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a b s t r a c t

We propose a minimal coupled map lattice (CML) for the spiral pattern formation in astronomical
objects which consist of accreting gas induced by gravity as a long-range force. In the proposed CML,
we assume only two procedures: one in which the flow of gas particles occurs by gravity and another
one in which the collision of gas particles occurs by advection in the flow. In spite of its simplicity, the
numerical simulation of the proposed CML shows a new formation process in which grand design spiral
patterns appear due to gas ejection from a central star. Several aspects of the formation process are
indeed in good agreement with the results of conventional theories and observations. This agreement
and the observations of outflows should suggest that the above gas ejection can happen and lead to
the formation of grand design spiral patterns, in actual spiral galaxies and protoplanetary disks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Coupled map lattice (CML) reproduces some important fea-
tures of spatially extended dynamical phenomena [1,2]. In other
words, CML simulates dynamic patterns and properties well
which appear in such phenomena. CML is a type of dynamical
systems with discrete space and time, and continuous state
variables. As representative examples of such CML, the CMLs for
boiling [3], convection [4], cloud formation [5] and sand ripple
formation [6] have been proposed. In the CML for a dynamical
phenomenon, the time evolution of the field variables on the
lattice is given by successive operations of procedures. Here the
procedures are maps acting on the field variables and derived
from decomposing the dynamical phenomenon into important
elementary processes. Thus, in approaches to constructing time
evolution, CML is different from conventional computation, such
as setting up the partial differential equations for a fluid system
at first and discretizing them properly. This CML approach is
quite useful to find the essential elementary processes in dy-
namical phenomena. Indeed, many CMLs including the above
examples [3–6] have been reported, in which the dynamic be-
havior is in good agreement with the experimental observations
of the corresponding phenomenon.

In this paper, we introduce a minimal CML which shows the
spiral pattern formation in astronomical objects consisting of
accreting cold dense gas [7], such as seen in spiral galaxies [7]
or protoplanetary disks [8]. It is constructed by a minimal set of
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procedures for simulating such pattern formation: a procedure
in which the flow of gas particles occurs by gravity and another
one in which the collision of gas particles occurs by advection
in the flow. It is different from the above examples [3–6] in that
long-range force (gravity) acts. We expect that this minimal set of
procedures should reveal to us necessary (and therefore essential)
elementary processes in the pattern formation, as argued in terms
of the ‘‘reductionism in procedure’’ [1].

The proposed CML shows a new formation process in which
grand design spiral patterns appear due to gas ejection from a
central star. Starting from a random initial state, gas clumps (that
is, macroscopic clumps of gas particles) gravitate each other to
gather around the center of the lattice and form a central star
consisting of four massive gas clumps. The central star then con-
tracts, ejects gas particles and then begins to expand. The ejected
gas particles jam Keplerian gas particles around the central star.
The jammed Keplerian gas particles form a pair of spiral arms and
thus a grand design spiral pattern (that is, two-arm spiral pattern)
appears. After that, the central star begins to contract again,
the spiral pattern becomes less sharp and then the second gas
ejection from the central star occurs. The above pattern formation
and disappearance are repeated over and over again for a long
time.

Three aspects of the formation process are indeed in good
agreement with the results of the conventional theories and ob-
servations [7,9–13]. First, the simulated spiral patterns are grand
design spirals with two gaseous spiral arms, which agrees with
the observations in spiral galaxies [10]. Second, gas particles are
in Keplerian motion around a central star, which is a fundamental
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dynamic property of astronomical objects [7] and agrees with the
observations [11,12]. Third, spiral arms are formed by jammed
Keplerian gas particles, which is a property of density waves [9]
and agrees with the observations [13]. This agreement and also
the observations of outflows [14,15] should suggest that the
above gas ejection can happen and lead to the formation of grand
design spiral patterns, in actual spiral galaxies and protoplanetary
disks.

We have shown the formation of diverse patterns in astro-
nomical objects by the qualitative and fast computational method
of the proposed CML, after searching a wide range of the pa-
rameters and initial conditions. This fast computational method
could give us insightful suggestions on the formation mechanism
of astronomical objects including undiscovered phenomena, as
described above. It has different advantages to the quantitative
but slow computational method of adaptive mesh refinement
(AMR) [16,17] and smoothed particle hydrodynamics (SPH) [18,
19] both of which come into their own for detailed comparisons
with observations. The simulations in AMR or SPH are usually
carried out by supercomputers. In contrast, the simulations in the
proposed CML are carried out enough by a personal computer1
(note that the proposed CML is suitable for parallel computing
well).

Moreover, the proposed CML performs stable and fast com-
putation since it is constructed flexibly by choosing the Eulerian
procedure [1,4] or the Lagrangian procedure [1,4] properly. The
Eulerian method such as AMR uses grids (meshes), which has the
advantage of fast computation rather than stable computation.
The Lagrangian method such as SPH uses particles, which has the
advantage of stable computation rather than fast computation.
Thus the proposed CML has the advantages of both the Eulerian
and Lagrangian methods.

The present paper is organized as follows. In Section 2, we
construct a CML which consists of gravitational interaction and
advection procedures. In Section 3, we show the snapshots of
the simulations and explain how diverse patterns are dynamically
formed, especially focusing on a new formation process of grand
design spiral patterns. In Section 4, we verify that gas clumps are
in Keplerian motion around a central star by using the snapshot
of a velocity field of gas clumps and the rotation curve of a spiral
pattern. Summary and discussion are given in Section 5.

2. Model

Let us construct a coupled map lattice (CML) for the spiral
pattern formation in astronomical objects consisting of accreting
gas, making use of the CML modeling algorithm [1,2].

2.1. System and lattice

We consider a system in which accreting cold dense gas is
moving on a two-dimensional region in three-dimensional space,
such as an accretion disk [7]. We divide the region into Nx × Ny
square cells. For simplicity, in each cell, we treat the gas as
an assembly of virtual gas particles (not gas molecules) which
are distributed uniformly, carried by the same flow and have
the same velocity (see the particle picture in Fig. 1a). From an-
other viewpoint, there is a macroscopic gas clump formed by the
collision of dense gas particles in each cell.

We introduce a finite two-dimensional square lattice by lo-
cating a lattice point on the center of each cell. Hereafter we set

1 Indeed, it takes less than 2 min (113 s) to obtain the simulation results to
be shown as Fig. 3. It is also emphasized that I have developed the simulator of
the proposed CML in low-execution-speed environment consisting of JavaScript
and HTML.

the distance between the nearest neighbor lattice points to one
(thus, the size of each cell is one), label the lattice points with
ij (i = 0, 1, . . . ,Nx − 1 and j = 0, 1, . . . ,Ny − 1) and express
their positions by the position vectors r ij = (i, j) = iex + jey,
where ex and ey are unit vectors parallel to the x-axis and y-axis
respectively.

2.2. Field variables

We prepare a set of macroscopically coarse-grained field vari-
ables on the lattice. As the field variables at lattice point ij at
discrete time t , we define the gas clump mass mt

ij and the gas
clump velocity vt

ij = vt
x ijex + vt

y ijey.
There are two complementary pictures for the field variables:

the lattice and particle pictures (see Fig. 1). In the lattice picture
(see Fig. 1b), the gas clump mass mt

ij and velocity vt
ij represent the

mass (the blue filled circle in Fig. 1b) and velocity (the red arrow
in Fig. 1b) of the gas clump at lattice point ij (the black dot in
Fig. 1b), respectively. On the other hand, in the particle picture
(see Fig. 1a), they represent the total mass (the set of the blue
dots in Fig. 1a) and the flow (the set of the red arrows in Fig. 1a)
of gas particles in the cell at lattice point ij, respectively.

2.3. Elementary processes

The spiral pattern formation in gaseous astronomical objects
is decomposed into the following two important elementary pro-
cesses: a gravitational interaction process and an advection pro-
cess. In the former process, the gravitational interaction among
gas clumps leads each gas clump to a change in the gas clump
velocity (that is, the flow of gas particles in the gas clump).
In the latter process, the flows resulting from the gravitational
interaction make gas particles move and collide with their mass
and momentum, and form new gas clumps.

2.4. Procedures

2.4.1. Gravitational interaction procedure
We formulate the gravitational interaction process as an Eule-

rian procedure Tg in the lattice picture. Here Eulerian procedures
generally describe the change in field variables through the in-
teraction among them [1,4]. In the procedure Tg , the gas clump
at lattice point ij (of gas clump mass mt

ij) is given an impulse
by the gravitational interaction from the other gas clumps at
lattice points kl (of gas clump masses mt

kl) and then changes the
gas clump velocity vt

ij to v∗

ij, where ∗ represents an intermediate
time between discrete times t and t + 1. Thus, the gravitational
interaction procedure Tg is defined by the following maps:

m∗

ij = mt
ij, (1)

v∗

ij = vt
ij

− γ τg

Nx−1∑
k=0

Ny−1∑
l=0

(1 − δikδjl)mt
kl

|r ij − rkl|2
r ij − rkl
|r ij − rkl|

, (2)

where γ is the gravitational constant, τg the time interval for the
procedure Tg and δ the Kronecker delta. As shown in Eq. (1), the
gas clump mass mt

ij does not change in the procedure Tg .

2.4.2. Advection procedure
We formulate the advection process as a Lagrangian procedure

Ta in the particle picture. Here Lagrangian procedures generally
describe the change in field variables along the flow of parti-
cles [1,4]. In the procedure Ta, each flow v∗

kl resulting from the
procedure Tg carries gas particles with their total mass m∗

kl and
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Fig. 1. Two complementary pictures for the field variables. (a) Particle picture. The black dotted square represents the cell at the lattice point ij. In the cell, the set
of the blue dots represents the total mass of gas particles (gas clump mass mt

ij) and the set of the red arrows the flow of them (gas clump velocity vt
ij). (b) Lattice

picture. The black dot represents the lattice point ij. At the lattice point ij, the blue filled circle represents the mass of the gas clump (gas clump mass mt
ij) and the

red arrow the velocity of it (gas clump velocity vt
ij). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

momentum m∗

klv
∗

kl from the cell at lattice point kl to a cell-sized
area centered at the position

(k̃, l̃) = (k + v∗

x klτa, l + v∗

y klτa), (3)

where τa is the time interval for the procedure Ta (see Fig. 7b in
Appendix A). When the cell-sized areas overlap the cell at lattice
point ij, the size of each overlap area is given by

w∗

ijkl =
(
δi⌊k̃⌋δj⌊l̃⌋ + δi⌊k̃⌋+1δj⌊l̃⌋ + δi⌊k̃⌋+1δj⌊l̃⌋+1

+ δi⌊k̃⌋δj⌊l̃⌋+1

) (
1 −

⏐⏐⏐k̃ − i
⏐⏐⏐) (1 −

⏐⏐⏐l̃ − j
⏐⏐⏐) , (4)

where ⌊•⌋ is the floor function. In Eq. (4), the first brackets give
a flag to become one when the overlapping occurs or zero when
does not, and the second and third the size when the first brackets
become one (for details, see Appendix A). With Eq. (4), in each
overlap area, the total mass and momentum of gas particles are
given by w∗

ijklm
∗

kl and w∗

ijklm
∗

klv
∗

kl respectively. In the cell at lattice
point ij, gas particles in the overlap areas collide with each other
and are mixed into one. Through this collision and mixture, they
form a new gas clump whose mass and velocity are mt+1

ij and vt+1
ij

respectively. Thus, the advection procedure Ta is defined by the
following maps:

mt+1
ij =

Nx−1∑
k=0

Ny−1∑
l=0

w∗

ijklm
∗

kl, (5)

vt+1
ij =

1
mt+1

ij

Nx−1∑
k=0

Ny−1∑
l=0

w∗

ijklm
∗

klv
∗

kl. (6)

In Eq. (6), when gas clump mass mt+1
ij takes zero, gas clump

velocity vt+1
ij is set to also zero. We may operate the procedure Ta

of Eqs. (5) and (6) with a low computational cost of O(N), where N
is the total number of lattice points (for details, see Appendix B).

2.5. Time evolution

By successive operations of the gravitational interaction pro-
cedure Tg and the advection procedure Ta, the time evolution of
gas clump mass mt

ij and velocity vt
ij by one step (from discrete

time t to t + 1) is constructed as follows:(
mt

ij

vt
ij

)
Tg

↦−→

(
m∗

ij

v∗

ij

)
Ta

↦−→

(
mt+1

ij

vt+1
ij

)
. (7)

On the time evolution of Eq. (7), the total mass mt
G, total mo-

mentum pt
G and total angular momentum ltG of the system are

conserved (for details, see Appendix C). These constant quantities
are given by

mt
G =

Nx−1∑
i=0

Ny−1∑
j=0

mt
ij, (8)

pt
G =

Nx−1∑
i=0

Ny−1∑
j=0

mt
ijv

t
ij, (9)

ltG =

Nx−1∑
i=0

Ny−1∑
j=0

(
r ij − r tG

)
× mt

ijv
t
ij, (10)

where r tG is the position vector of the center of gravity of the
system, given by

r tG =
1
mt

G

Nx−1∑
i=0

Ny−1∑
j=0

mt
ijr ij. (11)

The simulations are performed according to the following
settings: Lattice size Nx ×Ny is 50 × 50; Gravitational constant γ

is one and time intervals τg and τa one; The initial gas clump mass
m0

ij is given by a uniform random number within [0, 2µ/(NxNy)]
and initial gas clump velocity v0

ij zero; The boundary conditions
are open. Under the above initial conditions, the initial total mass
m0

G approximately has the normal distribution with the expected
value µ and the variance σ 2

= µ2/(3NxNy).
In the simulations, the total mass mt

G, total momentum pt
G and

total angular momentum ltG are not conserved completely, since
gas particles move out through the boundary of the finite lattice.
We note that their mass is a very small quantity (0.7% of the
initial total mass) through the simulation shown in Fig. 3.
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Fig. 2. Snapshots of typical patterns with different expected values of initial
total mass µ. The brightness of cells represents the logarithm of gas clump
masses log10 mt

ij (i = 0, 1, . . . , 49 and j = 0, 1, . . . , 49). The horizontal axis
represents the logarithm of the expected value µ to base 2, log2 µ. The values
of the initial total mass and the time are as follows: (a) m0

G = 0.501, t = 1570;
(b) m0

G = 0.999, t = 660; (c) m0
G = 2.00, t = 800; (d) m0

G = 4.01, t = 90.

3. Dynamic formation of diverse patterns

Let us see how diverse patterns, especially grand design spiral
patterns, are dynamically formed in the simulation of the pro-
posed CML by using the snapshots of gas clump masses mt

ij shown
in Figs. 2 and 3, and the enlarged ones in Fig. 4. Each snapshot
has 50 × 50 cells in Figs. 2 and 3, and 24 × 24 cells in Fig. 4.
The brightness of the cells represents the logarithm of gas clump
masses log10 mt

ij.

3.1. Dependence of patterns on the initial total mass

By the fast computation of the proposed CML, we have per-
formed simulations over a wide range of the parameters and the
initial conditions. The simulation results differ widely depending
on the expected value of initial total mass µ, as shown in Fig. 2.
The expected value µ is an important parameter to search for
possible patterns induced by gravity. It determines how much
material of astronomical objects (that is, gas) exists in a space
at t = 0. The amount of the material changes the patterns of
astronomical objects appearing in the space since it gives the
magnitude of gravitational interaction among gas clumps. From
another point of view, we have a conjecture that the increase
of µ leads to the patterns of astronomical objects which appear
on a larger scale (∝

√
µ), without our changing the lattice size.

In the universe, different patterns are indeed observed with the
increase of the scale, such as galaxies (see Fig. 2b), galaxy groups
(see Fig. 2d), galaxy clusters and galaxy filaments [7].

The results are roughly classified into the following four types
based on the mass and number of the formed stars: (1) When
µ = 0.5 (see Fig. 2a), gas clumps form a light central star (the
mass of about 0.5), and it cannot gravitate gas particles strongly,
and they leak out before ejected from it, and thus an unusual
spiral pattern is formed, such as with a pair of asymmetry arms;
(2) When µ = 1 (see Fig. 2b), gas clumps form a central star
(the mass of about 1), and it ejects gas particles at its maximal
contraction, and thus a grand design spiral pattern is formed; (3)
When µ = 2 (see Fig. 2c), gas clumps form a massive central
star (the mass of about 2), and it is repeatedly deformed due to
gravitational instability and constantly ejecting gas particles in
all directions, and thus a spiral pattern is not formed; (4) When
µ = 4 (see Fig. 2d), gas clumps gather to form two or more stars
(the mass of about 1 to 3), and all of them form spiral patterns
as (2), or do not form as (3), or some of them form as (2) and
others do not as (3), and then they change into more complex and
diverse patterns due to gravitational interaction among them.

The variance of initial total mass σ 2 (and that of m0
ij) is also

important in the above pattern formation. When the expected
value µ is small (in the patterns of (1) to (3)), the variance

σ 2 gives the fluctuations of the mass, momentum and angular
momentum of a formed single star, and the fluctuations result
in gas ejection from the star, and thus patterns are formed as
described above. When the expected value µ is large (in the
patterns of (4)), the variance σ 2 additionally gives the fluctuation
even of the number of formed (multiple) stars, and patterns vary
diversely due to the growth of these fluctuations accelerated by
the chaotic motion of the stars.

3.2. Formation process of grand design spiral patterns

We report a new formation process of grand design spiral
patterns in the above simulation results of (2), following the
snapshots at t = 0, 60, . . ., and 1860 in Fig. 3, and also at t =

430, 440, . . ., and 480 in Fig. 4. In Sections 3.2.1 and 3.2.2, the
time in brackets shows the exact time when the focused event
occurs or is occurring.

3.2.1. Formation of a central star
A central star is formed from gas clumps of random initial

masses, through the following sequence of events. Gas clumps
gravitate to each other and rapidly move to the center of the
lattice, as shown in the snapshots at t = 0, 60 and 120. Almost
all of the gas clumps converge into a cluster of the four massive
gas clumps (99.2% of the initial total mass) at lattice points 24 24,
25 24, 24 25 and 25 25 respectively, as in the snapshot at t = 180
(at t = 153 in the exact time). This is the birth of the central star
consisting of four massive gas clumps.

The central star starts to move approximately in the positive
y-direction and rotate counterclockwise, through the following
sequence of events. The tiny part of the gas clumps (0.8% of the
initial total mass) does not fall into the central star, but swings
near it and leaves it, like a spacecraft in a gravitational slingshot.
One part of the leaving gas clumps (0.4% of the initial total mass)
moves out through the boundary of the finite lattice, as in the
snapshots at t = 180, 240 and 300 (from t = 179 to t = 281 in
the exact time). Here we note that it appears as the white thick
line from the central star to the lower boundary. Thus, in this
particular simulation, the central star (that is, the system) gains
a momentum in the positive y-direction and also a little in the
negative x-direction (see Fig. 5b), and an angular momentum in
the positive z-direction (counterclockwise rotation, see Fig. 5c),
where the z-direction is defined by unit vector ez = ex × ey.
Meanwhile, the other part of the leaving gas clumps (0.4% of the
initial total mass) gravitates to the central star again, as in the
snapshots at t = 360 and 420.

3.2.2. Formation of grand design spiral patterns
The first grand design spiral pattern is formed originating in

gas ejection from the central star, through the following sequence
of events. The four massive gas clumps in the central star (99.6%
of the initial total mass) maximally contract to two massive ones
in the positive y-direction by the movement of the central star.
Then each one of the two massive gas clumps ejects gas particles
(0.6% of the central star mass), as in the snapshots of Fig. 4 at
t = 430, 440 and 450 (from t = 431 to t = 448 in the
exact time), since the central star increases its counterclockwise
rotational speed as it contracts under the conservation of the total
angular momentum, like a spinning figure skater whose arms
are contracted. Most of the ejected gas particles start Keplerian
motion around the central star and the Keplerian gas particles
become jammed while passing through the two high density
areas of them, as in the snapshots of Fig. 4 at t = 460, 470 and
480. The jammed Keplerian gas particles form a pair of spiral
arms and the first grand design spiral pattern appears, as in
the snapshots at t = 480, 540, . . ., and 960. The spiral pattern



E. Nozawa / Physica D 405 (2020) 132377 5

Fig. 3. Snapshots of gas clump masses mt
ij . The brightness of cells represents the logarithm of gas clump masses log10 mt

ij (i = 0, 1, . . . , 49, j = 0, 1, . . . , 49 and
t = 0, 60, . . . , 1860) in the range of 1× 10−7 to 8× 10−4 at t = 0, 1× 10−7 to 5.01× 10−4 at t = 60, 1× 10−7 to 2.02× 10−4 at t = 120 and 1× 10−7 to 3× 10−6

at t = 180, 240, . . . , 1860.

Fig. 4. Enlarged snapshots of gas clump masses mt
ij around the central star. The brightness of cells represents the logarithm of gas clump masses log10 mt

ij

(i = 13, 14, . . . , 36, j = 13, 14, . . . , 36 and t = 430, 440, . . . , 480) in the range of 6 × 10−6 to 6 × 10−5 . Two newborn arms are surrounded by white lines.

Fig. 5. Time series of the time rate of change of the constant quantities of the system. (a) Time rate of change of the total mass ∆mt
G . (b) Time rate of change of

the total momentum ∆pt
G . The blue line represents the x-component and the red line the y-component. (c) Time rate of change of the total angular momentum ∆ltG .

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

becomes larger and less sharp gradually as time evolves, while
slowly rotating counterclockwise around the central star.

The central star still moves almost in the positive y-direction
and rotates counterclockwise after the first gas ejection from the
central star, through the following sequence of events. A small

fraction of the ejected gas particles (0.1% of the initial total mass)
moves out through the boundary of the lattice (from t = 465 to
t = 575 in the exact time), and hence the central star now gains a
momentum in the positive x-direction (see Fig. 5b) and an angular
momentum in the negative z-direction (clockwise rotation, see
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Fig. 5c). As shown in Fig. 5b, the positive x-component of the mo-
mentum which the central star gains at this time almost cancels
out the previous negative x-component and thus the central star
has the total momentum almost only in the positive y-direction.
In addition, as shown in Fig. 5c, the negative z-component of
the angular momentum which the central star gains at this time
is smaller than the previous positive z-component and thus the
central star still has the total angular momentum in the positive
z-direction (counterclockwise rotation).

The second grand design spiral pattern is also formed through
the following sequence of events. The central star (99.3% of the
initial total mass) ejects gas particles (0.2% of the central star
mass) again in the same way as the first spiral pattern, as in
the snapshots at t = 960 and 1020 (from t = 990 to t =

995 in the exact time). The ejected gas particles almost do not
move out through the boundary (see Fig. 5a) since they collide
with Keplerian gas particles (0.2% of the central star mass) of
the first spiral pattern. They jam the Keplerian gas particles and
the jammed Keplerian gas particles around the central star form
the second grand design spiral pattern, as in the snapshots at
t = 1020, 1080, . . ., and 1500. The second spiral pattern shows
not only the same behavior as the first spiral pattern (to rotate
around the central star and become larger by degrees) but also
a different behavior of keeping its two arms sharp for a longer
time.

The third grand design spiral pattern is also formed through
the following sequence of events. The central star (99.2% of the
initial total mass) ejects gas particles (0.1% of the central star
mass) once again in the same way, as in the snapshots at t =

1500 and 1560 (from t = 1529 to t = 1532 in the exact time).
The ejected gas particles hardly move out through the boundary
(see Fig. 5a) due to the collision with Keplerian gas particles
(0.3% of the central star mass) of the second spiral pattern. The
jammed Keplerian gas particles around the central star form the
third grand design spiral pattern, as in the snapshots at t =

1560, 1620, . . ., and 1860. The third spiral pattern is quite similar
to the second one, such as the snapshots at t = 1560 and 1020,
1620 and 1080, . . ., or 1860 and 1320. It also shows almost the
same behavior as the second one which rotates around the central
star, becomes larger gradually and keeps the two sharp arms.

Even after the third formation, the similar formation of spiral
patterns is repeated over and over again at intervals of around
540 steps. However, the formation of spiral patterns finishes in
the end since the central star does not eject gas particles by losing
its angular momentum at each time of gas ejection.

In the above formation process, the spiral patterns are grand
design spirals which have two gaseous spiral arms. They have
been universally found in not only grand design but also floc-
culent spiral galaxies [10]. Moreover, the Keplerian motion of
gas particles is a fundamental dynamic property of astronomi-
cal objects [7] (for details, see the next section), and in agree-
ment with the observations near the center of the spiral galaxy
NGC4258 (M106) [11] and those in the protoplanetary disk of
VLA1623A [12]. Furthermore, the formation of spiral arms by
jammed Keplerian gas particles is a property of density waves [9],
and in qualitative agreement with the observations in the spi-
ral galaxy M51 [13]. In addition to this agreement, it has been
observed that narrow jets and wide outflows are accelerated by
independent mechanisms [14,15]. Thus, it should be suggested
that such gas ejection as described above can happen and lead
to the formation of grand design spiral patterns, in actual spiral
galaxies and protoplanetary disks.

4. Keplerian motion of gas clumps

Gas clumps are in Keplerian motion around the central star,
which is one of the most fundamental dynamic properties of
astronomical objects. We verify it by using the snapshot of gas
clump velocities vt

ij and the rotation curve of a spiral pattern
shown in Fig. 6.

First, the snapshot of gas clump velocities vt
ij suggests the Ke-

plerian motion of gas clumps. When two spiral arms are formed
as shown in Fig. 6a, the black arrows in Fig. 6b represent the
direction of gas clump velocities vt

ij and the brightness of cells
in Fig. 6b the gas clump speeds

⏐⏐vt
ij

⏐⏐. We find that each gas clump
is in elliptic motion around the central star, following the black
arrows. We also find that gas clump speeds

⏐⏐vt
ij

⏐⏐ decrease with
the increase of the distance from the central star, comparing
the brightness of cells. Thus gas clump velocities vt

ij have the
properties of Keplerian motion.

Next, we draw the rotation curve of the spiral pattern in order
to show it more clearly. The rotation curve is expressed as the plot
of the average speed v̄(lS) of gas clumps at the distance lS from
the center of gravity of the central star r tS . The average speed v̄(lS)
is given by averaging gas clump speeds

⏐⏐vt
ij

⏐⏐ over the gas clumps
whose positions r ij satisfy lS ≤

⏐⏐r ij − r tS
⏐⏐ < lS + 1.

Figs. 6c and 6d show the rotation curve of the spiral pattern
and its log–log plot, respectively. In Fig. 6d, the log–log plot
of the rotation curve decreases linearly with distance lS and its
regression line (the red line in Fig. 6d) is given by

log10 v̄(lS) = −5.0 × 10−1 log10 lS + 1.9 × 10−2. (12)

The fit between the regression line and the rotation curve is good
and the residual sum of squares is 3.7×10−3. Thus average speed
v̄(lS) becomes

v̄(lS) ∼

√
1
lS

(13)

and therefore it is verified that gas clumps are in Keplerian
motion around the central star.

It is known that the rotation curves of spiral galaxies do not
keep decreasing as Fig. 6 away from the center of the galaxies,
due to the existence of dark matter [7] which is not taken into
account in the proposed CML. The modified CML which considers
the effect of dark matter will be reported elsewhere.

5. Summary and discussion

We have proposed a minimal CML for the spiral pattern for-
mation in astronomical objects consisting of accreting gas. The
proposed CML consists of a minimal set of procedures: One is
a gravitational interaction procedure as an Eulerian procedure
and the other an advection procedure as a Lagrangian proce-
dure. Through the simulation, we have found that those two
procedures are a necessary (and therefore essential) set to form
grand design spiral patterns, such as seen in spiral galaxies or
protoplanetary disks.

We have observed the following new formation process of
grand design spiral patterns in the simulation of the proposed
CML. First, the formed central star starts to move and rotate. It
contracts in the direction of movement and increases its rota-
tional speed under the conservation of the total angular momen-
tum. Then it ejects gas particles when it maximally contracts. The
ejected gas particles become a jammed Keplerian gas particles
around the central star. Finally, the jammed gas particles form
a grand design spiral pattern.

We have found that three aspects of the formation process
agree well with the results of the conventional theories [7,9] and
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Fig. 6. Keplerian motion of gas clumps at t = 1360. (a) Snapshot of gas clump masses mt
ij . The brightness of cells represents gas clump masses mt

ij in the range of
0 to 2 × 10−6 . (b) Snapshot of gas clump velocities vt

ij . The brightness of cells represents gas clump speeds
⏐⏐vt

ij

⏐⏐ in the range of 0.06 to 0.84 and the black arrows
the direction of gas clump velocities vt

ij . (c) Rotation curve. The horizontal axis represents distance lS from r tS and vertical axis average speed v̄(lS ). (d) Log–log plot
of the rotation curve. The red line represents its regression line.

observations [10–13]. The grand design spiral patterns are uni-
versally found in not only grand design but also flocculent spiral
galaxies [10]. The motion of gas particles in the spiral patterns is
Keplerian [7] as shown in the analysis using the rotation curve,
and agrees with the observations near the center of the spiral
galaxy NGC4258 (M106) [11] and those in the protoplanetary
disk of VLA1623A [12]. The formation of spiral arms by jammed
Keplerian gas particles is a property of density waves [9], and
also agrees with those in the spiral galaxy M51 [13]. In addition
to this agreement, the observations [14,15] have revealed that
narrow jets and wide outflows are accelerated by independent
mechanisms. It should be thus suggested that the gas ejection can
occur and result in the formation of grand design spiral patterns,
in actual spiral galaxies and protoplanetary disks.

We consider that the transition from one spiral pattern (or-
dered state) to another via gas ejection (disordered state) from
the central star would be related to chaotic itinerancy [1,20]
in high-dimensional dynamical systems [4,21,22]. Moreover, we
expect that the evolution from spiral patterns to less sharp pat-
terns in the transition would be concerned with the evolution
from star-forming spiral galaxies to non-star-forming elliptical

galaxies, which is called galaxy ‘‘quenching’’ [23,24]. These will
be reported elsewhere.
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Appendix A. Advection procedure

Let us now formulate the advection procedure Ta as the La-
grangian procedure [1,4] in the particle picture.
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Fig. 7. Advection in the particle picture. (a) Advection from the cell at lattice point ij. (b) Advection from the cell at lattice point kl to the cell at lattice point ij.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7a shows an example of the advection procedure. In the
cell at lattice point ij (the red dot in Fig. 7a), gas particles are
distributed uniformly and have the same velocity v∗

ij, such as
shown in Fig. 1a. After time interval τa, gas particles in the cell at
lattice point ij move by the displacement v∗

ijτa (the black arrow
in Fig. 7a) to the cell-sized area (the red dotted square in Fig. 7a)
centered at position (ĩ, j̃) = (i + v∗

x ijτa, j + v∗

y ijτa).
The cell-sized area overlaps four cells at lattice points ij, i+1j,

i + 1j + 1 and ij + 1 (the red, orange, green and blue dots in
Fig. 7a, respectively). The sizes of its four overlapping areas (the
red, orange, green and blue rectangles in Fig. 7a, respectively)
are (1 − |ĩ − i|)(1 − |j̃ − j|), |ĩ − i|(1 − |j̃ − j|), |ĩ − i||j̃ − j| and
(1−|ĩ − i|)|j̃ − j|, respectively. Gas particles in the cell-sized area
are carried to each overlapped cell in proportion to the size
of the overlapping area, and the mass and momentum of the
gas particles are also carried there (the allocation by the lever
rule [4]).

We now consider advection from lattice point kl to ij, as shown
in Fig. 7b, in order to describe the advection procedure Ta as
the map which acts on gas clump mass m∗

ij and velocity v∗

ij. Gas
particles in the cell at lattice point kl move by displacement v∗

klτa
to the cell-sized area centered at position (k̃, l̃), which is given
by Eq. (3). There are the following four cases of position (k̃, l̃),
as shown in Fig. 7b. When position (k̃, l̃) is located in the upper
right side of lattice point ij, the cell-sized area (the red dotted
square in Fig. 7b) overlaps the cell at lattice point ij. The size of
its overlapping area (the red rectangle in Fig. 7b) is (1−|k̃ − i|)(1−
|̃l − j|). Gas particles in the cell-sized area are carried to the cell
at lattice point ij, with their mass (1 − |k̃ − i|)(1 − |̃l − j|)m∗

kl and
momentum (1− |k̃ − i|)(1− |̃l − j|)m∗

klv
∗

kl. In a similar way, when
position (k̃, l̃) is located in the upper left, lower left or lower
right side of lattice point ij, the corresponding cell-sized area
(the orange dotted square, green or blue in Fig. 7b, respectively)
overlaps the cell at lattice point ij respectively. The size of its
overlapping area (the orange rectangle, green or blue in Fig. 7b,
respectively) is (1 − |k̃ − i|)(1 − |̃l − j|).

Thus, the weight of allocation w∗

ijkl of gas particles from lattice
point kl to ij is given as Eq. (4). In Eq. (4), the first term in the
first brackets gives the flag to become one when position (k̃, l̃) is
located in the upper right of lattice point ij, the second term the

upper left, the third term the lower left and the fourth term the
lower right.

After carried from different cells at lattice points kl to the cell
at lattice point ij, as described above, gas particles collide with
each other in the cell at lattice point ij and form a new gas clump
(they are distributed uniformly and have the same velocity, as
shown in Fig. 1a). In this collision process, the mass, momentum
and angular momentum of the carried gas particles are conserved.

Through the above discussion, we introduce the advection
procedure Ta as Eqs. (5) and (6).

Appendix B. Computational cost of the advection procedure

In the operation of the advection procedure of Eqs. (5) and (6),
we can easily show that the computational cost is given by only
O(N), where N is the total number of lattice points. Eq. (5) is
rewritten as

mt+1
= W ∗mt (B.1)

with

mt
= mt

00e00 + · · · + mt
ijeij + · · ·

+mt
Nx−1Ny−1eNx−1Ny−1, (B.2)

W ∗
=

⎛⎜⎜⎜⎜⎜⎜⎝

w∗

00 00 · · · w∗

00 kl
...

...

w∗

ij 00 · · · w∗

ij kl
...

...

w∗

Nx−1Ny−1 00 · · · w∗

Nx−1Ny−1 kl

· · · w∗

00Nx−1Ny−1
...

· · · w∗

ij Nx−1Ny−1
...

· · · w∗

Nx−1Ny−1Nx−1Ny−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (B.3)

where eij is a standard unit vector. Eq. (B.1) suggests a high
computational cost of O(N2) in the operation of the advection



E. Nozawa / Physica D 405 (2020) 132377 9

procedure. However, it is not the case. Note that, from Eq. (4),
matrix W ∗ is a sparse matrix which has only four (at most)
non-zero values in each column

w∗

⌊k̃⌋⌊l̃⌋kl
=

{
1 −

(
k̃ − ⌊k̃⌋

)}{
1 −

(
l̃ − ⌊l̃⌋

)}
, (B.4)

w∗

⌊k̃⌋+1⌊l̃⌋kl
=

(
k̃ − ⌊k̃⌋

){
1 −

(
l̃ − ⌊l̃⌋

)}
, (B.5)

w∗

⌊k̃⌋+1⌊l̃⌋+1kl
=

(
k̃ − ⌊k̃⌋

)(
l̃ − ⌊l̃⌋

)
, (B.6)

w∗

⌊k̃⌋⌊l̃⌋+1kl
=

{
1 −

(
k̃ − ⌊k̃⌋

)}(
l̃ − ⌊l̃⌋

)
. (B.7)

We thus have

W ∗mt
= W ∗

∑
kl

mt
klekl =

∑
kl

mt
klW

∗ekl

=

∑
kl

mt
kl

(
w∗

⌊k̃⌋⌊l̃⌋kl
e
⌊k̃⌋⌊l̃⌋ + w∗

⌊k̃⌋+1⌊l̃⌋kl
e
⌊k̃⌋+1⌊l̃⌋

+ w∗

⌊k̃⌋+1⌊l̃⌋+1kl
e
⌊k̃⌋+1⌊l̃⌋+1 + w∗

⌊k̃⌋⌊l̃⌋+1kl
e
⌊k̃⌋⌊l̃⌋+1

)
. (B.8)

Eq. (B.8) takes a low computational cost of only O(N). The com-
putational cost of Eq. (6) also can be reduced to O(N) in a similar
way.

Appendix C. Conservation of total mass, momentum and an-
gular momentum

Here we show that the total mass mt
G, total momentum pt

G and
total angular momentum ltG of the system are conserved on the
time evolution.

First, we verify that these quantities are conserved in the
gravitational interaction procedure Tg . From Eq. (1), total mass
mt

G becomes

m∗

G =

Nx−1∑
i=0

Ny−1∑
j=0

m∗

ij =

Nx−1∑
i=0

Ny−1∑
j=0

mt
ij = mt

G. (C.1)

Therefore it does not change in the procedure Tg . From Eqs. (1)
and (2), total momentum p∗

G becomes

p∗

G =

Nx−1∑
i=0

Ny−1∑
j=0

m∗

ijv
∗

ij

=

Nx−1∑
i=0

Ny−1∑
j=0

⎛⎝mt
ijv

t
ij + τg

Nx−1∑
k=0

Ny−1∑
l=0

f tijkl

⎞⎠
=

Nx−1∑
i=0

Ny−1∑
j=0

mt
ijv

t
ij = pt

G. (C.2)

Thus it does not change in the procedure Tg , either. Here f tijkl is
the force of gravity exerted on the gas clump at lattice point ij by
the gas clump at lattice point kl, given by

f tijkl = −γ (1 − δikδjl)
mt

ijm
t
kl

|r ij − rkl|2
r ij − rkl
|r ij − rkl|

, (C.3)

and satisfies∑
i,j

∑
k,l

f tijkl =
1
2

∑
i,j

∑
k,l

(
f tijkl + f tklij

)
= 0. (C.4)

From Eqs. (1) and (2), total angular momentum l∗G becomes

l∗G =

Nx−1∑
i=0

Ny−1∑
j=0

(
r ij − r∗

G

)
× m∗

ijv
∗

ij

=

Nx−1∑
i=0

Ny−1∑
j=0

(
r ij − r tG

)
×

⎛⎝mt
ijv

t
ij + τg

Nx−1∑
k=0

Ny−1∑
l=0

f tijkl

⎞⎠
=

Nx−1∑
i=0

Ny−1∑
j=0

(
r ij − r tG

)
× mt

ijv
t
ij

+ τg

Nx−1∑
i=0

Ny−1∑
j=0

Nx−1∑
k=0

Ny−1∑
l=0

(
r ij − r tG

)
× f tijkl

=

Nx−1∑
i=0

Ny−1∑
j=0

(
r ij − r tG

)
× mt

ijv
t
ij = ltG. (C.5)

Therefore it does not change in the procedure Tg , either. Here f tijkl
is a central force parallel to r ij − rkl and satisfies∑
i,j

∑
k,l

(
r ij − r tG

)
× f tijkl

=
1
2

∑
i,j

∑
k,l

{(
r ij − r tG

)
× f tijkl

+
(
rkl − r tG

)
× f tklij

}
=

1
2

∑
i,j

∑
k,l

(
r ij − rkl

)
× f tijkl = 0. (C.6)

Thus total mass mt
G, momentum pt

G and angular momentum
ltG of the system are conserved in the gravitational interaction
procedure Tg .

Next, we verify that these quantities are also conserved in the
advection procedure Ta. Here we focus on not the whole system
but the cell at lattice point ij and show that the total mass m∗

ij,
total momentum p∗

ij = m∗

ijv
∗

ij and total angular momentum l∗ij =(
r ij − r∗

G

)
×m∗

ijv
∗

ij of gas particles in the cell do not change in the
procedure Ta. The total mass m∗

ij is allocated to the four nearest
neighbor lattice points ⌊ĩ⌋⌊j̃⌋, ⌊ĩ⌋+1⌊j̃⌋, ⌊ĩ⌋+1⌊j̃⌋+1 and ⌊ĩ⌋⌊j̃⌋+1
of the position (ĩ, j̃) = (i+v∗

x ijτa, j+v∗

y ijτa). From Eq. (4), the weight
of allocation is given by

w∗

⌊ĩ⌋⌊j̃⌋ij
=

{
1 −

(
ĩ − ⌊ĩ⌋

)}{
1 −

(
j̃ − ⌊j̃⌋

)}
, (C.7)

w∗

⌊ĩ⌋+1⌊j̃⌋ij
=

(
ĩ − ⌊ĩ⌋

){
1 −

(
j̃ − ⌊j̃⌋

)}
, (C.8)

w∗

⌊ĩ⌋+1⌊j̃⌋+1ij
=

(
ĩ − ⌊ĩ⌋

)(
j̃ − ⌊j̃⌋

)
, (C.9)

w∗

⌊ĩ⌋⌊j̃⌋+1ij
=

{
1 −

(
ĩ − ⌊ĩ⌋

)}(
j̃ − ⌊j̃⌋

)
. (C.10)

Thus the total mass of the allocated gas particles becomes

⌊ĩ⌋+1∑
k=⌊ĩ⌋

⌊j̃⌋+1∑
l=⌊j̃⌋

w∗

klijm
∗

ij =

⎛⎝⌊ĩ⌋+1∑
k=⌊ĩ⌋

⌊j̃⌋+1∑
l=⌊j̃⌋

w∗

klij

⎞⎠m∗

ij

= 1 · m∗

ij = m∗

ij, (C.11)

and equals the total mass before allocation. The total momentum
p∗

ij is also allocated to the four nearest neighbors of position (ĩ, j̃).
Thus the total momentum of the allocated gas particles becomes
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⌊ĩ⌋+1∑
k=⌊ĩ⌋

⌊j̃⌋+1∑
l=⌊j̃⌋

w∗

klijm
∗

ijv
∗

ij = m∗

ijv
∗

ij = p∗

ij, (C.12)

and also equals the total momentum before allocation. We con-
sider the conservation of total angular momentum l∗ij after both
the movement and allocation of gas particles. After gas particles
in the cell at lattice point ij moves by displacement v∗

ijτa, the total
angular momentum of them becomes(
r ij + v∗

ijτa − r∗

G

)
× m∗

ijv
∗

ij

=
(
r ij − r∗

G

)
× m∗

ijv
∗

ij = l∗ij, (C.13)

and equals the total angular momentum before movement. Af-
ter that, these gas particles are allocated to the four nearest
neighbors of position (ĩ, j̃). The total angular momentum of them
becomes
⌊ĩ⌋+1∑
k=⌊ĩ⌋

⌊j̃⌋+1∑
l=⌊j̃⌋

(
rkl − r∗

G

)
× w∗

klijm
∗

ijv
∗

ij

=

(
⌊ĩ⌋ex + ⌊j̃⌋ey

)
×

(
w∗

⌊ĩ⌋⌊j̃⌋ij
+ w∗

⌊ĩ⌋+1⌊j̃⌋ij

+ w∗

⌊ĩ⌋+1⌊j̃⌋+1ij
+ w∗

⌊ĩ⌋⌊j̃⌋+1ij

)
m∗

ijv
∗

ij

+ ex ×

(
w∗

⌊ĩ⌋+1⌊j̃⌋ij
+ w∗

⌊ĩ⌋+1⌊j̃⌋+1ij

)
m∗

ijv
∗

ij

+ ey ×

(
w∗

⌊ĩ⌋+1⌊j̃⌋+1ij
+ w∗

⌊ĩ⌋⌊j̃⌋+1ij

)
m∗

ijv
∗

ij

−

⌊ĩ⌋+1∑
k=⌊ĩ⌋

⌊j̃⌋+1∑
l=⌊j̃⌋

r∗

G × w∗

klijm
∗

ijv
∗

ij

=

(
⌊ĩ⌋ex + ⌊j̃⌋ey

)
× m∗

ijv
∗

ij

+

(
ĩ − ⌊ĩ⌋

)
ex × m∗

ijv
∗

ij +

(
j̃ − ⌊j̃⌋

)
ey × m∗

ijv
∗

ij

− r∗

G × m∗

ijv
∗

ij

=

(
ĩex + j̃ey − r∗

G

)
× m∗

ijv
∗

ij

=
(
r ij + v∗

ijτa − r∗

G

)
× m∗

ijv
∗

ij, (C.14)

and equals the total angular momentum before allocation. Thus
total angular momentum l∗ij of gas particles in the cell at lattice
point ij does not change in the procedure Ta. These results hold
in any cell and thus total mass m∗

G, momentum p∗

G and angular
momentum l∗G of the system are also conserved in the advection
procedure Tg .
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