxygenation event of the water column and sediments at the
end of sapropel formation, i.e. the onset of regular deep-water
ventilation [Van Santvoort et al., 1996; De Lange et al., 1999; Reitz
et al,, 2006a; De Lange et al., 2008]. Depending on bioturbation
and sedimentation rates, it is possible that after the re-oxygenation
of the bottom-water, excess oxygen may have diffused downward
into the sapropelic sediments and has degraded the organic matter
from the upper part of the sapropel. This so-called post-deposi-
tional oxidation front is commonly observed for sapropel S1 [De
Lange et al., 1989; Pruysers et al., 1993; Higgs et al., 1994; Van
Santvoort et al., 1996; Passier et al., 1996].

14. Deep-water formation

Present-day eastern Mediterranean deep-water formation is
determined by low- and mid-latitude induced enhanced evapora-
tion and surface-water cooling [Theocharis and Georgopoulos,
1993; Pinardi and Masetti, 2000]. In addition, local, internal ther-
mohaline variability may play a role [Krokos et al., 2014]. This may
be modulated by the inflow of riverine water from northern bor-
derlands, e.g. Po river to Adriatic Sea [Artegiani et al., 1997], Axios
river and Black-Sea to N. Aegean Sea [Poulos et al., 1997; Velaoras
et al., 2013]. Enhanced evaporation leads to Levantine Intermedi-
ate Water (LIW) formation; the latter flowing also into the Adriatic
and Aegean basins, may upon sustained northern-borderland
winter-cooling lead to enhanced densification, ultimately result-
ing in deep-water formation. The onset of the Holocene and sub-
sequently the humid climate period resulted in sea surface water
with enhanced temperature and reduced salinity, both of which
contributed to the formation of reduced-density LIW. At the same
time, for the northern borderlands, increased precipitation and
possibly deglaciation resulted in enhanced river run-off to the
Adriatic and Aegean Seas, lowering the density of surface water
even more. In combination with the more general absence of
persistent cooling periods in the northern borderlands, i.e. Bora in
Adriatic Sea, and Vardar in Aegean, densification was mostly
insufficient for deep-water formation. However, a few distinct but
brief, cold episodes have occurred (see below). Sapropels have been
deposited during humid climate conditions alone. Evidently, during
periods of sapropel deposition, deep-water formation has been
ceased and anoxic conditions have been established in the deep
waters and at the sediment/water interface. However, the
enhanced regeneration of sedimentary phosphate [Slomp et al,,
2002, 2004] and the high accumulation of trace metals [Nijenhuis
et al, 1999] indicate that the Mediterranean circulation, albeit
diminished, must have persisted during this period.

The occurrence of short episodes of climate deterioration coin-
cident with the temporal re-ventilation of bottom waters has been
reported for land [e.g. Bar-Matthews et al., 2000, 2003; Pross et al.,
2009; Peyron et al., 2011] and for marine records [e.g. Rohling et al.,
1997; De Rijk et al., 1999; Ariztegui et al., 2000; Mercone et al.,
2001; Casford et al., 2003; Gogou et al., 2007; Piva et al., 2008;
Siani et al., 2013; Triantaphyllou et al., 2016]. During sapropel S1
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formation such an event has been identified at 8.2 ka BP. It is
thought to have resulted in the temporary resumption of bottom-
water formation and cessation of sapropel formation. Its occur-
rence has been linked to a cool outbreak from the Siberia High
[Rohling and Palike, 2005] in response to a northern Hemisphere
widespread cooling [Alley et al., 1997; Mayewski et al., 2004]. This
underlines the impact of the northern climate system to deep-
water formation and ventilation of the Mediterranean [Rohling
et al., 2002].

In view of this eminent importance of deep-water formation for
the basin-wide ventilation, and for the preservation of sedimentary
components, two intermediate-depth cores were retrieved from
two sites under the direct influence of the two deep-water for-
mation areas, i.e. Adriatic and Aegean Seas (Fig. 1). These cores have
been studied in high resolution, so as to detect relationships and
mechanisms that lead to onset and interruption of deep-water
ventilation. We focus in particular on the sapropel S1 stagnation
period, its onset, interruptions, and ending, and link these to global
climate records.

2. Material & methods
2.1. Material

Two high-sedimentation-rate cores were used in this study; a
3.18 m long gravity core (KN3) from south of Kos island (27°12.03’E,
36°40.60'N, water depth 607 m) collected in 2008 by R/V Aegaeo,
and a 4.73 m piston core (MP50PC) recovered during the Macchiato
cruise in 2009 from immediately south of the western Otranto
Strait sill (South Adriatic Sea). (39N29’, 18E31/, water depth 775 m)
(Fig. 1). Both cores were sampled and analyzed at 0.5 cm resolution.
Distinctly dark layers were recognized in both cores, representing
sapropel S1, at depth 155—198 cm in KN3 core and 19—55 cm in
MP50PC core.

2.2. Methods

All samples were split in two aliquots, one for micropaleonto-
logical and one for geochemical analyses. The former set of samples
was washed and sieved and the samples from the latter were
freeze-dried and ground in an agate mortar. For the construction of
the age model, nine accelerator mass spectrometry (AMS) radio-
carbon 'C were performed at Poznan Radiocarbon Laboratory,
Poland, and one at Beta Analytic Radiocarbon Dating, Florida USA
using clean planktonic foraminifera hand-picked from the >63 pm
size fraction. All other analyses were performed at Utrecht Uni-
versity laboratory facilities.

2.2.1. TOC

Organic C was determined using a Fisons NA 1500 CNS
elemental analyzer. Inorganic C was removed prior to the analysis
by reacting samples with 1 M HCl twice (4 and 12 h). The samples
were then rinsed two times with demineralized water, dried at
~60 °C, and ground in an agate mortar. In-house and international
standards were used and the average standard deviation of all
measurements was <1%.

2.2.2. Elemental concentrations

An average of 125 mg of sediment was dissolved using 2.5 ml of
HF (40%) and a pre-mixed acid (HClIO4 45.5% and HNO3 16.25%) in
closed teflon vessels and heated at 90 °C for 12 h. Subsequently, the
lid was removed and samples were evaporated at 160 °C and
subsequently dissolved in 25 ml 1 M HNOs (Reitz et al., 2006a).
Major and minor element concentrations were determined using
an Inductively Coupled Plasma — Optical Emission Spectroscopy

(ICP-OES) using radial view measurements. The accuracy of the
measurements was monitored by including international and in-
house standards and several samples in duplicate. The standard
deviation for all measurements was less than 3%. The elemental
concentrations are normalized to Al in order to minimize
carbonate-dilution effects.

3. Results
3.1. Age model and sedimentation rates

Conventional “C ages were calibrated using the program CALIB
6.0 (Marine 09) [Stuiver and Reimer, 1993; Stuiver et al., 1998] with
a regional reservoir age correction (AR) for Aegean Sea core of
149 + 30 yrs for the sapropel interval [Facorellis et al., 1998] and
58 + 85 outside the sapropel [Reimer and McCormac, 2002], and
118 + 60 yrs for the Adriatic Sea core (Table 1) [Reimer and
McCormac, 2002]. Due to high amounts of tephra present in the
46.5—48.0 cm interval in the Adriatic site (MP50PC), the age model
was constructed by interpolation between dated points (Fig. 2). The
tephra components, in the 46.5—48.0 cm interval, belong to two
different sources; the lower and most abundant one originated
from Mercato eruption [Cioni et al., 1999, 2008] of Somma- Vesu-
vius and the upper one from E1/Fiumebianco-Gabellotto eruption
from Lipari island (D. Insinga pers. commun.). The interpolated age
assessment of our tephra layer falls within the age range suggested,
i.e. 9680 + 480 cal. BP [Wulf et al, 2004, 2008] and
8500 + 100 cal ka BP [Zanchetta et al., 2011], but due to the large
uncertainty of the exact age of the events, these can only be used to
confirm the age model. Tephra is the dominant fraction in these
samples, therefore all other sediment components are “diluted”.
This leads to low concentrations for Corg, CaCO3 and trace metals
and to enhanced elemental concentrations for tephra-related ele-
ments, e.g. Ti, Zr. In this core the dark-coloured organic-rich layer
spans between 10.2 + 0.3 to 6.6 + 0.3 cal ka BP (Fig. 2).

In the Aegean Sea core (KN3), the ash layer from the precisely
dated Santorini eruption (Z2; 16011625 B.C. Friedrich et al., 2006)
was recognized by its geochemical signal [Reitz et al., 2006b] and
used as an additional age marker at depth 75.8 cm. In this core, the
interval below 200 cm (~8.2 cal ka BP) is thought to be related to a
slump (i.e. deviating elemental concentrations and poor preserva-
tion of planktonic foraminifera). Thus the sapropel interval recov-
ered in this core, extends from 8.2 to 6.3 + 0.5 cal ka BP. The
multiple radiocarbon dating points and the consistent fit to a steady
sedimentation rate as well as visual and texture-related observa-
tions ensure that no other slumps or hiatuses have affected the
sedimentary record in the reported S1 interval. The C data indi-
cate a nearly linear relation between age and depth of the sediment
(Fig. 3).

Sedimentation rates were calculated for the South Adriatic site
during S1 to be ~10.2 cm/kyr and for the South Aegean Sea site
~27.3 cm/kyr. The resulting sample resolution is 50 and 18 yrs for
the S. Adriatic and S. Aegean sediments, respectively. Hereafter all
ages are discussed in cal. ka BP.

3.2. Geochemical data

In both cores, during the sapropel interval TOC (%) is up to 3
times higher than in the adjacent marls. At the end of the sapropel
layer organic carbon content returns to low values that are char-
acteristic for Eastern-Mediterranean sediments.

In core MP50PC, the shape of the Ba/Al profile is identical to that
of TOC (%). Two distinctly depleted intervals in both profiles can be
distinguished at 9.2 and 8.3 cal ka BP. The disruption of the record
at 9.2 cal ka BP coincides with the tephra interval and is rather short



98 A. Filippidi et al. / Quaternary Science Reviews 144 (2016) 95—106

Adnatic
Italy = Sea
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Fig. 1. Central Mediterranean with the two cores used in this study. MP50PC and KN3 are located under the direct influence of the two Deep-water formation areas, resp. the

Adriatic and Aegean Sea.

and abrupt. The overall trend is towards lower values at ~8.3 cal ka
BP. Almost the same high values are observed before and after the
8.3 cal ka BP interruption. The TOC and Ba/Al values both start to
decline at 7.4 cal ka BP and progressively return to background
values at 6.6 cal ka BP (Fig. 4).

Redox-sensitive elements, such as V, Mo, and Cu, as well as Fe
and S, exhibit variations similar to those of TOC and Ba/Al profiles.
These elements respond also to the 8.3 cal ka BP interrupt and start
to reduce gradually (e.g. V) or rapidly (e.g. Mo), shortly after
7.4 cal ka BP (Fig. 4).

During the sapropel interval, the Mn/Al profile appears slightly
depleted but exhibits two peaks, a more prominent one at 8.2 cal ka
BP and a smaller one at 7.4 cal ka BP. In addition, the end of the
sapropel is marked by a pronounced enrichment in the Mn/Al
values.

For the S. Aegean core KN3, the recovered part of sapropel S1
corresponds to the so called S1b, upper sapropel interval [Rohling
et al,, 1997; De Rijk et al,, 1999]. During this interval, Ba/Al and
TOC profiles are enhanced and exhibit distinct, short-term vari-
ability, with identical patterns (Fig. 5). Likewise, redox-sensitive
elements such as V and Mo, although not considerably enriched,
co-vary with Ba/Al and TOC within the sapropel, while Fe and S
exhibit slightly higher concentrations, and return simultaneously
to background values, at ~6.3 cal ka BP. Furthermore, the Mn/Al
content is somewhat depleted during the sapropel interval and a
prominent two-lobe high peak is observed between 7.4 and
7.2 cal ka BP reaching values up to 10 times the background value

(Fig. 5).
4. Discussion

The two cores of this study have been retrieved from interme-
diate water depths (i.e. typical LIW water depths), from locations
known to be under the direct influence of the Eastern Mediterra-
nean deep-water formation areas. MP50PC was collected imme-
diately south from the western-part of Otranto Strait. Thus site

MP50PC belongs geographically to the N.lonian Sea, but is situated
under the direct influence of the Adriatic Deep Water outflow.
Consequently, from hereon we will refer to this site as ‘Adriatic site’,
whereas KN3, recovered from the South Aegean Sea, will be
referred to as ‘Aegean site’. Their high-sedimentation rates are
expected to record and preserve even small repulses of deep-water
formation. In this study we focus on sapropel S1 deposits alone.

4.1. Paleoproductivity and preservation of organic matter

For non-sapropel sediments, the low organic-carbon contents
observed in the studied cores are consistent with the oligotrophic
state of the basin [Bethoux, 1989]. For both cores, Ba/Al ratio and
Corg content are noticeably elevated within the sapropel S1 interval,
as a result of enhanced accumulation and preservation of organic
carbon fluxes at the sea floor, i.e. sapropel-like conditions. The close
co-variation of Ba/Al ratio and TOC (%) and the concomitant return
to background values at the end of S1 denote that no appreciable
post-depositional oxidation front has affected the upper part of the
organic-rich layer. Thus, the enhanced organic carbon interval
represents the full initial sapropel extent for these cores [e.g. De
Lange et al., 1989; Thomson et al., 1995, 1999; Van Santvoort
et al., 1996; Martinez-Ruiz et al., 2000]. Presumably rapid burial
of organic matter due to the high-sedimentation rates has
enhanced preservation and prevented potential post-depositional
oxidation.

In the following sections, we will first evaluate the general
sapropel vs. non-sapropel conditions. Subsequently, we will focus
on the rapid changes of the upper boundary, and then on the
variability within the sapropel period.

4.2. Sedimentary redox conditions (sapropel vs. non-sapropel)
Although there are several definitions used in the literature to

describe environmental redox-conditions, in this paper we use the
following: ‘Anoxic’ conditions are largely used to describe the
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Samples in cores MP50PC and KN3 with 14C ages and reservoir age corrections; Used reservoir age corrections for all dating point is ~400 years (included in calibration
program Marine 09); a-f: additional regional reservoir age correction for Adriatic Sea AR = 118 + 60 (Reimer and McCormac, 2002), and h-k: for Aegean core KN3 core
AR = 149 + 30 years for sapropel interval (Facorellis et al., 1998) and 58 + 85 outside the sapropel (Reimer and McCormac, 2002). g:* Santorini ash layer (Friedrich et al., 2006).

Sample av. depth (cm) 14C age (BP) +10 error (yr) AR (yr) 10 age cal BP (yr)
a MP50PC#5 5.0-5.5 5.2 3700 = 30 118 + 60 33943554
b MP50PC#5 19.5-20.0 19.7 6265 + 35 118 + 60 6488—6658
C MP50PC#5 39.0—-39.5 39.2 8020 + 40 118 + 60 8291-8440
d MP50PC#5 48.5-49.0 48.7 8670 + 50 118 + 60 90749295
e MP50PC#5 57.0-57.5 57.2 9540 + 50 118 + 60 10 181-10 3633
f MP50PC#4 36.5-37.0 111.7 17 930 + 90 118 + 60 20 836—21 1822
g KN3 75.5 75.7* 3563
h KN3 118-121 119.5 4980 + 40 58 £ 85 5072-5349
i KN3 149-152 150.5 6070 + 40 149 + 30 6284—6384
j KN3 163-165 164 6760 + 40 149 + 30 7078—-7218
k KN3 181-184 182.5 7040 + 50 149 + 30 7342—-7460
cal. ka BP cal. ka BP
2 4 6 8 0 4 8 12 16 20 24
60 | | | | | I 0 | I | | | I | | | I | |
-1 - a
80 — g
20 —
. y=37.4x + 753.9
r’=0.99 -
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£ 120 — grey £
L 2
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& g
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olive grey N
sapropel S1 100 —
180 — K ®
S1b
200 — 120 —

Fig. 2. General sediment description and age model for Adriatic-influenced core
MP50PC (for a-f, see Table 1).

complete lack of dissolved oxygen and the presence of sulphide in
the water. ‘Suboxic’ conditions are usually referring to reducing
conditions but without the necessary complete lack of dissolved
oxygen, but require the presence of additional electron acceptors
(such as Mn(IV) and Fe(IIl)) [e.g. Yakushev and Newton, 2013 and
references therein]. ‘Intermittently oxic’ conditions signify the
sporadic oxygenation of the bottom waters, whereas ‘oxic’ condi-
tions suggest the more continuous presence of dissolved oxygen in
the water.

In the absence of considerable diagenetic alteration in the sed-
iments of this study, enrichments observed in redox-sensitive el-
ements are considered to represent initial depositional conditions.

Fig. 3. General sediment description and age model for Aegean KN3 core (For g-k, see
Table 1).

Redox-sensitive elements follow diverse pathways of precipitation
that are mostly associated with different redox conditions. Vana-
dium is known to precipitate under suboxic conditions and is
associated with the accumulation of organic matter, and thus
elevated V/AI ratio is commonly used to describe suboxic condi-
tions. Molybdenum is usually enriched in sediments at anoxic
conditions, i.e. in the presence of free sulfides in the bottom and/or
pore waters [Emerson and Huested, 1991; Calvert and Pedersen,
1993; Crusius et al,, 1996; Crusius and Thomson, 2000; Zheng
et al., 2000; Nameroff et al., 2002; Tribovillard et al., 2006; Jilbert
et al., 2010]. Sulphur and Fe enrichments within the sapropels
have been attributed to pyrite formation which points to sulphate-
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basin-wide S1 interval
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Fig. 4. TOC(%), major and minor elements distribution during S1 in MP50PC core,
South Adriatic site core. Indicated above is the basin-wide S1 interval (De Lange et al.,
2008). Triangulars indicate the dating points (for b-e, see Table 1); dashed line is
distinct tephra horizon.

reducing conditions in the sediment and in the bottom-water
during sapropel formation [Thomson et al., 1995; Passier et al.,
1996; Reed et al., 2011]. Hence its enrichment expressed in Mo/Al
values indicates anoxic conditions. Manganese oxides, which are
the dominant fraction of the total Mn in oxic sediments, exhibit the
opposite behavior compared to the other trace elements due to
microbial mobilization under low-oxygen conditions [Burdige and
Kepkay, 1983]. Consequently, manganese-oxides are present un-
der oxic conditions, start to decline under dysoxic conditions (very
low oxygen conditions), and may be slightly reduced or enriched
under intermittently oxic conditions (depending on bottom-water
redox state and associated dissolved Mn?* content). This can be
depicted by a lower Mn/Al ratio under suboxic sedimentary con-
ditions. Other factors such as provenance of the detrital fraction,
diagenetic formation of pyrite or adsorption to Mn- and Fe-
oxyhydroxides could also lead to enhancements of some of these
elements in the sediments (e.g. Mo, Co, Cu, and Cr) [Pruysers et al.,
1991; Nameroff et al., 2002]. Therefore, these elements should be
used with caution for determining redox conditions, taking into
account differences in their (im)mobilization pathways [e.g.
Nameroff et al., 2002; Tribovillard et al., 2006].

For the Adriatic site, fully oxic bottom-water and sedimentary
conditions appear to have been prevailing prior to and post sap-
ropel formation. In contrast, during most of the sapropel period
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lower levels of Mn/Al, which are thought to represent distinctly
suboxic to anoxic conditions, are distinguishable. However,
enhanced Mn contents are noticeable during short episodes (this
will be discussed in section 4.4). From our record it derives that
strictly anoxic conditions have been developed rapidly after the
onset of sapropel deposition in the Adriatic Sea. Accordingly, V, Mo,
Fe and S, all are elevated at the bottom of S1 concomitant to a major
increase in Ba/Al ratio and organic matter content, whereas
thereafter these fluctuate tightly coupled (Fig. 4). This suggests that
sustained anoxic conditions with enhanced deposition of organic
matter lasted for approximately 1500 years (ca. 10.1-8.6 cal ka BP).
After a short interruption at ~8.3 cal ka BP (see section 4.4), redox-
sensitive elements diagnostic for anoxic conditions, as well as the
Ba/Al ratio and TOC content, all increase rapidly and remain
enriched until around 6.6 cal ka BP, indicating that low-oxygen
conditions have been established for another ~1400 years. How-
ever, after 7.4 cal ka BP, bottom-water conditions change into more
suboxic to possibly intermittently oxic.

For the S. Aegean site, the sedimentary record shows a great
variability during deposition of the recovered S1b unit. Similarly to
the Adriatic site, high amounts of organic carbon tightly coupled
with the enhanced Ba/Al ratio, compared to the post-S1 values,
indicate that increased primary production has persisted during
this interval from 8.2 to approximately 6.3 cal ka BP. The Mn/Al ratio
at the Aegean site is distinctly higher than for the Adriatic site. This
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denotes that deposition of the organic-rich unit in the Aegean has
taken place under suboxic to nearly oxic conditions, which is
consistent with the regular recurrence of benthic foraminifera
(Fig. 5). Redox-sensitive elements, such as V and Mo, even though
only slightly enriched over their crustal abundances, probably due
to high sedimentation-rate-related dilution, co-vary with TOC
content and Ba/Al ratio (Fig. 5). This underlines that some level of
oxygen depletion occurs in the bottom water/surface sediment,
contributing to enhanced preservation of organic matter. Repeated
oscillations of major and minor elements advocate that there has
been a recurring alternation between oxic and suboxic conditions.
This means that bottom waters were probably not continuously
oxygen-depleted. The high manganese peak, at 7.4 cal ka BP, con-
notes the resumption of more-continuous oxygenation thus deep-
water formation from that time onward.

4.3. Ending of sapropel S1

In the Adriatic site record, the end of sapropel deposition, as
defined from the ending of enhanced Coy and Ba fluxes, has
occurred at approximately 6.6 cal ka BP. However, already from ca.
7.4 cal ka BP onward, redox-sensitive elements move to lower
concentrations abruptly (e.g. Mo, S) or more progressively (e.g. V,
Fe). In addition, Mn/Al remains at a moderately depleted level. This
means that environmental redox conditions abruptly changed from
anoxic to suboxic, and gradually from suboxic to oxic, being inter-
mittently oxic (the latter on basis of Mn/Al). Thus from 7.4 cal ka BP
onwards the end of anoxic/suboxic (oxygen-devoid) environmental
conditions is clearly decoupled from continuing enhanced organic-
fluxes, i.e. sapropel-like conditions. In other words, enhanced
organic fluxes continued but bottom-water conditions were no
longer anoxic but rather suboxic or even intermittently oxic. The
latter observation suggests also that enhanced primary productiv-
ity without fully anoxic bottom-water conditions may still lead to
sapropel formation under the sedimentary conditions encountered
for our sites. The onset of benthic foraminiferal assemblages [e.g.
Jorissen et al., 1993], indicating the partial re-oxygenation of
bottom-water, has evoked the idea that sapropel deposition may
have ended earlier in the Adriatic Sea than in the deep Mediter-
ranean. From our data this appears to be the case for the level of
oxygenation, thus for the bottom-water ventilation, but not for
surface-waters related bottom-arriving organic-fluxes.

In the Aegean, sedimentary conditions favoring sapropel depo-
sition seem to have persisted until approximately 6.3 cal ka BP.
Similarly to the Adriatic site core, the restoration of more contin-
uously oxic conditions at this site, may not have been simultaneous
with the reported basin-wide termination of sapropel formation
[De Lange et al., 2008]. Furthermore, the premature oxic conditions
in the Aegean Sea, as deduced from previous mostly benthic
foraminifera-based studies, have led to the conclusion that sapro-
pel formation terminated earlier than elsewhere, i.e. at 7.1 cal ka BP
[Kuhnt et al., 2007; Kotthoff et al., 2008a; SchmiedI et al., 2010;
Tachikawa et al., 2015]. From our record it is clear that indeed the
resumption of deep-water formation has occurred at ca 7.4 cal ka
BP, as inferred from the Mn/Al ratio and the benthic foraminifera
record (Fig. 5). However, our record also evidently demonstrates
that high amounts of organic carbon continued to be exported from
the surface waters. Thus shallow-water ‘sapropelic’ conditions
continued until 6.3 cal ka BP. Apparently, and despite the more oxic
bottom-water conditions, the continued bottom-arriving enhanced
organic fluxes have been preserved at this high-sedimentation-rate
site.

In summary, for both intermediate water-depth sites near the
deep-water formation areas, it appears that the bottom-water
oxygenation has resumed earlier (at ca 7.4 cal ka BP) than the

final ending of sapropelic conditions as indicated by organic-fluxes
proxies (at ca 6.6 and 6.3 cal ka BP in Adriatic site and Aegean Sea,
respectively). The high sedimentation rates encountered in these
cores and the applied high-resolution sampling have contributed to
the detection and preservation of these processes and mechanisms.

4.4. Variability within sapropel S1

Distinct fluctuations in the geochemical records of both cores
indicate that during sapropel S1 deposition, bottom-water condi-
tions must have been somewhat variable. In the Adriatic site, pro-
ductivity- and anoxia-related elemental profiles are almost
identical from the onset of sapropel formation until 7.4 cal ka BP.
The first interruption, at ca 9.2 cal ka BP is related to the deposition
of high amounts of tephra (see section 3.1). Immediately after this
event, elemental concentration profiles return rapidly to their
previous, enhanced levels. Subsequently these follow the overall
trend towards lower values, indicating that the strictly anoxic
conditions have started to weaken for the sediments of the Adriatic
site. A gradual drop can be observed for Mo, which is the only
measured element whose sedimentary origin is predominantly by
uptake from the water column under anoxic conditions. Its step-
wise decline implies that sedimentary conditions have started to
become less sulphidic, culminating at ~8.3 cal ka BP. In accordance,
the gradual increase in Mn levels represents increasingly (sub)oxic
conditions (Fig. 4). At this 8.2 cal ka. BP event, sapropel formation
has been diminished or even ceased during ~200 years, as deduced
from TOC and Ba/Al profiles (Fig. 4). At the same time, the sediment
redox conditions have been suboxic or even intermittently oxic (e.g.
low S/Al, Mo/Al and increased Mn/Al). All observations concord
with the temporary resumption of deep-water ventilation, i.e. the
moderation of redox conditions in the bottom-waters. This is
consistent with the repopulation of the sea-floor by benthic fora-
minifera, as observed in the same samples (Fig. 4) and reported for
other Adriatic Sea sites [e.g. Jorissen et al., 1993; Rohling et al., 1997,
De Rijk et al., 1999].

The end of this event is marked by the restoration of elevated V,
Mo and Cu concentrations and moderate enrichments in S, as well
as the rapid decline in Mn content. All these observations consis-
tently point to the rapid re-establishment of conditions favorable
for sapropel preservation, i.e. high accumulation of organic matter
and suboxic to anoxic conditions.

In the Adriatic site record at 7.4 cal ka BP, a short enrichment in
Mn content and re-appearance of benthic foraminifera concur with
a significant reduction in the concentration of redox-sensitive el-
ements, reflecting an oxygenation event. In fact some of them
(Mo,Al, Fe/Al, S/Al) are as low as their present values, thus pointing
to oxic depositional conditions. This integrated evidence indicates
the occurrence of a re-ventilation event during the S1b interval that
interrupted the accumulation of high amounts of organic matter.
However, elemental profiles of V/Al and Mn/Al denote that sedi-
mentary conditions remained suboxic to at least intermittently
oxic. after this 7.4 cal ka BP event and until the end of the organic-
rich interval.

This re-ventilation of bottom-water is detectable also in our
Aegean sedimentary record as demonstrated by the concurrent
increase in Mn/Al, the decrease in anoxia-related elements, and in
Ba/Al, and TOC. The high enrichment in the manganese profile at
approximately 7.4—7.2 cal ka BP indicates in fact, that regular
bottom-water ventilation, thus full oxygenation, must have
occurred from this time onward. The clear expression of a 7.4 cal ka
BP oxygenation event at both sites underlines that this is not a local,
but rather a more general, climate-related event.
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4.5. Correspondences and differences between Adriatic and Aegean
Seas

The records of the present study demonstrate that sapropel S1
deposition has taken place under largely similar but in detail
noticeably different depositional settings at the two study areas
and at these water depths. Explicitly, the trace-metal distribution
illustrates that relatively stable conditions with periods of anoxic to
recurrently sulphidic conditions have occurred in the S. Adriatic
site. However, for the Aegean area it is clear that sapropel S1
deposition has taken place under suboxic to intermittently oxic
conditions. Such less oxygen-restricted conditions at shallower
depths in the Aegean Sea are consistent with previous studies [e.g.
Abu-Zied et al., 2008; Marino et al., 2009; Triantaphyllou et al.,
2009, 2016]. This is not only evident from the presence of benthic
foraminifera, but also from the relatively constant manganese
contents well above its crustal Mn/Al value (Fig. 5). This value is
substantially higher in Aegean than in Adriatic site sediments for
the same time interval, suggesting the former was more often
oxygenated. The dynamic relationship between deep-water for-
mation and oxygenation of bottom-waters in the Aegean Sea, has
been suggested previously on the basis of benthic foraminifera data
[Casford et al., 2003], and is associated with significant climatic
instability as implied by alkenone SST variations and microfossils,
particularly within the S1b interval [e.g., Gogou et al., 2007;
Triantaphyllou et al., 2009, 2016].

The 7.4 cal ka BP oxygenation event is prominent in both re-
cords. In the Adriatic site record, this is expressed as a temporary
restoration of oxic conditions followed by more intermittently oxic/
suboxic conditions until 6.6 cal ka BP (Fig. 6¢). In the Aegean this
event is expressed as a distinct drop in the enhanced Ba/Al and TOC
content concomitant with a large manganese peak at 7.4 cal ka BP
corroborating that sediments have been oxic (Fig. 6d). Here, the
7.4 cal ka BP event seems to have been the triggering factor for the
final re-oxygenation of the deep-waters in the Aegean Sea. This
may be due to the greater response of this sub-basin to Northern-
Hemispheric cold spells, attributable to its relatively small size
and shallow water depth [Rohling et al., 2002, Rohling and Palike,
2005].

The change in conditions that have resulted in the final cessa-
tion of accumulation of high amounts of organic matter and asso-
ciated proxies at the sea-floor has taken place almost
simultaneously in the two Eastern Mediterranean Sea deep-water
formation areas at 6.6 and 6.3 cal ka BP, in Adriatic and Aegean
Seas respectively. This observation is in accordance with the time
and duration of sapropel S1 suggested by De Lange et al., (2008),
considering all age and sampling uncertainties.

4.6. Variability and relation to paleoclimate

During sapropel formation, the precession-related prevailing
warm and humid conditions with enhanced winter and summer
precipitation dominate in the low-latitude southern borderlands.
Furthermore, the related northward migration of the ITCZ (Inter-
tropical Convergence Zone) and associated higher riverine influx
have contributed to the restriction of Mediterranean circulation.
Nonetheless, two episodes of climate deterioration during the last
sapropel S1 formation have been profoundly expressed in our re-
cords, at ca. 8.2 and 7.4 cal ka BP.

4.6.1. The 8.2 cal ka BP event

The ~8.2 cal ka BP interruption of sapropel S1 deposition
observed in our Adriatic site sediment record has also been re-
ported in other studies for Adriatic and Aegean Seas, as the so-
called “8.2 ka event” [De Rijk et al., 1999; Rohling et al., 2002]. Its

origin has been linked to a rapid cooling due to the intensification
of the Siberian High and the subsequent cold winds blowing over
the Eastern Mediterranean [Rohling et al., 2002; Rohling and Palike,
2005]. This has resulted in the severe cooling of the surface water
and subsequently the resumption of deep-water formation. The
slight offset in timing of this event observed between our 8.3 cal ka
BP and the reported 8.2 can be attributed to limitations of radio-
carbon dating [Rohling et al., 2002]. After this northern borderland
‘cold event’, deep-water formation ceased again due to sustained
southern and northern borderland related enhanced precipitation
and run-off. The former resulted in low-density LIW, whereas the
latter, even enhanced by ongoing deglaciation, resulted via rivers in
reduced density surface waters in Adriatic and Aegean Seas.

4.6.2. The 7.4 cal ka BP event

The nature and intensity of the second event at 7.4 cal ka BP in
our Adriatic site record, resembling the 8.2 ka event, points also to a
climate origin and hence is thought to be the result of a cold
episode. However, reducing bottom-water conditions do not return
subsequently after this event. This interpretation is confirmed by
the concomitant restoration of deep-water formation in the South
Aegean Sea. The geochemical profiles and the re-population of
benthic foraminifera indicate that fully oxic seafloor conditions
have been established at 7.4 cal ka BP for this site. This conforms
with a suggested re-oxygenation of bottom waters in the central
and South Adriatic Sea for this period [e.g. Artizegui et al., 2000;
Piva et al, 2008; Vigliotti et al, 2011; Siani et al, 2013;
Combourieu-Nebout et al., 2013; Goudeau et al., 2014]. However,
from our detailed record it is clear that this does not mark the end
of sapropel deposition but rather the partial re-oxygenation of the
bottom waters. Subsequently, improved oxygen conditions prevail
from that time until the end of sapropel-like conditions. This
distinct, cool and arid episode at ~7.4 cal ka BP has been detected in
a number of high-resolution studies based on lake deposits, marine
sediments and speleothems ranging from the Italian Alps to the
middle East, such as in Northern Sicily [Frisia et al., 2006], in
Corchia Cave [Spotl et al., 2010], lake Preola [Magny et al., 2011], in
Renela cave [Zhornyak et al., 2011], in Poleva Cave in Romania
[Constantin et al., 2007], Soreq Cave in Levant [Bar-Matthews et al.,
2000], North and South Aegean Sea [Kuhnt et al., 2007; Kotthoff
et al., 2008b; Triantaphyllou, 2014; Triantaphyllou et al., 2016],
lakes in Eastern Africa [Gasse 2000], Stymphalia lake in Pelopo-
nessus [Heymann et al., 2013], Ohrid lake in Albania [Vogel et al.,
2010] and Tunisia Strait [Desprat et al., 2013]. This cold episode
largely expressed in climate records, expanding from polar to
tropical regions, has been attributed to a weakening in North
Hemisphere summer insolation [Bond et al., 2001]. It becomes now
explicit from our records that this cold and arid spell, has caused
the temporary enhanced deep-water ventilation and consequently
the restoration of intermittently to more continuously oxic condi-
tions in the Adriatic and Aegean, respectively.

This event has been followed by a transitional phase, at
~7.5—7.1 cal ka. BP, with progressively less pluvial/more arid con-
ditions in the Eastern Mediterranean region [e.g. Jalut et al., 2009;
Davis et al., 2003; Dormoy et al., 2009; Cheddadi and Bar-Hen,
2008; Triantaphyllou et al., 2009; Schmiedl et al., 2010; Magny
et al,, 2011; Peyron et al,, 2011; Joannin et al., 2012; Magny et al.,
2013; Peyron et al., 2013]. Decreased humid conditions between 7.9
and 7.3 cal ka BP have been reported and attributed to a cold and
arid spell for the North Aegean Sea [Triantaphyllou et al., 2009,
2016; Triantaphyllou 2014] and to a lowering of humidity
entrained from low latitudes to the South Aegean [Kouli et al,,
2012]. Additionally, the southward retreat of ITCZ and a short-
ening in summer monsoonal periods have been reported from
speleothem in Qunf cave (Southern Omman) to have occurred after
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Fig. 6. a) d'®0 from stalagmites (black line) in Qunf Cave, Southern Oman (Fleitmann
etal,, 2007) and d'®0 from stalagmites (blue line) in Hoti Cave in Northern Oman (Neff
et al.,, 2001), b) SST warm months (black line) from West Africa (De Menocal et al.,
2000) and d'®0 records from stalagmite (blue line) from Soreq Cave Israel (Bar
Matthews et al., 2003), c) Ba/Al (black line) and Mn/Al (blue line) profile from South
Adriatic site core, d) Ba/Al (black line) and Mn/Al (blue line) profile from South Aegean
Sea core. Indicated above is the basin-wide S1 interval (De Lange et al., 2008). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

7.5 cal ka BP (Fig. 6a) in response to reduced solar activity
[Fleitmann et al., 2003, 2007; Marriner et al., 2012]. This conforms
with the reconstruction of Nile hydrological activity [Weldeab et al.,
2014] and the southward migration of vegetation [Hély et al., 2014].
This transition to more cool and arid conditions concurs with the
onset of deep-water formation in the Adriatic and Aegean areas,
expressed as an increased oxygenation event in our sediments from
these two regions. The impact of this event seems stronger in our
Aegean than in the Adriatic site. At this stage, it would be specu-
lative to attribute this to a more severe climatic imprint for the
Aegean. Clearly, more sites need to be studied before such
conclusion may be confirmed.

4.7. Consequences for deep-basin ventilation

The reduced Mediterranean deep-water ventilation during
sapropel S1 formation is related to the reduced surface water
salinity concurring with the last African Humid phase. The Adriatic
site record indicates a swift increase of primary productivity and
depletion of oxygen of benthic waters. It seems, hence, that the
ocean had a rapid response to the progressive increase of insolation
[De Menocal et al., 2000] and reducing conditions have been
established at the bottom-water at the onset of sapropel S1 depo-
sition. The pronounced interruption of sapropel deposition in our
Adriatic site sedimentary record at 8.2 cal ka BP and in published
Aegean records [e.g. De Rijk et al., 1999; Gogou et al., 2007; Kotthoff
et al.,, 2008a; Ni Fhlaithearta et al., 2010; Geraga et al., 2010;
Katsouras et al., 2010] connotes the widespread climate deterio-
ration that, despite its short duration, has caused the resumption of
Mediterranean deep-water formation.

The second event that disrupted deposition of sapropel sedi-
ments at 7.4 cal ka BP for our Aegean and Adriatic sites also points
to the resumption of deep-water formation and the overall
improvement of oxygen conditions in the deep water. The
improvement of deep-water oxygenation, i.e. deep-water forma-
tion is similar to that observed for the 8.2 cal ka BP event. The clear
registration of both events indicates that this temporarily resumed
deep-water formation resulted in the ventilation down to at least
~700 m, and possibly for some areas even to ~2800 m [Ariztegui
et al., 2000].

5. Conclusions

The high-resolution sampling of high-sedimentation rate cores
from sites under the direct influence of the deep-water formation
areas, has allowed the systematic investigation of climate-related
paleoceanographic variations during sapropel S1 formation. Dur-
ing deposition of most of this organic-rich unit, sedimentary con-
ditions were oxygen-depleted and reflect enhanced primary
productivity for the two studied, Adriatic and Aegean sites. How-
ever, the integrated results suggest that there are also subtle dif-
ferences in the depositional settings between the two areas.
Bottom-water conditions at intermediate water depths, in the
Adriatic site have been mostly anoxic during sapropel S1 deposi-
tion, whereas those in the Aegean Sea have been mainly suboxic to
intermittently oxic. Furthermore, distinct events were observed in
our Adriatic site core at 8.2 and 7.4 cal ka BP. During these events
the deposition of organic-rich sediments was interrupted and
deep-water oxygen conditions improved. In our Aegean core where
sediments younger than 8.2 cal ka BP were recovered, only the
latter event was detected.

Both events were associated with northern borderland climate-
related cold spells. The 8.2 cal ka BP event was accompanied by the
temporary resumption of deep-water formation and the concom-
itant cessation of elevated primary productivity. The 7.4 cal ka BP
cooling event resulted in the temporary halt of enhanced organic
carbon fluxes to the seafloor along with the final resumption of
deep-water formation in the Aegean Sea and the improvement of
bottom-water oxygen conditions in the Adriatic site.

After the 7.4 cal ka BP event, deposition of sapropel S1 continued
under suboxic conditions in the Adriatic site, and under nearly oxic
conditions in the Aegean. This important observation could only be
preserved and detected due to the relatively high sedimentation
rates in our cores (resp. 10.2 and 27.3 cm/ka) and the high sampling
resolution. The last period of sapropel S1 deposition (from 7.4 cal ka
BP onwards) coincides with the gradual decrease of pluvial condi-
tions and the progressive recovery of the Eastern Mediterranean
circulation. Final termination of sapropel formation, as defined by
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its organic matter content, has occurred almost simultaneously for
the two areas, at ca. 6.6 + 0.3 and 6.3 + 0.5 cal ka BP, in Adriatic and
Aegean Seas respectively, in accordance with reported ages.
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