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• The effects of interactions on quantum fidelity were studied for kicked particles.
• Three fidelity periods were found.
• The shortest and longest periods appear both with and without interactions.
• The intermediate period appears only in the presence of interactions.
• All these oscillations are of classical origin.
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a b s t r a c t

The quantum fidelity was introduced by Peres to study some fingerprints of classically chaotic behavior
in the quantum dynamics of the corresponding systems. In the present paper the signatures of classical
dynamics near elliptic points and of interactions between particles are characterized for kicked systems.
In particular, the period of the fidelity resulting of the interactions is found using analytical and numerical
calculations. A mechanism leading to the oscillations with the intermediate period is proposed. It is of a
classical origin and results of the interplay between the oscillations of the width of the wave packets and
the rotation of their center around the elliptic fixed point.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Effects of inter-particle interactions on the dynamics of driven
systems were the subject of several recent works [1–4]. In the
present paper these studies will be extended to the exploration of
the effects of interactions on the quantum fidelity.

The concept of quantum fidelity was introduced by Peres [5] as
a fingerprint of classical chaos in quantum dynamics. It has sub-
sequently been extensively utilized in theoretical [6–9] and ex-
perimental studies [9–12] (for a review see [13]). In absence of
interactions the quantum fidelity, in amixed system (in some parts
of phase space the dynamics is chaotic and in other parts it is regu-
lar),was studied [14]. In particular, itwas found that the fidelity ex-
hibits oscillations in time, and their periods are found to be related
to the periods of the motion in regular parts of phase space [14].

In the present work we will study the effects of the inter-
particle interactions on the periods of the fidelity. The fidelity is
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defined by

F (t) = |⟨ψ1|ψ2⟩|
2 (1)

where

|ψ1 (t)⟩ = ei
H1t
h̄ |φ0⟩ (2)

and

|ψ2 (t)⟩ = ei
H2t
h̄ |φ0⟩ (3)

are propagated by theHamiltoniansH1 andH2, that are of the same
form but with different values of the parameters and |φ0⟩ is the
initial state.

We note that the fidelity F (t) is related to the integral over
Wigner functions,

F (t) =


∞

−∞


∞

−∞

dxdpW1 (x, p)W2 (x, p) (4)

where W1 and W2 are the Wigner functions of |ψ1⟩ and |ψ2⟩,
respectively.
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Fig. 1. The phase portrait for K = 1. Colors distinguish different orbits. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The general form of the Wigner function is

W (x, p) =
1

π · h̄


∞

−∞

dξ · ψ∗ (x + ξ) ψ (x − ξ) e
2ipξ
h̄ . (5)

Without interactions, the specific system we will study is defined
by the Hamiltonian [14]

H =
p2

2
− Ke−

x2
2

∞
n=−∞

δ (t − n) (6)

where

p = −iτ∂x (7)

and

τ =
h̄T
m∆2

(8)

is the rescaled h̄, satisfying

[x, p] = iτ . (9)

TheHamiltonian is in dimensionless units. The strength of the kick-
ing potential is K , also called the stochasticity parameter, a term
thatwill be used in the present paper. In physical units T is the time
between the kicks,△ is thewidth of the pulses of the kickingpoten-
tial, whilem is themass of the particles. The scaling transformation
between the physical and dimensionless units used here is x

∆
→

x, t
T → t , pT

m∆ → p, KT2

m∆2 → K . The one step evolution operator is

U = e−i p
2

2τ exp

i
K
τ
e−

x2
2


. (10)

The corresponding classical map is

pn+1 = pn − Kxne−
x2n
2 (11)

xn+1 = xn + pn+1. (12)
Its phase portrait is shown in Fig. 1.

In previous explorations [15] the interaction term was intro-
duced only between the kicks and the p2

2 term was replaced by

HI =
p2

2
+ β |ψ (x)|2 (13)

where β is the strength of the interactions. Therefore, between
the kicks the dynamics are modeled by the nonlinear Schrödinger
equation (NLSE), knownalso as theGross Pitaevskii equation (GPE),

iτ
∂ψ

∂t
= HIψ. (14)

In the expression for the evolution operator U of (10), e−
p2
2τ

should be replaced by another evolution operator. In the calcula-
tion of the fidelity [15], the frequencies that were found in the ab-
sence of interactions were observed. In addition, a different new
frequency was found. Unlike the other frequencies, this frequency
is not related in any simple way to the frequencies of the underly-
ing classical system. It was found to depend on the strength of the
inter-particle interactions and can be considered as a signature of
the interactions in the fidelity.

The main problem with introducing the interaction term
between kicks [15] is that it requires the numerical solution of the
NLSE in each interval between kicks. This process is highly time
consuming since it requires the solution of a differential equation
between the kicks, and it is impossible to propagate the system for
very long times.

For this reason, in the current work we study a model that is
defined by the evolution operator

U = e−i p
2

2τ exp


i
τ


Ke−

x2
2 + β |ψ (x)|2


(15)

where the interactions are introduced at the kicks. The Hamilto-
nian of this model is

H =
p2

2
− Ke−

x2
2

∞
n=−∞

δ (t − n)+ β |ψ (x)|2
∞

n=−∞

δ (t − n) . (16)

This model is related to one studied by Shepelyansky [16].
To the best of our knowledge, this model is difficult to realize

in present experiments. Consequently, the purpose of this study is
purely theoretical, with the aim to shed light on the fingerprints of
interparticle interactions in the fidelity. We will focus our studies
on the fidelity oscillations for wavepackets started near the central
elliptic fixed point. It will turn out that periods of some of the
oscillations are very long. Therefore, in order to extract them from
the wavepacket evolution, it has to be followed for times that are
much longer than the periods. This approach is impractical if one
has to follow the evolution of (13) between the kicks. On the other
hand it can be more easily done for the model defined in (15) and
studied in the present work.

In Section 2 we will introduce a harmonic oscillator model de-
scribing the motion near the fixed point and discuss the modifi-
cations required. In Section 3 we will introduce an approximate
theory for the fidelity oscillations and in Sections 4 and 5 we will
confront it with numerical results. The results are summarized and
discussed in Section 6.

2. A model for the motion near the central elliptic point

Near the fixed point (x, p) = (0, 0), the dynamics are approxi-
mately determined by the tangent map of the fixed point. For this
purpose we linearize the classical map (11)–(12) around the fixed
point x = p = 0. This gives the equation for the deviations from
this point
δxn+1
δpn+1


=


(1 − K) 1

−K 1


δxn
δpn


. (17)

The eigenvalues of this map are

α± =
(2 − K)

2
±

√
K (4 − K)

2
≡ e±iω (18)

with

ω = arctan
√

K (4 − K)
2 − K


, (19)
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which is the angular velocity of the points around the origin.
In the vicinity of the fixed point, the system behaves like a
harmonic oscillator with a frequency ω. Classically, the motion
of the trajectories, starting near the elliptic fixed point, x =

p = 0, stays there because the region is bounded by curves that
surround this point. The existence of such curves is a corollary of
the KAM (Kolmogorov-Arnold-Moser) theorem. We consider here
two Hamiltonians H1 and H2 that differ only by the values of the
stochasticity parameter K , taking the values K1 = 1 and K2 = 1.01.
For K = K1 = 1, one finds

ω1 = 1.047 (20)

and for K = K2 = 1.01,

ω2 = 1.053. (21)

The parameters were chosen so that the map has a pronounced
central island as shown in Fig. 1. The qualitative behavior should be
similar for all 0 < K < 4 (see [14]) and K = 1 is a representative
value at this interval. For β = 0 and K = 0 the system is inte-
grable and momentum is conserved while for β = 0 and K > 4
the elliptic point at the origin is replaced by a hyperbolic one.

The periods of the regular trajectories deviate from the ones
found at the elliptic point by (19). The deviation increases with
the deviation from the elliptic point. This is similar to the situation
when a small anharmonicity is added to the harmonic potential.
Therefore, for wave packets initiated not exactly at the elliptic
point, one has to add an anharmonic term to model the dynamics.
The result is that the different parts of the packet are exposed
to different frequencies. Therefore, an initially prepared Gaussian
wave packet spreads in phase space. This was indeed verified for
Gaussianwavepackets in a harmonicwellwith a small anharmonic
correction [17]. As the wave packet propagates, revivals are found
for a very long time. Fortunately, in presence of interactions,
localization of Gaussian wave packets is possible, as was found for
an anharmonic well with inter-particle interactions modeled by
the Gross Pitaevskii equation (GPE) [4] (see also [3]). Interactions
and nonlinearity may balance each other to preserve the Gaussian
wave packet [4].

In the following section, the dynamics of particles in a harmonic
well with a small anharmonic perturbation will be studied analyti-
cally, for weak inter-particle interactions. Following the discussion
in the present section, it will be assumed that in the vicinity of
this elliptic point the motion can be described by a Gaussian wave
packet.

3. Fidelity for weak interactions

In this section an estimate for the oscillations of the fidelity for a
wavepacket that is initially a coherent state of a harmonic oscillator
defined by the Hamiltonian

H =
p2

2m
+

1
2
mω2x2 (22)

is discussed.

3.1. The Wigner function of a coherent state

A coherent state for the harmonic oscillator defined by the
Hamiltonian (22) is [18]

ψ0 (x) =


mω
π h̄

 1
4

exp


i
h̄
p0 (t)−

mω
2h̄

(x − x0 (t))2


× e−
i
2h̄ x0·p0e−i ωt2 (23)

where x0 (t) and p0 (t) denote the classical trajectory in phase
space. The state (23) is an eigenstate of the annihilation operator
and satisfies the time dependent Schrödinger equation

ih̄
∂ψ0

∂t
= −

h̄2

2m
∂2ψ0

∂x2
+

1
2
mω2x2ψ0. (24)

The Wigner function of this coherent state is found from the
definition (5):

W0 (x, p) =
1

π · h̄
e−

mω
h̄ (x−x0)2e−

(p−p0)
2

mωh̄ . (25)

3.2. The fidelity for coherent states in absence of interactions

Let ω1 and ω2 be the frequencies of two harmonic oscillators,
whose potentials differ slightly. The Wigner functions for these
wavefunctions are (i = 1, 2)

Wi (x, p) =
1

2πσxiσpi

× exp


−

1
2


(x − xi (t))2

σ 2
xi

+
(p − pi (t))2

σ 2
pi


(26)

where

σ 2
xi =

h̄
2mωi

(27)

and

σ 2
pi =

mωih̄
2

. (28)

The fidelity in absence of interactions is calculated using (4) and is
given by

F = Ce−
1
2 (sx+sp) (29)

where the parameters are given by

C =
2
π h̄2


σ 2
x1σ

2
x2σ

2
p1σ

2
p2

σ 2
x1 + σ 2

x2

 
σ 2
p1 + σ 2

p2

 (30)

sx =
(x1 (t)− x2 (t))2

σ 2
x1 + σ 2

x2

(31)

sp =
(p1 (t)− p2 (t))2

σ 2
p1 + σ 2

p2

. (32)

The classical trajectories are given by

(x1, p1) = ρ [cos (ω1t) ,−mω1 sin (ω1t)] (33)

and

(x2, p2) = ρ [cos (ω2t) ,−mω2 sin (ω2t)] (34)

where

ρ = x1 (0) = x2 (0) . (35)

Therefore, (31) can be written in the form

sx =
ρ2

σ 2
x1 + σ 2

x2


1 +

1
2
(cos (2ω1t)+ cos (2ω2t))

− cos (δω · t)− cos (ωst)


(36)

where

ωs = ω1 + ω2 (37)

and

δω = ω2 − ω1. (38)



44 A. Bakman, S. Fishman / Physica D 300 (2015) 41–50
Similarly,

sp =
ρ2m2

σ 2
p1 + σ 2

p2

×


ω2

1 + ω2
2

2
−

1
2


ω2

1 cos (2ω1t)+ ω2
2 cos (2ω2t)


+

ρ2m2

σ 2
p1 + σ 2

p2

(ω1ω2 cos (δω · t)− ω1ω2 cos (ωst)) . (39)

For themodel (6) we study here, for K1 = 1 and K2 = 1.01, we find
from (20) and (21) that
δω = 0.0057747. (40)

3.3. The fidelity for coherent states with weak interactions

We assume that the main effect of interactions is on the width
of the wave packets.
The width of the wave packet is defined as

⟨1x⟩2 =

(x − ⟨x⟩)2


, (41)

where ⟨O⟩ =


∞

−∞
dxψ∗Oψ .

Since we assume that the interactions are weak, the resulting
correction is expected to be small. We assume that the variation is
periodic, with a periodΩi close to 2ωi, an assumption that will be
verified numerically. A motivation for such an assumption is that
the expression for the width (41) involves only the combinations
of frequencies ω1 ± ω2, 2ω1 and 2ω2. Following this assumption,
we replace (27) and (28) by

σ̃ 2
x1 = σ 2

x + γx cos (Ω1t + φx) (42)

σ 2
x2 = σ 2

x + γx cos (Ω2t + φx) (43)
and

σ̃ 2
p1 = σ 2

p + γp cos

Ω1t + φp


(44)

σ 2
p2 = σ 2

p + γp cos

Ω2t + φp


, (45)

resulting in

sx =
ρ2

2σ 2
x
(cos (ω1t)− cos (ω2t))2

×


1 +

γx

2σ 2
x
(cos (Ω1t + φx)+ cos (Ω2 + φx))

−1

. (46)

Similarly for sp,

sp =
ρ2m2

2σ 2
p
(ω1 sin (ω1t)+ ω2 sin (ω2t))2

×


1 +

γp

2σ 2
p


cos


Ω1t + φp


+ cos


Ω2t + φp

−1

. (47)

We assume that the corrections resulting of the interactions are
small, therefore even with the replacement σ → σ̃ the states ψi
are within a good approximation similar to coherent states. We
assume also
σx1 ≈ σx2 ≈ σx (48)
and
σp1 ≈ σp2 ≈ σp. (49)

This assumption is consistentwith (51) and this is the condition
when fidelity is studied. γx and γp are the width oscillation ampli-
tudes in position and momentum respectively. Since β ≪ 1, we
assume

 γx
2σ 2

x

 ≪ 1 and
 γp
2σ 2

p

 ≪ 1. In the leading order in γx
2σ 2

x
and

γp

2σ 2
p
one can simplify the expression as it is done in Appendix A.
Our crucial assumption is that the Wigner function is well ap-
proximated by a Gaussian wave packet. In the presence of interac-
tions it is possible that such a wave packet is stable in spite of the
effective anharmonicity generated for kicked systems, defined by
(6) as well as by (15)–(16) (see [4]). In our case, where the interac-
tions are weak, the frequency of the width oscillation satisfies
Ω1 ≈ Ω2 ≡ Ω, (50)
ω1 ≈ ω2 ≡ ω (51)
and
Ω1,2 ≈ ω1,2 ≫ δω. (52)
We denote
ωs = ω1 + ω2 ≈ 2ω. (53)
Using the approximation in (53), we denote
1ω = ωs −Ω ≈ 2ω −Ω. (54)
we find (see Appendix A)

sx + sp =

8
i=1

Ai (55)

where

A1 =
ρ2

2σ 2
x

+
ρ2m2ω2

2σ 2
p

, (56)

A2 =


−
ρ2

2σ 2
x

+
ρ2m2ω2

2σ 2
p


cos (δω · t) , (57)

A3 = −
ρ2m2ω2

σ 2
p

cos (ωs · t) , (58)

A4 =
ρ2γx

2σ 4
x

cos (Ω · t + φx)−
ρ2γpm2ω2

2σ 4
p

cos

Ω · t + φp


, (59)

A5 =
ρ2γx

4σ 4
x

cos ((Ω + δω) t + φx)

−
ρ2m2γpω

2

4σ 4
p

cos

(Ω + δω) t + φp


, (60)

A6 =
ρ2γx

4σ 4
x

cos ((Ω − δω) t + φx)

−
ρ2m2γpω

2

4σ 4
p

cos

(Ω − δω) t + φp


, (61)

A7 =
ρ2m2γpω

2

2σ 4
p

cos

1ωt − φp


(62)

and

A8 =
ρ2m2γpω

2

2σ 4
p

cos

(ωs +Ω) t + φp


. (63)

The difference δω sets the long period of the fidelity, and results
from the difference between the two Hamiltonians. The frequency
2ω ≈ ωs is twice the frequency of rotation around the fixed point
at the origin. The overall coefficient corresponding to the interme-
diate angular velocity1ω is ρ2m2γpω

2

2σ 4
p

.

The relations (53)–(54) imply that (55) with (55)–(63) oscillate
with three different frequencies: ωs, 1ω and δω, which are very
different, and satisfy ωs ≫ 1ω ≫ δω. The corresponding periods
will be denoted by

T1 =
2π
ωs

(64)

T2 =
2π
1ω

(65)
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and

T3 =
2π
δω
. (66)

The frequencies ωs and δω (and consequently T1 and T3), depend
only on the classical frequencies ω1 and ω2. The frequency1ω de-
pends onΩ that is not related to any of the other classical frequen-
cies.

Note that also harmonics of these three basic frequencies may
be present. Since this is a very heuristic theory, also deviations and
splitting of the frequency peaks are expected.

4. Fidelity oscillations

In this sectionwe present oscillations of the fidelity. In previous
work [14], the fidelity oscillations in absence of interactions were
calculated. In particular, there were identified two frequencies.
These frequencies are of pure classical origin. One of them, denoted
by ωs, is related to the classical motion around the elliptic fixed
point. The second frequency is δω. These frequencies were found
for β = 0 and reported in [14]. In presence of interactions an
intermediate frequency ωI absent in [14] is found. In this section
we report the numerical values of these frequencies for various
values of parameters.

In all calculations presented here we used two Hamiltonians of
the form (16) with the values of the stochasticity parameter K that
takes values that are close, namely, K1 = 1 and K2 = 1.01. We
launched an initial wave packet of the form (23) for various initial
values x0 (t = 0) and p0 (t = 0). Each wave packet was iterated
using the one steppropagator (15). The fidelitywas calculated from
(1). Plots of the form of Fig. 2(a) with the corresponding Fourier
transform in Fig. 2(b)

F̂ (ν) =


∞

−∞

F (t) e−i2πνtdt (67)

were generated. The dominant frequencies are marked by arrows
in Fig. 2(b). We repeated the calculation for different initial values
of x0 (t = 0), p0 (t = 0) and β .
From Fig. 2 we found numerically that the fidelity exhibits three
frequencies: a large frequency ν1 ≈ 0.33


kicks−1, corresponding

to period T1 ≈ 3 [kicks]; an intermediate frequency, ν2 ≈ 0.025
kicks−1, corresponding to T2 ≈ 40 [kicks]; and a small fre-
quency ν3 ≈ 0.001


kicks−1, corresponding to T3 ≈ 1000 [kicks].

These results were repeated for various initial values of x0 (t = 0),
p0 (t = 0) and β and are presented in Figs. 3–4. In Fig. 3, the peri-
ods T1, T2 and T3 found from plots similar to the ones presented in
Fig. 2, are plotted as a function of β for (x0 (t = 0) , p0 (t = 0)) =

(0.18, 0) and τ = 0.01. Similar results are found for various ini-
tial conditions such that x0 (t = 0) ≥ 0.14, p0 (t = 0) = 0 and
τ = 0.01. Note that T1 is slowly increasing with β .

From Fig. 4, the periods T1, T2 and T3 as function of x0 (t = 0)
are presented for p0 (t = 0) = 0, β = 6 · 10−5 and τ = 0.01. The
results for x0 (t = 0) = 0, p0 (t = 0) ≠ 0 are similar.

In all situations we found that the period T1 varies between 3
and 3.05 kicks. It is very close to the value T1 =

2π
ωs

≃
π
ω1

= 3 kicks,
where ω1 is given by (20). The period is systematically increasing
with x0 (t = 0) and p0 (t = 0) (see Fig. 4(a)). The reason is the
deviation of the frequency from the value found in the vicinity of
the fixed point at the origin. This can be verified by direct iteration
of the map (11)–(12).

For x0 (t = 0) that is sufficiently large, the period T3 was found
to take the value T3 ≈ 1100 kicks. It is close to value predicted from
pure classical dynamics without interactions, T3 = 1091.8 kicks
for K1 = 1 and K2 = 1.01, calculated using (66). For x0 (t = 0) =

p0 (t = 0) = 0, we expect that T3 =
π
δω

, rather than 2π
δω

. This is
because of the symmetry of the initial condition. Each point of a
Fig. 2. The fidelity for (x0 (t = 0) , p0 (t = 0)) = (0.18, 0), β = 6 · 10−5 and
τ = 0.01 (a) as function of number of kicks; (b) log10 |F̂ (ν) | as a function of the
inverse number of kicks ν.

trajectory generated byH1 is chasing a point generated byH2 which
is its reflection through the origin of the phase space and, therefore,
is found first at an angle of π and not 2π . Indeed, this was found
for sufficiently small x0 (t = 0) (see Fig. 4(c)).

In summary, the periods T1 and T3 are of pure classical origin.
These were found in [14] in absence of interactions. Here we found
that these are weakly affected by the interactions. The intermedi-
ate period T2 is found to be T2 ≈ 40 kicks (see Figs. 3(b), and 4(b)).
This period was not found in absence of interactions.

We turn now to the exploration of the origin of the intermediate
period T2.

5. The origins of the intermediate period

In this sectionwewill demonstrate that the intermediate period
results from the oscillation of the width of the wavefunction.
The Fourier transform of the width (41)

f̂∆ (ω) =


∞

−∞

⟨1x (t)⟩2 e−i2ωtdt (68)

was computed for ψ which was derived from an initially coher-
ent state of the form (23) by application of the evolution oper-
ator (15). We found that it exhibits the peaks T1 = 3.05 [kicks]
ω1 ≃ ω = 2.06

 1
kick


, Twidth = 3.24 [kicks] and Ωwidth = 1.94 1

kick


for β = 6 · 10−5, τ = 0.01, (x0 (t = 0) , p0 (t = 0)) =

(0, 0.14) and for (x0 (t = 0) , p0 (t = 0)) = (0.18, 0).
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Fig. 3. Various periods of the fidelity as a function of β for (x0 (t = 0) , p0 (t = 0))
= (0.18, 0) and τ = 0.01. (a) T1; (b) T2; (c) T3 .

We note that indeed Ωwidth which was found numerically is
close to 2ω. TakingΩ = Ωwidth, we use (54) to calculate

1ω = 2ω −Ωwidth, (69)

and find the predicted intermediate period T (p)2 =
2π
1ω

, where
Ωwidth is found from the numerical calculations of (68). Comparison
between this value and T2 calculated from the fidelity Fourier
transform (67) is shown in Fig. 5. The difference is small, as
expected from Section 3.3. The period T2 is practically independent
of β . In the limit β → 0 the amplitude of the fidelity component
corresponding to this period vanishes.

The generation of the intermediate period is not characteris-
tic of the fidelity but will show up in any correlation function in-
Fig. 4. Various periods of the fidelity as a function of x0 (t = 0) for p0 (t = 0) = 0,
β = 6 · 10−5 and τ = 0.01. (a) T1; (b) T2; (c) T3 .

volving overlap of Wigner functions. The fidelity is the overlap
of Wigner functions at the same time but different Hamiltonians.
Similar behavior is found for overlap of the Wigner functions for
the same Hamiltonian but at different times n and n −1n defined
by

G (n) =


∞

−∞

Wn (x, p)Wn−1n (x, p) dxdp (70)

and is calculated in detail in Appendix B.
First, we note that the Wigner function rotates around the

elliptic point as demonstrated in Fig. 6 for 990–995 kicks. In
Fig. 6(a) we see that for β = 0 the function shape is more spread
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Fig. 5. The predicted intermediate period of the fidelity T (p)2 compared to T2 ,
found directly from the Fourier transform of the fidelity, as function of β , for
(x0 (t = 0) , p0 (t = 0)) = (0.18, 0) and τ = 0.01. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

over the phase space than in Fig. 6(b). In this case interactions tend
to localize theWigner function in phase space, similar to the results
of [4]. The Wigner function oscillates with various periods. The
most prominent is

TW1 =
2π
ω
, (71)

(see (51) and (53)). Therefore,

TW1 =
2π
ωs
2

= 2T1. (72)

In our case, T1 ≈ 3 [kicks] kicks, as can be seen from Figs. 3(a)
and 4(a). From (72) we see that TW1 ≈ 6 [kicks]. Therefore, in Fig. 6
we present the rotation of theWigner function in phase space for 6
consecutive steps. To a good approximation it is periodic with the
period of 6 kicks. In Fig. 6(a) and (b)Wigner functions are presented
in absence (β = 0) and presence (β ≠ 0) of interactions, respec-
tively. For β ≠ 0 the Wigner function exhibits width oscillations
with the period 2π

Ωwidth
, as expected from (46) and (47). In order to

extractΩwidth from the dynamics of theWigner function we calcu-
late the Fourier transform of (70). In order to eliminate the effect
of the short period TW1 ≈ 6 [kicks], we take 1n = 6 in (70). For
β = 6 · 10−5 we found thatΩwidth = 1.92

 1
kick


. From (68) we find

a similar valueΩwidth = 1.94
 1
kick


for the same value of β . Oscilla-

tions of this frequency are absent for β = 0. This result combined
with (69) and Fig. 5 provides evidence that the intermediate period
T2 is generated by the width oscillations and these result from the
interactions.

It looks like the width oscillations, at least in the leading order
discussed here, are of classical origin since the term β |ψ |

2 in
(15)–(16) acts as an effective potential. Moreover, the width is a
coarse grained property of theWigner function and therefore does
not depend on fine details. Hence, it approaches the value found
for the corresponding classical phase space distribution.

6. Summary and discussion

The effects of weak inter-particle interactions on the quantum
fidelity were calculated for kicked particles. The calculation was
performed for a specific model where the interaction was intro-
duced during the kicks. The results were found to be qualitatively
similar to the ones found where the interactions were introduced
between kicks [15]. We found that the fidelity periods that were
obtained in absence of the interactions, namely, T1 and T3, are
found also in the presence of the interactions. In presence of the
interactions, another period, namely, T2, was found. We explored
the mechanism of the generation of this frequency. It results of
the interplay of the oscillations of the width of the wave function
(or Wigner function) in phase space and the rotation of its center
around the elliptic fixed point. It is 1ω of (54) that was derived
in the framework of the heuristic model outlined in Section 3 and
tested numerically in Section 5. In Fig. 6 it was verified that the
heuristic picture of Section 3 holds for the model of the kicked
particles (15)–(16) presented in the introduction. The frequencies
ω1 ≈ ω2, ωs andΩwidth found in this work for the fidelity are found
also for other correlations of Wigner functions.

In this work we focused on dynamics of wave packets in the
vicinity of the elliptic fixed point (x, p) = (0, 0) for the classical
phase portrait shown in Fig. 1.

The existence of the intermediate frequency 1ω ((54)) and its
origin is the main result of this paper. It is plausible that the origin
of this frequency is classical. This conclusion is supported also by
the results of [4]. The reason is that the term β |ψ (x)|2 in (13),
(15) and (16) acts as a potential. The intermediate frequency is
not found numerically if the center of the wave packet is too close
to the elliptic fixed point. A possible explanation is that in such a
situation one does not have the possibility to separate the rotations
of the center of the packet and the oscillation of the width, a
separation assumed in the derivation of (54). As one increases the
distance of the wave packet from the fixed point at the origin
while keeping the nonlinearity fixed, the variation of the rotation
frequency increases due to the nonlinearity and the packet spreads
over a ring in phase space, as is the case for β = 0 (see Fig. 6(a)). In
such a situation the picture of Section 3 is violated, and indeed the
amplitude of the component related to the intermediate period T2
vanishes in the limit β → 0.

In typical realistic models the nonlinearity in the wave function
modeling the interparticle interactions should be present both at
the kicks and between them. For short times it was possible to
evolve wave packets for a model where the nonlinear term was
present only between the kicks [15] and the obtained results were
qualitatively similar to the ones we found. For themodel discussed
in [15] it was not feasible to compute the wave packet evolution
for times much longer than T2. Therefore, in the present work the
calculations were performed for the model (15)–(16). We believe
that similar results hold for a model where a nonlinear term is
found both at the kicks and between them as well as for different
models for the interactions present at the kicks. Exploration of this
more general problem will be subject of further studies that will
require substantial improvement of the numerical methods.
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Appendix A. Fidelity calculation details

Eqs. (46) and (47) are simplified bymeans of a Taylor expansion

1
1 − x

≃ 1 + x + O

x2

, (A.1)

combined with

cosα · cosβ =
1
2
(cos (α − β)+ cos (α + β)) , (A.2)
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Fig. 6. TheWigner function for 990–995 kicks for (x0, p0) = (0.18, 0), β = 6 · 10−5 and τ = 0.01. (a) β = 0; (b) β = 6 · 10−5 . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
the equations take the form

sx =
ρ2

2σ 2
x

−
ρ2

2σ 2
x
cos (δω · t)+

ρ2ν

4σ 4
x
cos ((Ω + δω) t + φx)

+
ρ2ν

4σ 4
x
cos ((Ω − δω) t + φx)−

ρ2ν

2σ 4
x
cos (Ω · t + φx) (A.3)

and

sp =
ρ2m2ω2

2σ 2
p

−
ρ2m2ω2

σ 2
p

cos (2ω · t)+
ρ2m2ω2

2σ 2
p

cos (δω · t)

+
ρ2m2γω2

2σ 4
p

cos

(2ω +Ω) t + φp


−
ρ2m2γω2

4σ 4
p

cos

(Ω + δω) t + φp


−
ρ2m2γω2

4σ 4
p

cos

(Ω − δω) t + φp


+
ρ2m2γω2

2σ 4
p

cos

(2ω +Ω) t + φp


−
ρ2m2γω2

4σ 4
p

cos

(Ω + δω) t + φp


−
ρ2m2γω2

4σ 4
p

cos

(Ω − δω) t + φp



+
ρ2m2γω2

2σ 4
p

cos

1ω − φp


−
ρ2m2γω2

2σ 4
p

cos

Ω · t + φp


. (A.4)

From this, one finds (55)–(63).

Appendix B. Correlation of the Wigner function at various
times

In this Appendix we identify the frequencies of G (n) defined by
(70), where1n is fixed. The derivation is similar to the derivation
of the fidelity oscillations in Section 3 and Appendix A. First, we
assume that there are no interactions and thenwe add the effect of
weak interactions.We considerwave packets near the elliptic fixed
point (x, p) = (0, 0) and as in the case of the fidelity we calculate
G (n) in continuous time for a harmonic well.

B.1. Correlation of Wigner functions for different times in absence of
interactions

Let ω1 be the frequency of a harmonic oscillator. The Wigner
function of a coherent state of the oscillator (23), corresponding to
a time t is (26), namely

Wt (x, p) =
1

2πσxσp
e
−

1
2


(x−x(t))2

σ2x
+
(p−p(t))
σ2p


. (B.1)
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The Wigner function corresponding to a time t −1t is

Wt−1t (x, p) =
1

2πσxσp
e
−

1
2


(x−x(t−1t))2

σ2x
+
(p−p(t−1t))2

σ2p


, (B.2)

where σx and σp are given by (27) and (28) and denote thewidth of
the Wigner function in position and momentum, respectively. The
difference between the times is constant and given by1t .
The correlation in absence of interactions is of the form

G = C · e−
1
2 (sx+sp) (B.3)

with

C =
1

4πσxσp
, (B.4)

sx =
(x (t)− x (t −1t))2

2σ 2
x

(B.5)

and

sp =
(p (t)− p (t −1t))2

2σ 2
p

. (B.6)

The phase coordinates are

(x (t) , p (t)) = ρ [cos (ωt) ,−mω sin (ωt)] (B.7)

and

(x (t −1t) , p (t −1t))
= ρ [cos (ωt + φ) ,−mω sin (ωt + φ)] , (B.8)

where

φ = ω1t. (B.9)

B.2. Correlation of Wigner functions for different times with weak
interactions

The width of theWigner functions in presence of weak interac-
tions is given by

σ̃ 2
x1 = σ 2

x + γx cos (Ωt + φx) , (B.10)

σ̃x2 = σ 2
x + γx cos (Ωt + φx −1φ) , (B.11)

σ̃p1 = σ 2
p + γp cos


Ωt + φp


(B.12)

and

σ̃ 2
p2 = σ 2

p + γp cos

Ωt + φp −1φ


, (B.13)

where

1φ = Ω ·1t. (B.14)

Therefore,

C (t) =

2πσx(t)σp(t)σx(t−1t)σp(t−1t)

−1

×

 σ 2
x(t)σ

2
x(t−1t)σ

2
p(t)σ

2
p(t−1t)

σ 2
x(t) + σ 2

x(t−1t)

 
σ 2
p(t) + σ 2

p(t−1t)

 (B.15)

and

G (t) = C (t) · e−
1
2 (sx(t)+sp(t)). (B.16)

The expressions for sx (t) and sp (t) become

sx (t) =
ρ2

2σ 2
x

·
(cos (ωt)− cos (ωt − φ))2

1 +
γx
2σ 2

x
(cos (Ωt + φx)+ cos (Ωt + φx −1φ))

(B.17)
and

sp (t) =
ρ2m2ω2

2σ 2
p

·
(sin (ωt)− sin (ωt − φ))2

1 +
γp

2σ 2
p


cos


Ωt + φp


+ cos


Ωt + φp −1φ

 . (B.18)

Using (A.2), we get

sx (t) =

8
i=1

Ai, (B.19)

where

A1 =
ρ2

2σ 4
x

−
ρ2γx

2σ 2
x

cos (Ωt + φx)

−
ρ2γx

2σ 4
x

cos (Ωt + φx −1φ) , (B.20)

A2 =
ρ2

4σ 2
x
cos (2ωt)+

ρ2

4σ 2
x
cos (2ωt − 2φ)

−
ρ2

2σ 2
x
cos (φ) cos (2ωt − φ) , (B.21)

A3 = −
ρ2γx

8σ 4
x

cos ((2ω −Ω) t − φx)

−
ρ2γx

8σ 4
x

cos ((2ω −Ω) t − φx +1φ) , (B.22)

A4 = −
ρ2γx

8σ 2
x

cos ((2ω −Ω) t − 2φ − φx +1φ)

+
ρ2γx

4σ 4
x

cos ((2ω −Ω) t − φ − φx) , (B.23)

A5 =
ρ2γx

4σ 4
x

cos (φ) cos ((2ω −Ω) t − φ − φx +1φ)

−
ρ2γx

8σ 4
x

cos ((2ω −Ω) t − 2φ − φx) , (B.24)

A6 = −
ρ2γx

8σ 4
x

cos ((2ω +Ω) t + φx)

−
ρ2γx

8σ 4
x

cos ((2ω +Ω) t + φx −1φ) , (B.25)

A7 = −
ρ2γx

8σ 4
x

cos ((2ω +Ω) t − 2φ + φx)

−
ρ2γx

8σ 4
x

cos ((2ω +Ω) t − 2φ + φx −1φ) (B.26)

and

A8 =
ρ2γx

4σ 4
x

cos (φ) cos ((2ω +Ω) t − φ + φx)

+
ρ2γx

4σ 4
x

cos (φ) cos ((2ω +Ω) t − φ + φx −1φ) . (B.27)

The intermediate frequency is present in (B.22)–(B.24) and is
equal to1ω = 2ω −Ω .

Similarly, for sp (t),

sp (t) =

8
i=1

Ai, (B.28)
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where

A1 =
ρ2m2ω2

2σ 2
p

(1 − cos (φ))−
ρ2m2ω2γp

2σ 4
p

cos

Ωt + φp


−
ρ2m2ω2γp

2σ 4
p

cos

Ωt + φp −1φ


, (B.29)

A2 =
ρ2m2ω2γp

2σ 4
p

cos (φ) cos

Ωt + φp


+
ρ2m2ω2γp

2σ 4
p

cos (φ) cos

Ωt + φp −1φ


, (B.30)

A3 = −
ρ2m2ω2

2σ 2
p

cos (2ωt)−
ρ2m2ω2

2σ 2
p

cos (2ωt + 2φ)

+
ρ2m2ω2

2σ 2
p

cos (2ωt + φ) , (B.31)

A4 =
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t − φp


+
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t − φp +1φ


, (B.32)

A5 =
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t + 2φ − φp


+
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t + 2φ − φp +1φ


, (B.33)

A6 = −
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t + φ − φp


−
ρ2m2ω2γp

4σ 4
p

cos

(2ω −Ω) t + φ − φp +1φ


, (B.34)

A7 =
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + φp


+
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + φp −1φ


, (B.35)

A8 =
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + 2φ + φp


+
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + 2φ + φp −1φ


(B.36)
and

A9 = −
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + φ + φp


−
ρ2m2ω2γp

4σ 4
p

cos

(2ω +Ω) t + φ + φp −1φ


. (B.37)

The intermediate frequency 1ω = 2ω − Ω can be seen in
(B.32)–(B.34).
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