
Please cite this article as: S. Opanasenko, A. Bihlo, R.O. Popovych et al., Extended symmetry analysis of an isothermal no-slip drift flux model, Physica D (2019) 132188,
https://doi.org/10.1016/j.physd.2019.132188.

Physica D xxx (xxxx) xxx

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Extended symmetry analysis of an isothermal no-slip drift fluxmodel
Stanislav Opanasenko a,b, Alexander Bihlo a,∗, Roman O. Popovych b,c,d, Artur Sergyeyev d

a Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s (NL) A1C 5S7, Canada
b Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01024 Kyiv, Ukraine
c Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
d Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic

a r t i c l e i n f o

Article history:
Received 4 April 2019
Received in revised form 27 May 2019
Accepted 3 September 2019
Available online xxxx
Communicated by A. Mazzucato

Keywords:
Hydrodynamic-type system
Isothermal no-slip drift flux
Point symmetry
Exact solution
Generalized symmetry
Conservation law

a b s t r a c t

We perform extended group analysis for a system of differential equations modeling an isothermal no-
slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional.
We also find the complete point symmetry group of this system, including discrete symmetries, using
the megaideal-based version of the algebraic method. Optimal lists of one- and two-dimensional
subalgebras of the maximal Lie invariance algebra in question are constructed and employed for
obtaining reductions of the system under study. Since this system contains a subsystem of two
equations that involves only two of three dependent variables, we also perform group analysis of this
subsystem. The latter can be linearized by a composition of a fiber-preserving point transformation
with a two-dimensional hodograph transformation to the Klein–Gordon equation. We also employ
both the linearization and the generalized hodograph method for constructing the general solution of
the entire system under study. We find inter alia genuinely generalized symmetries for this system
and present the connection between them and the Lie symmetries of the subsystem we mentioned
earlier. Hydrodynamic conservation laws and their generalizations are also constructed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the course of solving problems in physics one often faces
systems of first-order quasilinear differential equations, that is,
first-order systems which are linear in the first-order derivatives
of the dependent variables but whose coefficients at these deriva-
tives may in general depend on the dependent and independent
variables. Such systems frequently occur in acoustics, fluid me-
chanics, gas and shock dynamics [1], and for the case of two
independent variables have the general form

n∑
j=1

Aij ∂u
j

∂t
+

n∑
j=1

Bij ∂u
j

∂x
+ C i

= 0, i = 1, . . . , n, (1)

where the n×n matrices A = (Aij), B = (Bij) and the n-component
vector C = (C i) are functions of independent variables (t, x)
and dependent variables (u1, . . . , un) but not of the derivatives
of the latter. Such systems and their natural generalizations to
the case of more than two independent variables are known as
(translation-noninvariant nonhomogeneous) hydrodynamic-type
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systems and are a subject of intense research, see for example
[2–10] and references therein.

An important class of such systems is given by evolutionary
translation-invariant systems of hydrodynamic type in two in-
dependent variables, for which A is the n × n unit matrix, the
vector C vanishes, and the matrix B depends only on dependent
variables. For the sake of brevity in what follows we shall refer
to such systems just as to the hydrodynamic-type systems.

If a hydrodynamic-type system can be diagonalized by a
change r = r(u) of dependent variables alone, that is, B̃ij

= 0
for the new matrix B̃ if i ̸= j and V i

:= B̃ii are eigenvalues of the
matrix B, then the new dependent variables are called Riemann
invariants of this system, and the eigenvalues V 1, . . . , V n are com-
monly referred to as the characteristic velocities of the system,
cf. e.g. [11]. Note that in general hydrodynamic-type systems
in more than two dependent variables are not diagonalizable.
A diagonalizable hydrodynamic-type system is called genuinely
nonlinear if V i

i ̸= 0 for all i = 1, . . . , n, and linearly degenerate
if all of these inequalities fail. Here and below, unless otherwise
explicitly stated, the indices i, j and k run from 1 to n, and a
function subscript like i denotes the derivative with respect to
the ith Riemann invariant.

In the theory of hydrodynamic-type systems there exists an
integrability criterion involving the generalized hodograph trans-
formation [12,13]. This criterion states that a diagonalizable
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strictly hyperbolic (strict hyperbolicity means that all characteris-
tic velocities V i are real and distinct) hydrodynamic-type system
is integrable in the sense presented below if and only if the
condition

∂i
V k
j

V j − V k = ∂j
V k
i

V i − V k

holds for all i ̸= k ̸= j (no sum over repeated indices here). Such
hydrodynamic-type systems are called semi-Hamiltonian [12,13]
(see e.g. [14, p. 60] and [15] for further details). Given a diagonal
hydrodynamic-type system

rit + V irix = 0,

where r = (r1, . . . , rn) is the tuple of its Riemann invariants
and V = (V 1, . . . , V n) is the associated tuple of characteristic
velocities, the generalized hodograph transformation allows one
to locally represent the general solution of this system (except for
the solutions for which rix = 0 for some i) in the form

x − V i(r)t = W i(r), (2)

where W = (W 1, . . . ,W n) is the general solution of the system

W i
j

W j − W i =
V i
j

V j − V i , i ̸= j,

with the nondegeneracy condition det(V i
j t + W i

j ) ̸= 0 (again
no sum over repeated indices here), which guarantees that the
ansatz (2) is locally solvable with respect to r.

In the rest of the present paper we shall deal with a three-
component (n = 3) hydrodynamic-type system arising in the
study of the two-phase flow phenomena. The problem in question
is of great importance in physics thanks to its applications in
several rapidly developing branches such as nuclear power and
chemical industry [16,17]. In particular, the accurate prediction
of void fraction in the sub-channel under two-phase flow is of
fundamental significance.

Unfortunately, this problem is quite challenging and therefore
various simplified models of two-phase flow phenomena were
developed. One of these is the drift flux model introduced in [18],
which allows to describe the mixing motion rather than the
individual phases. It was thoroughly studied in [19–21], where
several sub-models of the drift flux model were found, and, in
particular, the concept of the slip function was introduced. The
model with no-slip condition

ρ1
t + uρ1

x + uxρ
1

= 0, (3a)

ρ2
t + uρ2

x + uxρ
2

= 0, (3b)

(ρ1
+ ρ2)(ut + uux) + a2(ρ1

x + ρ2
x ) = 0, (3c)

where u = u(t, x) is the common velocity in both phases,
ρ1

= ρ1(t, x) and ρ2
= ρ2(t, x) are densities of liquids (or of

liquid and gas), and a is a constant depending on both phases,
was considered in [22]. In [23] an attempt at performing the
group analysis for this system was made. Unfortunately, the said
work contains a number of inaccuracies, including an incorrect
computation of the maximal Lie invariance algebra as well as
some mistakes in the classification of one-dimensional and two-
dimensional subalgebras of the latter. Also, the system (3) has
many nice additional properties as it is of hydrodynamic type,
and the goal of the present paper is to revisit and to significantly
extend the group analysis of (3).

To this end it is convenient to simplify the initial model (3)
by an appropriate change of variables. First of all, using a simul-
taneous rescaling of x and u we can set a = 1 provided that
a is positive, which is justified from the physical point of view.
Introducing the new dependent variables v = ln(ρ1

+ ρ2) and

w = ρ1/ρ2 instead of ρ1 and ρ2, we rewrite the system (3) as
the system S which reads

ut + uux + vx = 0, (4a)

vt + uvx + ux = 0, (4b)

wt + uwx = 0. (4c)

The system (4) is obviously of hydrodynamic type. Furthermore,
diagonalizing the matrix B of the representation (1) for the sys-
tem (4) we map the system (4) to the system

r1t + (r1 + r2 + 1)r1x = 0, (5a)

r2t + (r1 + r2 − 1)r2x = 0, (5b)

r3t + (r1 + r2)r3x = 0 (5c)

using the change of dependent variables r1 =
1
2 (u+v), r2 =

1
2 (u−

v), r3 = w. Thus, r1, r2 and r3 are the Riemann invariants of the
system (4), and the Riemann invariants of the initial system (3)
are

r1 =
u + ln(ρ1

+ ρ2)
2

, r2 =
u − ln(ρ1

+ ρ2)
2

, r3 =
ρ1

ρ2 ,

and hence the expressions for the initial dependent variables
(u, ρ1, ρ2) in terms of the Riemann invariants read

u = r1 + r2, ρ1
=

r3er
1
−r2

r3 + 1
, ρ2

=
er

1
−r2

r3 + 1
.

We also readily see that the characteristic velocities of the sys-
tem (5) are

V 1
= r1 + r2 + 1, V 2

= r1 + r2 − 1, V 3
= r1 + r2. (6)

The system (5) is not genuinely nonlinear as V 3
3 = 0. It

is strictly hyperbolic, diagonalizable and semi-Hamiltonian, so
the generalized hodograph transformation can be applied here.
Nevertheless, it also makes sense to extend the scope and to study
this system within the framework of group analysis. Note that
the subsystem of the first two equations of (5) coincides with
the diagonalized form of the system describing one-dimensional
isentropic gas flows with constant sound speed [11, Section 2.2.7,
Eq. (16)].

Throughout the text we switch between the forms (4) and (5)
of the system S. It is often more convenient to use the diago-
nalized form for computation, although many results are more
concisely expressed in terms of the variables u, v and w.

The rest of the paper is organized as follows. In Section 2 we
compute the maximal Lie invariance algebra of the system (4).
Pushing forward the Lie symmetry vector fields by relevant point
transformations, we also present the corresponding algebras for
both the initial system (3) and its diagonalized form (5). Section 3
is devoted to some background material on how to compute
the complete point symmetry group, which contains both Lie
symmetries and discrete point symmetries, for a system of differ-
ential equations. The actual computation of the complete point
symmetry group of the system (4) is presented in Section 4.
The classification of one- and two-dimensional subalgebras of the
maximal Lie invariance algebra of the system (4) is presented
in Section 5. Section 6 contains the results on Lie reductions
based on the optimal lists of inequivalent subalgebras from the
previous section. In Section 7 we perform group analysis of the
essential subsystem (4a)–(4b) of the system (4). Employing the
fact that this subsystem can be linearized by a two-dimensional
hodograph transformation to the telegraph equation, in Section 8
we describe all (local) solutions of the system (4), where regular
solutions are expressed in terms of solutions of the telegraph
equation. In Section 9 we apply the generalized hodograph trans-
formation for describing the general solution of the diagonalized
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version (5) of the system S. First-order generalized symmetries
of the system (5) and their generalizations are computed in
Section 10. Hydrodynamic conservation laws for the model under
study and their generalizations are given in Section 11. In the final
Section 12 we summarize the results of the paper and touch upon
some avenues of future research.

2. Lie Symmetries

In order to compute the maximal Lie invariance algebra of a
given system of differential equations we employ the infinitesi-
mal method [24,25].

The infinitesimal generators of one-parameter Lie symmetry
groups for the system S are defined as

Q = τ∂t + ξ∂x + η∂u + θ∂v + ζ∂w,

where the components τ , ξ , η, θ and ζ depend on t , x, u, v, and w.
The infinitesimal invariance criterion requires that

Q (1) (ut + uux + vx) |S= 0,
Q (1) (vt + uvx + ux) |S= 0,
Q (1) (wt + uwx) |S= 0.

(7)

The first prolongation Q (1) of the vector field Q is given by

Q (1)
= Q + η(1,0)∂ut + η(0,1)∂ux + θ (1,0)∂vt + θ (0,1)∂vx

+ ζ (1,0)∂wt + ζ (0,1)∂wx ,

where the components η(1,0), η(0,1), θ (1,0), θ (0,1), ζ (1,0) and ζ (0,1)
of the prolonged vector field Q (1) are readily derived from the
general prolongation formula [24],

ηα = Dα (η − τut − ξux)+ τuα+δ1 + ξuα+δ2 ,

θα = Dα (θ − τvt − ξvx)+ τvα+δ1 + ξvα+δ2 ,

ζ α = Dα (ζ − τwt − ξwx)+ τwα+δ1 + ξwα+δ2 .

Here α = (α1, α2) is a multi-index, δ1 = (1, 0), δ2 = (0, 1),
Dα = Dα1t Dα2x , Dt and Dx are the total derivative operators with
respect to t and x, respectively,

Dt = ∂t +

∑
α

(uα+δ1∂uα + vα+δ1∂vα + wα+δ1∂wα ),

Dx = ∂x +

∑
α

(uα+δ2∂uα + vα+δ2∂vα + wα+δ2∂wα )

with uα = ∂α1+α2u/∂tα1∂xα2 , etc. Thus, the infinitesimal invari-
ance criterion implies that

η(1,0) + uη(0,1) + ηux + θ (0,1) = 0,

θ (1,0) + uθ (0,1) + ηvx + η(0,1) = 0,

ζ (1,0) + uζ (0,1) + ηwx = 0

when substituting

ut = −uux − vx, vt = −uvx − ux, wt = −uwx.

Splitting with respect to the parametric derivatives ux, vx and wx
results in the system of determining equations for the compo-
nents of Lie symmetry vector fields,

ζt = ζx = ζu = ζv = τx = τu = τv = τw = 0
ηu = ηv = ηw = θu = θv = θw = 0,
ξx = τt , ξt = η, ηt + uηx + θx = 0, θt + uθx + ηx = 0.

The general solution of this system is

τ = ξ 1t + τ 0, ξ = η0t + ξ 1x + ξ 0,

η = η0, θ = θ0, ζ = Ω(w),

where τ 0, ξ 0, ξ 1, η0, η1 and θ0 are arbitrary constants and Ω
is an arbitrary smooth function of its argument. This proves the
following theorem.

Theorem 1. The maximal Lie invariance algebra g of the system S
is infinite-dimensional and spanned by the vector fields

D = t∂t + x∂x, G = t∂x + ∂u, P t
= ∂t , Px

= ∂x,

Pv = ∂v, W(Ω) = Ω(w)∂w,
(8)

where Ω runs through the set of smooth functions of w.

Remark 2. The systems (3) and (4) are related by the point
transformation with t , x and u unchanged, and ρ1

= wev/(w+1),
ρ2

= ev/(w+1). This transformation pushes forward the algebra g
to the maximal Lie invariance algebra g̃ of the initial system (3),
where g̃ = ⟨D̃, G̃, P̃ t , P̃x, P̃v, W̃(Ω̃)⟩, where D̃, G̃, P̃ t , P̃x are
formally of the same form as their counterparts in the algebra g,

P̃v = ρ1∂ρ1 + ρ2∂ρ2 , W̃(Ω̃) = ρ2Ω̃

(
ρ1

ρ2

)
(∂ρ1 − ∂ρ2 ),

and Ω̃ runs through the set of the smooth functions of its ar-
gument. Note that the infinite-dimensional part ⟨W̃(Ω̃)⟩ of the
algebra g̃ was missed in [23].

Remark 3. Likewise, the maximal Lie invariance algebra of the
system (5) is spanned by the vector fields

D̂ = t∂t + x∂x, Ĝ = 2t∂x + ∂r1 + ∂r2 , P̂ t
= ∂t , P̂x

= ∂x,

P̂v = ∂r1 − ∂r2 , Ŵ(Ω) = Ω(r3)∂r3 ,

where Ω runs through the set of smooth functions of r3, and we
also rescaled some of the spanning elements.

3. Methods of finding the complete point symmetry group

Using the Lie infinitesimal method for a system of differential
equations L with subsequent generation of finite transformations
allows one to construct the Lie symmetry group of L, which
consists of continuous symmetry transformations of the system L
and is the identity component of the complete point symme-
try group of this system. At the same time, discrete symmetry
transformations are also of interest for applications. If the Lie
symmetry group of L is known, then finding discrete symmetry
transformations of L is equivalent to the construction of the com-
plete point symmetry group of L. There are two main methods
for computing complete point symmetry groups of systems of
differential equations in the literature, the direct method [26–28]
and the algebraic method [29–33]. Although the latter in general
gives only a part of restrictions on the form of point symmetry
transformations and thus also involves computations within the
framework of the direct method at the final step of the respective
procedure, it is usually more convenient since, in comparison
with using the direct method alone, the computations are less
cumbersome.

The direct method is based on the definition of a (finite) point
symmetry transformation and is the most universal one. The
application of this method results in a system of PDEs known as
the determining equations which are, in general, nonlinear and
strongly coupled and thus quite difficult to solve. Several methods
were developed to improve the direct method, and one of those
improved methods is the algebraic one.

The algebraic method for finding the complete point symme-
try group of a system of differential equations was suggested by
Hydon [31,32]. The underlying idea is that each point symmetry
transformation T of a system of differential equations L induces
an automorphism of the maximal Lie invariance algebra g of L. If
the algebra g is finite-dimensional with dim g = n > 0, then the
above means that

T∗ej =

n∑
i=1

aijei, j = 1, . . . , n,
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where T∗ is the pushforward of vector fields induced by T , and
(aij)ni,j=1 is the matrix of an automorphism of g in the chosen
basis (e1, . . . , en). Computing the automorphism group Aut(g)
of g, one obtains a set of restrictions on the form of the matrix
(aij)ni,j=1. Expanding the above condition for T∗ gives, under the
assumption that g ̸= {0}, gives constraints for the transforma-
tion T . These constraints are to be subsequently employed within
the framework of the direct method.

Be that as it may, the computation of the entire automorphism
group Aut(g) can still be challenging, especially if the maximal Lie
invariance algebra g is infinite-dimensional. This is why another
version of the algebraic method, which involves the notion of
megaideals [34], also known as fully characteristics ideals [35],
was developed in [29,30,33]. A megaideal i of a Lie algebra g is
a subspace of g that is invariant under any automorphism of g.
Provided g is finite-dimensional with dim g = n and possesses
a megaideal i spanned by the first k, k < n, basis elements,
i.e., i = ⟨e1, . . . , ek⟩, the matrix (aij)ni,j=1 of any automorphism
of g is of block structure with aij = 0 for i > k and j ⩽ k.
In other words, the megaideal hierarchy of a finite-dimensional
Lie algebra is directly related to the block structure of matri-
ces of the automorphisms of this Lie algebra. This observation
can also be applied to infinite-dimensional Lie algebras with
finite-dimensional megaideals.

Simple tools for constructing megaideals were presented in
[30,33,34]. First of all, both the improper subalgebras of a Lie alge-
bra g (the zero subalgebra and g itself) are (improper) megaideals
of g. Moreover, sums, intersections and Lie products of megaide-
als are megaideals, megaideals of megaideals of g are megaideals
of g, all elements of the derived series, the ascending and the
descending central series of g, in particular, the center and the
derivatives of g, as well as the radical and the nilradical are
megaideals of g. Recall that the nth derivative g(n) of the Lie
algebra g is defined by g(n) = [g(n−1), g(n−1)

] for n ⩾ 1 with
g(0) = g and the nth power gn of the algebra g is gn = [gn−1, g] for
n ⩾ 2 with g1 = g. One more, less obvious, way of obtaining new
megaideals from known ones is given by the following assertion.

Proposition 4. If i0, i1 and i2 are megaideals of g, then the set
s = {z ∈ i0: [⟨z⟩, i1] ⊆ i2} is also a megaideal of g.

Within the megaideal-based version of the algebraic method,
one uses the condition T∗i = i for each megaideal i from a certain
set of known megaideals of the maximal Lie invariance algebra g
of the system L. Megaideals that are sums of other megaideals
give constraints that are consequences of constraints that are
derived from the consideration of the summands. This is why
such decomposed megaideals should be neglected in the course of
the computation. Upon having derived the constraints for a point
symmetry transformation T implied by the megaideal invariance,
one completes the computation of the complete point symmetry
group with the direct method.

4. Complete point symmetry group

We compute the complete point symmetry group of the sys-
tem (4) using the megaideal-based version of the algebraic
method.

The nonzero commutation relations among generating ele-
ments (8) of the maximal Lie invariance algebra g of the system S
are exhausted by

[P t ,D] = P t , [Px,D] = Px, [P t , G] = Px,

[W(Ω1),W(Ω2)] = W(Ω1Ω2
w −Ω2Ω1

w).

Therefore, the algebra g is the direct sum of its finite-dimensional
and infinite-dimensional parts, g = ⟨D, G,P t ,Px,Pv⟩ ⊕ ⟨W(Ω)⟩.

Moreover, the finite-dimensional part can be split into a direct
sum as well, so g = ⟨D, G,P t ,Px

⟩ ⊕ ⟨Pv⟩ ⊕ ⟨W(Ω)⟩.
We now construct a list of megaideals for the algebra g. First,

the derivatives of g are megaideals of g, so g′
= ⟨P t ,Px,W(Ω)⟩

and g′′
= ⟨W(Ω)⟩ are megaideals, with g(i) = g′′ for i ⩾ 2. The

center Z(g) = ⟨Pv⟩ of the algebra g is also its megaideal.

Lemma 5. The radical r of g coincides with the finite-dimensional
part of g,

r = ⟨D, G,P t ,Px,Pv⟩.

Proof. We temporarily denote by s the finite-dimensional part
of g, s = ⟨D, G,P t ,Px,Pv⟩. The subspace s is an ideal of g, which
is solvable since s′′

= {0}. Therefore, it is contained in the radical
r of g, s ⊆ r. If an ideal of g contains a vector field W(Ω0) for a
particular nonvanishing Ω0

= Ω0(w) substituted for Ω , then it
contains the entire infinite-dimensional part ⟨W(Ω)⟩ and hence
it is not solvable. This means that r ∩ ⟨W(Ω)⟩ = {0}. Therefore,
r = s. □

Thus, we find a Levi decomposition of the infinite-dimensional
algebra g, g = r ⊕ g′′, where r is the (finite-dimensional) radical
and g′′ is an (infinite-dimensional) simple subalgebra, which is
also an (mega)ideal of g but contains no proper subideals.

Lemma 6. The nilradical n of g is spanned by the vector fields G,
P t , Px and Pv ,

n = ⟨G,P t ,Px,Pv⟩.

Proof. The nilradical of g is contained in the radical r of g. We
temporarily denote by s the span of the vector fields G, P t , Px

and Pv , s = ⟨G,P t ,Px,Pv⟩. The subspace s is an ideal of g, and it
is nilpotent since s2 = {0}. Moreover, s is the maximal nilpotent
ideal of g since the only subspace of r properly containing s is the
radical r itself, which is not nilpotent. Thus, n = s. □

Corollary 7. The derivatives r′ = ⟨P t ,Px
⟩ and n′

= ⟨Px
⟩ of the

radical r and the nilradical n of g, respectively, are megaideals of g.

Corollary 8. The ideal m1 = ⟨G,Px,Pv⟩ of the algebra g is its
megaideal.

Proof. This is a simple consequence of Proposition 4 for i0 = r,
i1 = r and i2 = n′. □

The nilradical n is not essential for the megaideal-based ver-
sion of the algebraic method since it is the sum of other megaide-
als of g, n = m1 + r′. As a result, for finding the complete
point symmetry group of the system (4) with the megaideal-
based version of the algebraic method we use the following list
of megaideals of the algebra g:

⟨D, G,P t ,Px,Pv⟩, ⟨G,Px,Pv⟩, ⟨P t ,Px
⟩, ⟨Px

⟩,

⟨Pv⟩, ⟨W(Ω)⟩.
(9)

Theorem 9. The complete point symmetry group G of the modified
no-slip isothermal drift flux model (4) consists of the transformations

t̃ = T 1t + T 0, x̃ = T 1x + T 1U0t + X0,

ũ = u + U0, ṽ = v + V 0, w̃ = W (w),
(10)

where T 0, T 1, X0, U0 and V 0 are arbitrary constants with T 1
̸= 0

and W runs through the set of smooth functions of w with Ww ̸= 0.
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Proof. The general form of a point symmetry transformation for
the system (4) is

T : (t̃, x̃, ũ, ṽ, w̃) = (T , X,U, V ,W ),

where T , X , U , V and W are functions of t , x, u, v and w with
nonvanishing Jacobian. To obtain constraints for a point symme-
try transformation T , we push forward each of the Lie symmetry
generators (8), Q , by this transformation and use the invariance,
with respect to the pushforward T∗, of the minimal megaideal
from the list (9) that contains Q . This leads to the following
conditions:

T∗D = a11(t̃∂t̃ + x̃∂x̃) + a21(t̃∂x̃ + ∂ũ) + a31∂t̃ + a41∂x̃ + a51∂ṽ,
T∗G = a22(t̃∂x̃ + ∂ũ) + a42∂x̃ + a52∂ṽ,
T∗P t

= Tt∂t̃ + Xt∂x̃ + Ut∂ũ + Vt∂ṽ + Wt∂w̃ = a33∂t̃ + a43∂x̃,
T∗Px

= Tx∂t̃ + Xx∂x̃ + Ux∂ũ + Vx∂ṽ + Wx∂w̃ = a44∂x̃,
T∗Pv = Tv∂t̃ + Xv∂x̃ + Uv∂ũ + Vv∂ṽ + Wv∂w̃ = a55∂ṽ,

T∗W(Ω) = Ω(Tw∂t̃ + Xw∂x̃ + Uw∂ũ + Vw∂ṽ + Ww∂w̃) = Ω̃Ω∂w̃,

(11)

where all a’s are constants and Ω̃Ω is a smooth function of w̃
depending on the parameter function Ω = Ω(w).

We collect components of vector fields in the last four con-
ditions of (11) and then take into account the resulting equa-
tions when expanding and componentwise splitting the first two
conditions. As a result, we arrive at the following system:

Tt = a33, Xt = a43, Ut = Vt = Wt = 0;
Tx = Ux = Vx = Wx = 0, Xx = a44;
Tv = Xv = Uv = Wv = 0, Vv = a55;

Tw = Xw = Uw = Vw = 0, ΩWw = Ω̃Ω (W );
tTt = a11T + a31, tXt + xXx = a11X + a41, a21 = a51 = 0;
Tu = Wu = 0, tXx + Xu = a22T + a42, Uu = a22, Vu = a52.

Equations of this system are partitioned into groups according to
their source conditions in (11). The general solution of this system
is given by

T = a33t − a31, X = a22a33x + a43t − a41,

U = a22u + U0, V = a55v + a52u + V 0, W = W (w),
(12)

where U0 and V 0 are arbitrary constants, and additionally
a22a33a55 ̸= 0, a11 = 1, a44 = a22a33 and a42 = a31a22.

Now the direct method of computing complete point sym-
metry groups should be applied. To this end, we apply a trans-
formation of the form (12) to the system S. To do this, the
derivative operators with respect to the new independent vari-
ables, ∂t̃ and ∂x̃, have to be determined,

∂t̃ =
1
a33

(
∂t −

a42
a22a33

∂x

)
, ∂x̃ =

1
a22a33

∂x.

Employing these derivative operators to express the derivatives of
the new variables, and enforcing the symmetry condition requires
that a42 = a33U0, a22 = a55 = 1, a52 = 0.

Re-denoting parameter constants completes the proof of the
theorem. □

Corollary 10. The modified no-slip isothermal drift flux model (4)
possesses two independent (up to combining with each other and
with continuous symmetries) discrete point symmetries given by the
reflections

(t, x, u, v, w) → (−t,−x, u, v, w),
(t, x, u, v, w) → (t, x, u, v,−w).

Remark 11. As we have already mentioned in Section 3, the
automorphism-based version of the algebraic method for find-
ing the complete point symmetry group requires knowing the
automorphism group of the corresponding maximal invariance
algebra. For the system S , this algebra is infinite-dimensional, and
therefore the computation of its automorphism group is compli-
cated. However, it could be useful to look for the automorphism
group Aut(r) of the radical r which coincides, in view of Lemma 5,
with the finite-dimensional part of the algebra g. Note that the
algebra r is isomorphic to the algebra A0

4,8⊕ A1 from the classifica-
tion list of five-dimensional real Lie algebras presented in [36,37].
In the basis (D, G,P t ,Px,Pv), the automorphism group Aut(r)
group can be identified with the matrix group constituted by the
matrices of the form⎛⎜⎜⎜⎝

1 0 0 0 0
0 b22 0 0 0
b31 0 b33 0 0
b41 b31b22 b43 b22b33 0
b51 b52 0 0 b55

⎞⎟⎟⎟⎠ with b22b33b55 ̸= 0.

The knowledge of Aut(r) allows us to set constraints on the con-
stants a’s in the conditions (11) before analyzing these conditions,

a11 = 1, a22a33a55 ̸= 0, a21 = 0,
a44 = a22a33, a42 = a31a22.

The structure of the automorphism matrices obviously implies
that there is one more megaideal of r and, therefore, of g, m2 =

⟨D,P t ,Px,Pv⟩. This completes the description of megaideals of
the algebra g. More specifically, the megaideals of g are ex-
hausted by the essential megaideals n′, Z(g), r′, m1, m2 and g′′

and their sums. The megaideal m2 cannot be found using the
means presented in Section 3. The presence of this megaideal
explains the first of the above constraints on the constants a’s
whilst the rest of these constraints cannot be obtained using the
megaideal-based version of algebraic method, being, at the same
time, a direct consequence of its automorphism-based counter-
part applied to r. In fact, this discussion shows a possibility
for combining the automorphism- and megaideal-based versions
of algebraic method for finding the complete point symmetry
groups of systems of differential equations.

Remark 12. There is one constraint for the constants a’s, a51 = 0,
among those derived from the conditions (11) that cannot be
obtained from the structure of automorphism matrices of the
radical r. This means that there exist automorphisms of the en-
tire algebra g that are not induced by point transformations
of (t, x, u, v, w).

5. Classification of subalgebras

In order to efficiently perform group-invariant reductions for
finding exact solutions of the system (4), it is necessary to con-
struct an optimal list of G-inequivalent one- and two-dimensional
subalgebras of the maximal Lie invariance algebra g admitted
by this system [24]. Since the algebra g is infinite-dimensional,
for constructing the adjoint representation of G on g we use the
method based on computing pushforwards of vector fields in g
by transformations in G [38,39].

Any transformation T from G can be represented as a compo-
sition of elementary symmetry transformations,

T = D(T 1)P(T 0)P(X0)P(V 0)G(U0)W(W )

with

P
t (T 0): (t̃, x̃, ũ, ṽ, w̃) = (t + T 0, x, u, v, w),

P
x(X0): (t̃, x̃, ũ, ṽ, w̃) = (t, x + X0, u, v, w),
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P
v(V 0): (t̃, x̃, ũ, ṽ, w̃) = (t, x, u, v + V 0, w),

D(T 1): (t̃, x̃, ũ, ṽ, w̃) = (T 1t, T 1x, u, v, w),

G(U0): (t̃, x̃, ũ, ṽ, w̃) = (t, x + U0t, u + U0, v, w),
W(W ): (t̃, x̃, ũ, ṽ, w̃) = (t, x, u, v,W (w)),

where, as in Theorem 9, T 0, T 1, X0, U0 and V 0 are arbitrary
constants with T 1

̸= 0 and W (w) runs through the set of smooth
functions of w with Ww ̸= 0. The nonidentity actions of push-
forwards of elementary symmetry transformations on generating
elements of g are exhausted by the following:

P
t
∗
(T 0)D = D − T 0P t , P

t
∗
(T 0)G = G − T 0Px,

P
x
∗
(X0)D = D − X0Px,

D∗(T 1)P t
= T 1P t , D∗(T 1)Px

= T 1Px,

G∗(U0)P t
= P t

+ U0Px,

W∗(W )W(Ω) = W(Ω̃),

(13)

where the function Ω̃ = Ω̃(w̃) is related to Ω = Ω(w) by
Ω̃(W (w)) = Ww(w)Ω(w).

Theorem 13. An optimal list of one-dimensional subalgebras of the
maximal Lie invariance algebra g of the system (4) is exhausted by
the subalgebras

⟨D + aG + bPv + W(δ1)⟩, ⟨G + δ2P t
+ bPv + W(δ1)⟩,

⟨P t
+ δ2Pv + W(δ1)⟩, ⟨Px

+ δ2Pv + W(δ1)⟩,
⟨Pv + W(δ1)⟩, ⟨W(1)⟩,

(14)

where δ1, δ2 ∈ {0, 1}, and a and b are arbitrary constants.

Proof. We start with the most general form of a basis vector field
of a one-dimensional subalgebra of the algebra g,

Q = a1D + a2G + a3P t
+ a4Px

+ a5Pv + W(Ω),

where ai, i = 1, . . . , 5, are constants, Ω is a smooth function
of w, and at least one of these quantities does not vanish. We
simplify Q using the adjoint action of G and scaling of the
entire Q . In all cases when Ω ̸= 0, the parameter function Ω can
be set to 1 by applying the pushforward W∗

(∫
1/Ω dw

)
. In other

words, we can always suppose Ω(w) = δ1 ∈ {0, 1}. Moreover, if
a5 ̸= 0, then the summand with Pv cannot be deleted using the
adjoint action of G.

We order the elements spanning g in the following way:

D ≻ G ≻ P t
≻ Px

≻ Pv ≻ W(Ω).

This partial order is justified by the hierarchy of megaideals of the
algebra g. Subsequent analysis is done recursively according to
this order: regarding the leading coefficient of Q as nonzero, we
scale this coefficient, if it is a constant, to 1 by scaling the entire
vector field Q , further simplify the form of Q by the adjoint action
of G and re-denote the parameters preserved in the final form
of Q . As a result, we reduce the classification to the following
inequivalent cases.

1. a1 = 1. Using successively the pushforwards Pt
∗
(a3) and

Px
∗
(a4 − a2a3) we set a3 = a4 = 0. This yields the first subalgebra

(more precisely, the first family of subalgebras) of the list (14).
2. a1 = 0, a2 = 1. We act by P t

∗
(a4) and, if a3 ̸= 0, by D∗(a−1

3 )
to set a4 = 0 and a3 = 1, respectively, which leads to the second
subalgebra.

3. a1 = a2 = 0, a3 = 1. Then we act by G∗(−a4) to set a4 = 0.
If a5 ̸= 0, then we can also set a5 = 1 by acting D∗(a5) and
rescaling Q . This gives the third subalgebra.

4. a1 = a2 = a3 = 0, a4 = 1. Upon acting by D∗(a5) and
rescaling Q , we derive the fourth subalgebra.

5. ai = 0, i = 1, . . . , 4, a5 = 1. This yields the fifth subalgebra.
6. ai = 0, i = 1, . . . , 5. Then Ω is nonzero, which corresponds

to the last subalgebra. □

Theorem 14. An optimal list of two-dimensional subalgebras of the
maximal algebra of invariance g of the system (4) is given by

⟨D + aPv + W(δ1), G + bPv + W(δ2)⟩,
⟨D + aPv + W(δ5),P t

⟩, ⟨D + aPv + W(w),P t
+ W(1)⟩,

⟨D + aG + bPv + W(δ5),Px
⟩,

⟨D + aG + bPv + W(w),Px
+ W(1)⟩,

⟨D + aG + W(δ1),Pv + W(δ2)⟩,
⟨G + δ3P t

+ aPv + W(δ1),Px
+ δ4Pv + W(δ2)⟩,

⟨G + δ5P t
+ W(δ1),Pv + W(δ2)⟩,

⟨P t
+ δ3Pv + W(δ1),Px

+ δ4Pv + W(δ2)⟩,
⟨P t

+ W(δ1),Pv + W(δ2)⟩, ⟨Px
+ W(δ1),Pv + W(δ2)⟩,

⟨D + aG + bPv + cW(w),W(1)⟩,
⟨G + δ5P t

+ bPv + cW(w),W(1)⟩,
⟨P t

+ δ1Pv + δ2W(w),W(1)⟩,
⟨Px

+ δ1Pv + δ2W(w),W(1)⟩,
⟨Pv + cW(w),W(1)⟩, ⟨W(w),W(1)⟩,

(15)

where δ1, . . . , δ4, a, b and c are arbitrary constants such that one of
nonzero components in each of the pairs (δ1, δ2) and (δ3, δ4) can
be set to be equal 1, and δ5 ∈ {0, 1}. In the seventh family of
subalgebras, either a = 0 if δ4 ̸= 0 or δ1 = 0 if δ2 ̸= 0.

Proof. We start with a two-dimensional subalgebra s := ⟨Q1,Q2⟩

spanned by two linearly independent vector fields from g of the
most general form,

Q1 = a1D + a2G + a3P t
+ a4Px

+ a5Pv + W(Ω1),

Q2 = b1D + b2G + b3P t
+ b4Px

+ b5Pv + W(Ω2).

Within the classification procedure, we should take into account
the condition of closedness of s with respect to the Lie bracket,
[Q1,Q2] ∈ s, which we will briefly call the s-condition below.
Since g = ⟨D, G,P t ,Px

⟩⊕ ⟨Pv⟩⊕ ⟨W(Ω)⟩, summands with Pv or
W(Ω), if they are in Q 1 or Q 2, cannot be deleted by the adjoint ac-
tion of G. Nevertheless, we can always set Ω i

= 1 for nonzero Ω i

with fixed i ∈ {1, 2} by the action of W∗

(∫
1/Ω i dw

)
. If the

parameter functionsΩ1 andΩ2 are linearly independent, linearly
recombining Q1 and Q2, which is consistent with the further
classification procedure, reduces the s-condition to [Q1,Q2] ∈

⟨Q2⟩. Setting Ω2
= 1, we can thus assume Ω1

= c1w+ c2, where
c1 and c2 are constants. In particular, Ω2

= const if Q 1 and Q 2

commute. We can consider only Ω ’s of the above form from the
very beginning. If a1 ̸= 0, we can set a3 = a4 = 0 successively
using Pt

∗
(a3) and Px

∗
(a4 − a2a3).

For the sake of efficient classification of two-dimensional sub-
algebras of the algebra g, it is convenient to consider the coeffi-
cient matrix

A =

(
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

)
.

The classification splits into two cases, rk A = 2 and rk A < 2.

I. rk A = 2. On the set of index pairs J := {(i, j) | 1 ⩽ i < j ⩽ 5} we
introduce the lexicographical order with the alphabet ordering
1 ≻ 2 ≻ 3 ≻ 4 ≻ 5, which is consistent with the ordering
of vector fields spanning the algebra g. Then we further split
the case rk A = 2 into subcases that are labeled by index pairs
in J and each of which is singled out by the additional condition
rk Ai′,j′ < 2, (i′, j′) ≻ (i, j), rk Ai,j = 2 with the associated index
pair (i, j). Here Ai,j denotes the 2 × 2 matrix composed by the ith
and jth columns of A. Note that ai = bi = 0 if both rk Ai,j < 2
for i < j and rk Aj,i < 2 for j < i. In the (i, j)th case, up to
linearly recombining Q1 and Q2 we can assume that Ai,j = I and
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b1 = · · · = bj′ = 0, j′ < j. Here and in what follows I is the 2 × 2
unit matrix. As a result, we should consider the following cases.

1. A1,2 = I , a3 = a4 = 0. The s-condition yields b3 = b4 = 0,
which results in the first subalgebra (more precisely, the first
family of subalgebras) in the list (15).

2. A1,3 = I , b2 = 0, a4 = 0. Using G∗(b4) we set b4 = 0.
Then the s-condition implies a2 = b5 = 0 and Ω2Ω1

w −Ω1Ω2
w =

Ω2. Note that here we use the s-condition before employing the
pushforward W∗. This leads to the second and third subalgebras,
depending on whether Ω2 vanishes or not; for the latter we
should additionally act on s with the pushforward of a shift of w.

3. A1,4 = I , b2 = b3 = 0, a3 = 0. We employ the s-condition
in the same way as in the previous case, obtaining the fourth and
fifth subalgebras.

In all the other cases with rk A = 2, the basis elements Q1
and Q2 commute in view of the s-condition. Hence Ω1Ω2

w −

Ω2Ω1
w = 0, and we can simultaneously set both the coeffi-

cients Ω1 and Ω2 to be constants.
4. A1,5 = I , b2 = b3 = b4 = 0, a3 = a4 = 0. Thus, we derive

the sixth subalgebra.
5. A2,3 = I , a1 = b1 = 0. [Q1,Q2] = Px

+W(Ω1Ω2
w−Ω2Ω1

w) /∈
⟨Q1,Q2⟩ and hence ⟨Q1,Q2⟩ is not a subalgebra.

6. A2,4 = I , a1 = b1 = b3 = 0. One of the coefficients a3
or b5 can be scaled to 1 (if nonzero) using D∗(a−1

3 ) for a3 or D∗(b5)
and rescaling of Q 2 for b5. We obtain the seventh algebra. The
specific gauge for parameters of this case from the theorem is set
by composing the pushforward Pt

∗
(c) with the replacement Q 1 by

Q 1
+ cQ 2, where c = −a/δ4 or c = −δ1/δ2, respectively.
7. A2,5 = I and a1 = b1 = b3 = b4 = 0. We act on s by P t

∗
(a4)

and, if a3 ̸= 0, by D∗(a−1
3 ) to set a4 = 0 and a3 = 1, respectively.

This gives the eighth subalgebra.
8. A3,4 = I , ai = bi = 0, i = 1, 2. One of a5 and b5 (if nonzero)

can be scaled to 1 acting on s with D∗(c) and replacing the basis
element Qi by c−1Qi, where c = a5, i = 1 and c = b5, i = 2,
respectively. As a result, we have the ninth subalgebra.

9. A3,5 = I , ai = bi = 0, i = 1, 2, b4 = 0. Setting a4 = 0 with
G∗(−a4) gives the tenth subalgebra.

10. A4,5 = I , ai = bi = 0, i = 1, 2, 3. This case is associated
with the eleventh subalgebra.

II. rk A < 2. Linearly combining Q1 and Q2 in this case, we can set
b1 = · · · = b5 = 0. Since then Ω2

̸= 0, we can set Ω2
= 1 using

the pushforward W∗

(∫
1/Ω2 dw

)
. Up to linearly recombining Q1

and Q2, the s-condition implies Ω1
= cw for a constant c. The

further classification of inequivalent forms for Q1, which gives
the rest of listed subalgebras, is similar to the classification of
one-dimensional subalgebras, and thus we omit it. □

6. Reductions

Although in Section 8 we describe the entire set of local
solutions of the system S in implicit form in terms of solutions of
the telegraph equation, it is instructive to find invariant solutions
as well. We employ the optimal lists of one- and two-dimensional
subalgebras of the algebra g from Theorems 13 and 14, respec-
tively, to obtain Lie reductions associated with them. Lie ansatzes
constructed using one-dimensional subalgebras reduce the sys-
tem S with the two independent variables (t, x) to systems of
ODEs. The last two families of subalgebras from Theorem 13
are not relevant to the framework of Lie reductions since the
transversality condition does not hold for them.

Lie ansatzes constructed using two-dimensional subalgebras
reduce the system S to systems of algebraic equations. Note that
constraints imposed by invariance with respect to two-parameter
transformation groups are too restrictive for solutions of PDEs
with two independent variables. This is why such solutions are

not of much significance. Nevertheless, we are going to perform
the Lie reduction with respect to a two-dimensional subalgebra
of the algebra g as an example. It is obvious that in the list (15)
of families of inequivalent two-dimensional subalgebras of the
algebra g, only subalgebras from the first to fifth, and seventh and
ninth families are appropriate for Lie reduction. Subalgebras from
other families, which do not satisfy the transversality condition,
can be useful for constructing partially invariant solutions [25],
which we also illustrate by an example.

Within this section, c1, c2 and c3 are arbitrary constants, and
prime denotes the derivative with respect to ω.

1. ⟨D+aG+bPv
+W(δ1)⟩. A Lie ansatz constructed with this

subalgebra has the form u = φ(ω) + x/t + a, v = χ (ω) + b ln |t|,
w = ψ(ω)+ δ1 ln |t|, where ω = x/t − a ln |t|. The corresponding
reduced system of ODEs is

φ′φ + χ ′
+ φ + a = 0, φχ ′

+ φ′
+ b + 1 = 0, φψ ′

+ δ1 = 0.

For integrating this system, it is convenient to separately consider
the singular and general cases.

A. φ2
+ aφ − b − 1 = 0, i.e., φ = µ, where µ is a root of

this algebraic equation. Then χ = −(a + µ)ω + c2. For ψ we
additionally have two cases. If µ = 0, then ψ is an arbitrary
function of ω, as well as b = −1 and δ1 = 0 are the only possible
values of these parameters. Otherwise, ψ = −δ1ω/µ+ c3.

B. Otherwise, φ2
+ aφ − b − 1 ̸= 0. We also have φ2

̸= 1,
and the reduced system is equivalent to the system φ′

= (φ2
+

aφ − b − 1)/(1 − φ2), χ ′
= (bφ − a)/(1 − φ2), ψ ′

= −δ1/φ. As
a result, we construct the general solution of the reduced system
in parametric form,

ω =

∫
(1 − φ2) dφ

φ2 + aφ − b − 1
, χ =

∫
(bφ − a) dφ

φ2 + aφ − b − 1
,

ψ̂ =

∫
(1 − φ2) dφ

φ(φ2 + aφ − b − 1)
,

(16)

and ψ = −δ1ψ̂ . All the three integrals are integrals of rational
functions, which can be easily computed.

2. ⟨G + δ2Pt
+ bPv

+ W(δ1)⟩. Let us consider separately the
cases δ2 = 1 and δ2 = 0.

A. δ2 = 1. A Lie ansatz constructed for this value of δ2 and
the associated reduced system of ODEs are u = φ(ω) + t , v =

χ (ω) + bt , w = ψ(ω) + δ1t , where ω = x − t2/2, and

φφ′
+ χ ′

+ 1 = 0, φχ ′
+ φ′

+ b = 0, φψ ′
+ δ1 = 0.

For b = ε := ±1, the reduced system admits the singular solution
φ = ε, χ = −ω+c2 and ψ = −δ1εω+c3. In the general case, we
exclude χ ′ from the first two equations of the system and derive
the equation φ′

= (φ − b)/(1 − φ2). Integrating this equation
and then using the obtained solution for integrating the equations
for χ and ψ , we find the general solution of the reduced system
in parametric form,

ω = −
φ2

2
− bφ − (b2 − 1) ln |φ − b| + c1,

χ = bφ + (b2 − 1) ln |φ − b| + c2,

ψ = δ1φ +
δ1

b
ln |φ| +

δ1

b
(b2 − 1) ln |φ − b| + c3.

B. δ2 = 0. A Lie ansatz constructed for this value of δ2 and
the associated reduced system of ODEs are u = φ(ω) + x/t ,
v = χ (ω) + bx/t , w = ψ(ω) + δ1x/t , where ω = t , and

ωφ′
+ φ + b = 0, ωχ ′

+ bφ + 1 = 0, ωψ ′
+ δ1φ = 0.

This yields φ = c1/ω − b, χ = (b2 − 1) ln |ω| + c1b/ω + c2 and
ψ = δ1b ln |ω| + c1/ω + c3.
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3. ⟨Pt
+δ2Pv

+W(δ1)⟩. A Lie ansatz u = φ(ω), v = χ (ω)+δ2t ,
w = ψ(ω) + δ1t , where ω = x, constructed with this subalgebra
reduces the system (4) to the system of ODEs

φφ′
+ χ ′

= 0, φχ ′
+ φ′

+ δ2 = 0, φψ ′
+ δ1 = 0.

Combining the first two equations to exclude χ ′, we derive the
equations δ2+φ′

= φ2φ′, which integrates to φ3/3−φ = δ2ω+c1.
If δ2 = 0, then φ is just a constant satisfying the algebraic

equation. Hence χ is another constant. If φ ̸= 0, then ψ is linear
function with respect to ω. Otherwise, δ1 vanishes and ψ(ω) is an
arbitrary smooth function of its argument.

If δ2 ̸= 0, we construct the general solution of the reduced
system in parametric form

ω =
φ3

3δ2
−
φ

δ2
−

c1
δ2
, χ =

φ2

2
+ c2, ψ =

δ1

2
φ2

− δ1 ln |φ| + c3.

4. ⟨D + aG + bPv
+ W(δ1),Px

⟩. The ansatz u = a ln |t| + c1,
v = b ln |t| + c2, w = δ1 ln |t| + c3 constructed with this subalge-
bra gives only trivial constant solutions since the corresponding
reduced system is a = b = δ1 = 0, which is rather the condition
for consistency of this ansatz with the system S.

5. ⟨D + aG + bPv,W(1)⟩. This subalgebra does not satisfy
the transversality condition in view of the form of the second
basis vector field W(1). Therefore, this subalgebra cannot be
used within the framework of Lie reductions. At the same time,
it can be used for finding partially invariant solutions of the
system (4). The existence of partially invariant solutions for the
system (4) is guaranteed by the fact that this system is only
partially coupled (see Section 7 for details). We can reduce the
essential subsystem (4a)–(4b) with a Lie ansatz constructed using
the one-dimensional subalgebra of g spanned by the first basis
vector field of the two-dimensional algebra under study. Then we
find solutions of the reduced system of ODEs, merge them with
the corresponding ansatz to construct solutions of (4a)–(4b) and
substitute the later solutions to Eq. (4c). The resulting equation
is a first-order linear partial differential equation with respect
tow, which is integrated separately. For constructing the required
solutions of the essential subsystem (4a)–(4b), it in fact suffices
to use the expressions for (u, v) obtained in the course of the first
reduction of this section.

A. u = x/t+a+µ, v = −(a+µ)x/t+(b+a2+aµ) ln |t|+c2. Then
the function w satisfies the equation wt +(x/t+a+µ)wx = 0, the
general solution of which is w = ψ(ϖ ), where ψ runs through
the set of smooth functions of ϖ = x/t − (a + µ) ln |t|.

B. u = φ(ω) + x/t + a, v = χ (ω) + b ln |t|, where ω =

x/t − a ln |t|, and φ and χ are defined by (16). After changing the
independent variables (t, x) to (τ , ω), where τ = ln |t|, Eq. (4c)
with the above value of u takes the form wτ + φ(ω)wω = 0, and
thus its general solution is w = ψ(ϖ ), where ψ runs through the
set of smooth functions of ϖ = τ −

∫
dω/φ = ln |t| − ψ̂ , and ψ̂

is defined by (16) as well.

7. Group analysis of the essential subsystem

The system of Eqs. (4a)–(4b), which we denote for brevity
by S0, does not involve the unknown functionw, i.e., the system S
is only partially coupled. This is why we can solve the system S0
in the first place and substitute the obtained u into Eq. (4c), which
then becomes a linear first-order PDE with respect to w. Finding
a partial solution of Eq. (4c) and acting on it by the transforma-
tion W(W ), we obtain a family of solutions parameterized by an
arbitrary function. Moreover, the system S0 is simpler for finding
exact solutions than S because it has fewer dependent variables
and admits a larger Lie symmetry algebra.

To compute Lie symmetries of the system S0, we again apply
the Lie infinitesimal method, cf. Section 2. We look for the gener-
ator Q = τ∂t+ξ∂x+η∂u+θ∂v of a one-parameter point symmetry
group, where the components τ , ξ , η and θ depend on t , x, u
and v. For the system S0 and the generator Q , the infinitesimal
invariance criterion reads

Q (1) (ut + uux + vx) |S0= 0, Q (1) (vt + uvx + ux) |S0= 0.

The first prolongation Q (1) of the vector field Q is given by

Q (1)
= Q + η(1,0)∂ut + η(0,1)∂ux + θ (1,0)∂vt + θ (0,1)∂vx ,

where the components η(1,0), η(0,1), θ (1,0) and θ (0,1) of the pro-
longed vector field Q (1) are obtained from the general prolonga-
tion formula [24,25]. Then the infinitesimal invariance criterion
implies

η(1,0) + uη(0,1) + ηux + θ (0,1) = 0,

θ (1,0) + uθ (0,1) + ηvx + η(0,1) = 0,

when substituting ut = −uux − vx and vt = −uvx − ux. Splitting
these equations with respect to the parametric derivatives ux
and vx yields the following system of determining equations

R1
:= ηt + uηx + θx = 0, R2

:= θt + uθx + ηx = 0,
R3

:= ηu − θv = 0, R4
:= θu − ηv = 0,

R5
:= τt + 2uτx − ξx = 0, R6

:= ξt + (u2
− 1)τx − η = 0,

R7
:= uτu − τv − ξu = 0, R8

:= uτv − τu − ξv = 0.

(17)

We derive differential consequences of the system (17), which
are then (mainly, implicitly) employed for simplifying successive
differential consequences of this system,

R1
u − R2

v − R3
t − uR3

x − R4
x = ηx = 0,

R2
u − R1

v − R4
t − uR4

x − R3
x = θx = 0,

R9
:= R7

v − R8
u = τuu − τvv − τv = 0,

R10
:= R8

v − R7
u + uR9

= ξuu − ξvv − τu − uτv = 0,

R5
uu − R5

vv − R5
v − R9

t − 2uR9
x + R8

x = 2τxu = 0,

R5
u − R7

x = τtu + 2τx + τxv = 0,

R5
v − R8

x = τtv + uτxv = 0,

R3
u + R4

v + R6
uu − R6

vv − R10
t − u2R9

x = τtu + 2τx − τxv = 0,

R6
u + R7

t = u(τtu + 2τx) − τtv − ηu = 0,

R6
v + R8

t = −ηv − τtu = 0,

and hence R1
= ηt = 0, R2

= θt = 0, whereas the recombination
of the last five differential consequences of the above ones gives
τtv = 0, τxv = 0, τtu + 2τx = 0, ηu = 0 and ηv = 2τx.
Differentiating the last equation with respect to t and x, we get
τxx = τtx = 0, i.e., τx = const. Finally, we obtain the consequences

R3
= −θv = 0, R4

= θu − 2τx = 0,
R6
t = ξtt = 0, R6

x = ξtx = 0, R5
t = τtt = 0.

Hence, the general solution of the system (17) is

τ = A4(x − 2ut) + A1t + τ 0(u, v),

ξ = A4t(2v − u2
+ 1) + A2t + A1x + ξ 0(u, v),

η = 2A4v + A2, θ = 2A4u + A3,

where A1, . . . , A4 are arbitrary constants and (τ 0, ξ 0) runs through
the solution set of the system uτ 0u − τ 0v = ξ 0u , uτ

0
v − τ 0u = ξ 0v . This

proves the following assertion.
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Theorem 15. The maximal Lie invariance algebra g0 of the sys-
tem S0 is spanned by the vector fields

D̆ = t∂t + x∂x, Ğ = t∂x + ∂u,

P̆(τ 0, ξ 0) = τ 0(u, v)∂t + ξ 0(u, v)∂x, P̆v = ∂v,

J̆ =
( 1
2x − tu

)
∂t + t

(
v −

1
2u

2
+

1
2

)
∂x + v∂u + u∂v,

(18)

where (τ 0, ξ 0) runs through the solution set of the system

uτ 0u − τ 0v = ξ 0u , uτ 0v − τ 0u = ξ 0v .

Note that in terms of Riemann invariants the system for
(τ 0, ξ 0) reads ξ 01 = V 2τ 01 , ξ

0
2 = V 1τ 02 .

Remark 16. It is obvious that for any Ω the system S0 cannot
admit a counterpart of the Lie symmetry vector field W(Ω) of
the system S. The algebra g/⟨W(Ω)⟩ is isomorphic to the proper
subalgebra ⟨D̆, Ğ, P̆(1, 0), P̆(0, 1), P̆v⟩ of g0, where the spanning
vector fields correspond to D, G, P t , Px, Pv , respectively.

By virtue of the structure of the algebra g0, the system S0 can
be linearized by a hodograph transformation, cf. [40]. In general,
every (1 + 1)-dimensional system of hydrodynamic type with
two dependent variables can be linearized by a two-dimensional
hodograph transformation [11]. A hodograph transformation ex-
changes the roles of dependent and independent variables. For
the system S0, the pairs of independent and dependent variables
are to be interchanged, i.e., we set y = u, z = v, p = t , q = x,
where y and z are the new independent variables and p and q are
the new dependent variables. Then differentiating the equality
p(u, v) = t , q(u, v) = x with respect to t and x using the chain
rule, we obtain the system of linear algebraic equations for the
first derivatives of (u, v)

pyut + pzvt = 1, pyux + pzvx = 0,
qyut + qzvt = 0, qyux + qzvx = 1.

When assuming the nondegeneracy condition ∆ := pyqz −pzqy ̸=

0, which is equivalent to utvx − uxvt ̸= 0, the solution of this
system is

ut =
qz
∆
, ux = −

pz
∆
, vt = −

qy
∆
, vx =

py
∆
. (19)

In the new variables, the system S0 takes the form

qz − ypz + py = 0, −qy + ypy − pz = 0. (20)

As expected, the system (20) coincides with the system for
(τ 0, ξ 0) from Theorem 15. The cross-differentiation with respect
to y and z leads to a differential consequence of the system (20),
which is the telegraph equation for p alone,

pzz + pz = pyy. (21)

In other words, the system (20) is a potential system for Eq. (21).
The substitution p = e−z/2p̃ reduces (21) to the Klein–Gordon
equation

p̃yy = p̃zz −
p̃
4
. (22)

The maximal Lie invariance algebra gKG of the Klein–Gordon
equation (22) is well known [41]. It is spanned by the vector fields

P̂y
= ∂y, P̂z

= ∂z, Ĵ = y∂z + z∂y, D̂ = p̃∂p̃,

P̂(ψ) = ψ̃(y, z)∂p̃,

where ψ̃ runs through the solution set of (22). The maximal Lie
invariance algebra of the telegraph equation (21) is spanned by
the pushforwards of these vector fields under the transformation
p = e−z/2p̃, where the variables y and z are not changed,

∂y, ∂z −
1
2
p∂p, y∂z + z∂y −

1
2
yp∂p, p∂p, ψ(y, z)∂p,

where ψ = e−z/2ψ̃(y, z) runs through the solution set of (21).
Although the maximal Lie invariance algebras g0 and gKG of the
system S0 and the Klein–Gordon equation (22) look similar and
there seems to be an obvious relation among the generating
elements, D̆ ∼ D̂, Ğ ∼ P̂y, P̆(τ 0, ξ 0) ∼ P̂(ez/2τ 0), P̆v ∼ P̂z

+
1
2 D̂,

J̆ ∼ Ĵ , these algebras are in fact not isomorphic. This can be
explained using the following arguments. Since the systems S0
and (20) are related by a hodograph transformation, the maximal
Lie invariance algebra g̃0 of the system (20) is the pushforward
of g0 under this transformation. Hence the algebras g0 and g̃0
coincide up to re-denoting variables. The transition from the sys-
tem (20) to Eq. (21) requires the projection (y, z, p, q) ↦→ (y, z, p).
At the same time, the vector field P̆(0, 1) is projected to the zero
vector field. Moreover, the vector field J̆ is not projectable, and
thus the commutators [J̆ , P̆(τ 0, ξ 0)] and [Ĵ , P̂(ez/2τ 0)] are not
related to each other in the above way. This is why there is no
direct relation between the set of Lie solutions of the systems S0
and that of Eq. (22) (resp. of Eq. (21)).

8. Solution through linearization of the essential subsystem

Since the system S is partially coupled and the subsystem S0
can be linearized, we can construct an implicit representation
for the general solution of the system S in terms of the general
solution of the telegraph equation (21) or, equivalently, of the
Klein–Gordon equation (22). Consider the potential system py =

Υz +Υ , pz = Υy of Eq. (21). The ‘‘pseudopotential’’ Υ = Υ (y, z) is
in fact related to a usual potential of Eq. (21): the function ezΥ is
the potential associated with the conservation-law characteristic
ez of Eq. (21). Since the equation pz = Υy is in conserved form, we
can introduce the second-level potential Φ = Φ(y, z) defined by
the system Φy = p, Φz = Υ . The equation py = Υz + Υ implies
that the potential Φ satisfies the same telegraph equation (21)
as p, Φzz +Φz = Φyy. Substituting the expression p = Φy into the
system (20) and using the equation for Φ , we obtain a compatible
system (q− yΦy +Φz +Φ)y = 0, (q− yΦy +Φz +Φ)z = 0 for q.
The potential Φ is defined up to a constant summand. Hence we
can assume that q = yΦy − Φz − Φ . Then ∆ := pyqz − pzqy =

(Φyy)2 − (Φyz)2, and the nondegeneracy condition ∆ ̸= 0 reduces,
on the solution set of the equation for Φ , to the condition Φyy ̸=

Φyz or, equivalently, Φyy ̸= −Φyz .1 To find the component of the
general solution for w, we write Eq. (4c) in the new variables,
(qz − ypz)wy − (qy − ypy)wz = 0, or pywy − pzwz = 0 when
taking into account the system (20). We substitute the expression
p = Φy into the last equation multiplied by ez and take into
account the equation for Φ . As a result, we derive the equation
(ezΦz)zwy−(ezΦz)ywz = 0 meaning, in view of ezΦz ̸= const that
w is a function of ezΦz only. Re-writing the expressions obtained
for p, q and w in terms of the initial variables, we construct the
following implicit representation of all solutions of the system S
with utvx − uxvt ̸= 0: t = Φu, x = uΦu −Φv −Φ , w = W (evΦv),
where the function Φ = Φ(u, v) runs through the solution set of
the equation Φvv + Φv = Φuu, and W is an arbitrary function of
its argument evΦv . This representation can also be interpreted as
parametric.

The condition utvx − uxvt = 0 for singular solutions of the
system S is easily seen to be equivalent to the constraint v 2

x = u 2
x ,

i.e., vx = εux with ε = ±1. Then the subsystem S0 also implies
vt = εut . Therefore, v = εu+ c , where c is an arbitrary constant,
and the subsystem S0 reduces to the single equation ut + uux +

εux = 0. Suppose that u ̸= const, which is equivalent to the
condition ux ̸= 0. We perform the one-dimensional hodograph

1 The overdetermined system Φzz +Φz = Φyy , Φyy = εΦyz with ε ∈ {−1, 1}
implies that Φyyy = Φyzz + Φyz = εΦyyz + εΦyy = Φyyy + εΦyy and thus
Φyy = Φyz = 0 resulting also to Φyy = −εΦyz .
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transformation with s = t and y = u being the new independent
variables and q = x and w being the new dependent variables.
Deriving the expressions for first derivatives of u and w in the
hodograph variables,

ux =
1
qy
, ut = −

qs
qy
, wx =

wy

qy
, wt = ws −

qs
qy
wy,

we represent the equations of the reduced system, ut + uux +

εux = 0 and wt + uwx = 0, in these variables, which read
qs = y + ε and qyws = εwy. The equation qs = y + ε integrates
to q = (y + ε)s + ϕ(y), where ϕ is an arbitrary function of y. The
general solution of the equation qyws = εwy with respect to w
is an arbitrary function of a first integral I of the ODE ds/dy =

−ε(s + ϕy). To derive a nice expression for this integral, instead
of ϕ we introduce a new arbitrary function Θ = Θ(y) such that
ϕ = e−εyΘy, which gives I = eεys + εΘy − Θ . Returning to the
initial variables, we obtain x− (u+ ε)t = e−εuΘu, v = εu+ c and
w = W (I), where c is an arbitrary constant, ε = ±1, Θ = Θ(u)
is an arbitrary function of u and W is an arbitrary function of
I = eεut + εΘu −Θ .

If u = const, then also v = const, and the system S reduces
to Eq. (4c) whose general solution in this case takes the form
w = W (x − ut) with W being an arbitrary function of its
argument x − ut . We refer to this case as ultra-singular.

We collect all the three cases for solutions of the system S into
a single assertion.

Theorem 17. Any solution of the system S (locally) belongs to
one of the following families; below W is an arbitrary function of
its argument.

1. The regular family, where utvx − uxvt ̸= 0 (the general solution):

t = Φu, x = uΦu −Φv −Φ, w = W (evΦv). (23)

Here the function Φ = Φ(u, v) runs through the solutions of the
telegraph equation Φvv +Φv = Φuu with Φuu ̸= Φuv .

2. The singular family, where utvx − uxvt = 0 but u and v are not
constants:

x − (u + ε)t = e−εuΘu, v = εu + c, w = W (eεut + εΘu −Θ).

Here c is an arbitrary constant, ε = ±1, and Θ = Θ(u) is an
arbitrary function of u.

3. The ultra-singular family, where u and v are arbitrary constants
and w = W (x − ut).

In other words, the regular, singular and ultra-singular families
of solutions of the system S are associated with solutions of the
subsystem S0 with rank 2, 1 and 0, respectively; cf. [42].

9. Solution using generalized hodograph transformation

Another approach to finding the general solution of the sys-
tem (3) is to employ the generalized hodograph method (see [12]
and Section 1) for the diagonalized form (5) of (3). In this way,
one employs the semi-Hamiltonian property related to the diag-
onalized form (5) instead of the partial coupling, which emerges
in both the simplified forms (4) and (5). For the system (5), the
tuple of the parameter functions W = (W 1,W 2,W 3) in the
ansatz (2) runs through the solution set of the overdetermined
linear systems of first-order partial differential equations

W 1
2 = W 2

1 =
1
2
(W 1

− W 2), W 1
3 = W 2

3 = 0, (24a)

W 3
1 = W 1

− W 3, W 3
2 = W 3

− W 2. (24b)

(Recall that a subscript of a function in {1, 2, 3} denotes the
derivative with respect to the corresponding Riemann invariant.)

Using the equation W 1
2 = W 2

1 , which is in conserved form, and
the equations W 1

3 = W 2
3 = 0, we introduce the potential Λ =

Λ(r1, r2) defined by Λ1 = W 1 and Λ2 = W 2 and reduce the
subsystem (24a) to the single equation

2Λ12 = Λ1 −Λ2. (25)

Then we consider the subsystem (24b) as an overdetermined
inhomogeneous linear system of first-order partial differential
equations with respect to the function W 3. The general solution
of this system is represented in the form

W 3
= F (r3)er

2
−r1

+Φ(r1, r2),

where F is an arbitrary smooth function of r3 and Φ = Φ(r1, r2)
is a particular solution of the subsystem (24b), i.e.,

Φ1 +Φ = Λ1, Φ2 −Φ = −Λ2. (26)

Therefore, the function Φ satisfies the same equation as the
function Λ, 2Φ12 = Φ1 − Φ2. It is convenient to assume for Φ
to be the principal parameter function and to express Λ in terms
of Φ . Then the determinant det(V i

j t + W i
j ), where the indices i

and j run from 1 to 3, is equal to

(Φ11−Φ22)t+2(Φ11+Φ12)(2Φ12+Φ2)−2(Φ22+Φ12)(2Φ11+Φ1).

It vanishes on solutions of equation for Φ if and only if Φ11 = Φ22
and Φ11+Φ12 = 0, which also gives Φ22+Φ12 = 0. Nevertheless,
the equation Φ11 = Φ22 is a differential consequence of the
overdetermined system 2Φ12 = Φ1 − Φ2, Φ11 + Φ12 = 0.
The same result holds true if we replace the second equation of
this system by Φ22 + Φ12 = 0. This is why the nondegeneracy
condition det(V i

j t +W i
j ) ̸= 0 is equivalent to the single inequality

Φ11 +Φ12 ̸= 0 (resp. Φ22 +Φ12 ̸= 0).
As a result, we construct the following implicit representation

for the general solution of the system (5):

x − (r1 + r2 + 1)t = Φ +Φ1,

x − (r1 + r2 − 1)t = Φ −Φ2,

x − (r1 + r2)t = Φ + Fer
2
−r1 ,

(27)

where F is an arbitrary smooth function of r3 with Fr3 ̸= 0 and
the function Φ = Φ(r1, r2) runs through the set of solutions of
the equation 2Φ12 = Φ1 −Φ2 with Φ11 ̸= −Φ12 or, equivalently,
Φ22 ̸= −Φ12. The equation forΦ is reduced by the transformation
Φ̃ = e(r

1
−r2)/2Φ to the Klein–Gordon equation Φ̃12 = −Φ̃/4.

The representation (27) can be derived from the particular
case of the representation (23), where the parameter function W
assumed to be nonconstant. It is just necessary to replace de-
pendent variables in (23) by their expressions in terms of the
Riemann invariants and re-denote Ψ and the inverse of W by −Φ

and −F , respectively.
Families of solutions from Theorem 17 are nicely characterized

in terms of conditions for Riemann invariants: none of (resp.
exactly one of, resp. both) r1 and r2 are constants for the regular
(resp. singular, resp. ultra-singular) family. To complete the set
of solutions of the form (27) to the entire solution set of the
system (5), we should add solutions, where (r1, r2) are defined
by the first two equations of (27) and r3 is a constant, and
solutions obtained from the singular and ultra-singular solutions
of Theorem 17 by the transition to Riemann invariants. The cor-
responding representations in terms of Riemann invariants are
obvious.
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10. First-order generalized symmetries and beyond

To study first-order generalized symmetries2 of the system (3),
it is more convenient to take advantage of its diagonalized form
(5) in terms of the Riemann invariants r = (r1, r2, r3). From
now on the repeated indices i and j mean summation over i, j ∈

{1, 2, 3}, while the index k is fixed and takes the values 1,2
or 3. Up to equivalence of generalized symmetries, it suffices
to consider only evolutionary generalized vector fields [24,43]
with characteristics of the form η = (η1(t, x, r, rx), η2(t, x, r, rx),
η3(t, x, r, rx)), where rx denotes the first-order x-derivative of r.

The first-order evolutionary vector field Q is a generalized
symmetry of the system (5) if it satisfies the condition

Q (1)(rkt + V krkx)|(5)= 0,

cf. (7) and [24, Definition 5.2], which implies the system Rk
= 0

for the characteristic η, where

Rk
:= ηkt − ηk

rj
V jrjx − ηk

r
j
x

(
(r1x + r2x )r

j
x + V jrjxx

)
+ (η1 + η2)rkx + V k(ηkx + ηk

rj
rjx + ηk

r
j
x
rjxx).

Splitting the equation Rk
= 0 with respect to r

j
xx readily gives

ηk
r
j
x
= 0 for j ̸= k, and thus

Rk
:= ηkt + V kηkx + (V k

− V j)ηk
rj
rjx − ηk

rkx
(r1x + r2x )r

k
x + (η1 + η2)rkx.

Then the equations R3
r1x r

1
x

= 0 and R3
r2x r

2
x

= 0 are equivalent to
the equations η1

r1x r
1
x

= 0 and η2
r2x r

2
x

= 0, respectively, and hence the
characteristic components η1 and η2 can be represented in the
form

ηk = θ k(t, x, r)rkx + ζ k(t, x, r), k = 1, 2.

Using this representation, we further split the entire system Rk
=

0 with respect to (r1x , r
2
x ) and, additionally, the equations R1

= 0
and R2

= 0 with respect to r3x . As a result, we obtain the system

2θ1
r2

= 2θ2
r1

= θ1 − θ2, ζ 1
r2

= ζ 2
r1

= 0,

θ k
r3

= ζ k
r3

= 0, Hk
:= θ kt + V kθ kx + ζ 1 + ζ 2 = 0,

ζ kt + V kζ kx = 0, k = 1, 2,

r3xη
3
r3x

+ η3
r1

= θ1r3x , r3xη
3
r3x

− η3
r2

= θ2r3x ,

η3t + V 3η3x + (ζ 1 + ζ 2)r3x = 0.

(28)

In view of ζ 1
r2

= ζ 2
r1

= 0, the equation ζ 1t + V kζ 1x = 0 (resp.
ζ 2t + V kζ 2x = 0) splits with respect to r2 (resp. r1) into the
equations ζ 1t = 0, ζ 1x = 0 (resp. ζ 2t = 0, ζ 2x = 0). We denote
K 1

:= r3x∂r3x
+ ∂r1 , K 2

:= r3x∂r3x
− ∂r2 , B := ∂t + V 3∂x and derive the

following differential consequences of the system (28):

∂r2 (θ
1
t + V 1θ1x + ζ 1 + ζ 2) = θ1x − θ2x + ζ 2

r2
= 0,

∂r1 (θ
2
t + V 2θ2x + ζ 1 + ζ 2) = θ2x − θ1x + ζ 1

r1
= 0,

(K 1B − BK 1)η3 = η3x = (θ1x − ζ 1
r1
)r3x ,

(BK 2
− K 2B)η3 = η3x = (θ2x − ζ 2

r2
)r3x .

Therefore, θ1x − θ2x = ζ 1
r1

= −ζ 2
r2

= ζ 1
r1

− ζ 2
r2
, i.e., ζ 1

r1
= ζ 2

r2
= 0,

θ1x = θ2x , and thus η3x = θ1x r
3
x . We can conclude that ζ 1 and ζ 2

are constants. Differentiating the equation 2θ1
r2

= 2θ2
r1

= θ1 − θ2

with respect to x gives 2θ1
xr2

= 2θ2
xr1

= θ1x − θ2x = 0, and hence
θ1
xr1

= θ2
xr1

= 0 and θ2
xr2

= θ1
xr2

= 0. The differential consequence

2 For short, we say that a generalized symmetry is of the first order if the
order of its characteristic as a differential function is not greater than one. In
particular, we consider Lie symmetries as first-order generalized symmetries.

∂x(H1
− H2) = 0 of (28) is equivalent to θ1xx = θ2xx = 0. Then the

equations ∂xH1
= 0 and ∂xH2

= 0 reduce to θ1tx = θ2tx = 0. As a
result, we have

θ kx = γ = const, θ kt = −γV k
− (ζ 1 + ζ 2),

2θ1
r2

= 2θ2
r1

= θ1 − θ2,

η3x = γ r3x , η3t = −γV 3r3x − (ζ 1 + ζ 2)r3x ,

r3xη
3
r3x

+ η3
r1

= θ1r3x , r3xη
3
r3x

− η3
r2

= θ2r3x .

Integrating this system, we derive explicit expressions for θ1, θ2
and η3 and, therefore, for the entire characteristic η of Q ,

η1 =
(
γ x − γ tV 1

− (ζ 1 + ζ 2)t +Φ +Φr1
)
r1x + ζ 1,

η2 =
(
γ x − γ tV 2

− (ζ 1 + ζ 2)t +Φ −Φr2
)
r2x + ζ 2,

η3 =
(
γ x − γ tV 3

− (ζ 1 + ζ 2)t +Φ
)
r3x +Ω,

where γ , ζ 1 and ζ 2 are arbitrary constants, the function Ω =

Ω
(
r3, er

2
−r1r3x

)
runs through the set of smooth functions of(

r3, er
2
−r1r3x

)
, the function Φ = Φ(r1, r2) runs through the so-

lution set of the equation 2Φr1r2 = Φr1 − Φr2 . This proves the
following theorem.

Theorem 18. The algebra Σ1 of first-order reduced generalized
symmetries of the system (5) is spanned by evolutionary vector fields
of the form

Ď =
(
x − (r1 + r2 + 1)t

)
r1x∂r1 +

(
x − (r1 + r2 − 1)t

)
r2x∂r2

+
(
x − (r1 + r2)t

)
r3x∂r3 ,

Ǧ1 = (tr1x − 1)∂r1 + tr2x∂r2 + tr3x∂r3 , Ǧ2 = ∂r1 − ∂r2 ,

P̌(Φ) = (Φ +Φr1 )r
1
x∂r1 + (Φ −Φr2 )r

2
x∂r2 +Φr3x∂r3 ,

W̌(Ω) = Ω∂r3 ,

where the parameter function Ω = Ω
(
ω0, ω1

)
runs through the

set of smooth functions of ω0
:= r3 and ω1

:= er
2
−r1r3x , and

the parameter function Φ = Φ(r1, r2) runs through the set of
solutions of the equation 2Φr1r2 = Φr1 − Φr2 , which is reduced
by the substitution Φ̃ = e(r

1
−r2)/2Φ to the Klein–Gordon equation

Φ̃r1r2 = −Φ̃/4.

Remark 19. The space of first-order reduced generalized sym-
metries of the system (5) is closed with respect to the Lie bracket
of generalized vector fields, and hence we can call it an alge-
bra. This property is shared by all strictly hyperbolic diagonal-
izable hydrodynamic-type systems. Up to skew-symmetry of Lie
bracket, nonzero commutation relations among the above vector
fields are exhausted by the following ones:

[Ď, P̌(Φ)] = P̌(Φ), [Ǧ1, P̌(Φ)] = P̌(−Φr1 ),

[Ǧ2, P̌(Φ)] = P̌(Φr1 −Φr2 ),

[Ď, W̌(Ω)] = W̌(ω1Ωω1 ), [Ǧ1, W̌(Ω)] = W̌(ω1Ωω1 ),

[Ǧ2, W̌(Ω)] = −2W̌(ω1Ωω1 ),

[W̌(Ω1), W̌(Ω2)]

= W̌
(
Ω1
ω0 (ω1Ω2

ω1 −Ω2) −Ω2
ω0 (ω1Ω1

ω1 −Ω1)
)
.

Therefore, the subspaces I1 and I2 that consist of all generalized
vector fields of the forms P̌(Φ) and W̌(Ω) from the algebra Σ1,
respectively, are (infinite-dimensional) ideals of Σ1. Moreover,
the ideal I1 is commutative. Since

P̌(er
2
−r1 ) = W̌(ω1) = er

2
−r1r3x∂r3 ,

the above ideals are not disjoint, I1
∩ I2

= ⟨er
2
−r1r3x∂r3⟩.
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Remark 20. Amongst the generalized vector fields presented in
Theorem 18, there are evolutionary forms of Lie symmetries of
the system (5) (cf. Remark 3) as well as genuinely generalized
symmetries. The generalized vector fields Ď, Ǧ1, Ǧ2, P̌(r1+r2),
P̌(1) and W̌(Ω) with Ω depending on r3 alone are evolution-
ary forms of the vector fields −D̂, −

1
2 Ĝ −

1
2 P̂

v , P̂v , P̂ t , −P̂x

and Ŵ(Ω), respectively. The vector fields W̌(Ω) withΩ not being
a function of r3 only are genuine generalized symmetries. The ex-
istence of generalized symmetries P̌(Φ) with Φ /∈ span(1, r1+r2)
can be explained by observing that the pushforward of the vector
field P̌(Φ) by the projection to (t, x, r1, r2) is the evolutionary
form of the Lie symmetry vector field P̆(τ 0, ξ 0) of the essential
subsystem S0 (re-written in terms of (r1, r2)) with τ 0 =

1
2 (Φr1 +

Φr2 ) and ξ 0 =
1
2 (Φr1 + Φr2 )(r1 + r2 − 1) − Φ + Φr2 . Therefore,

Lie symmetries of the essential subsystem that are lost upon
transition to the entire system are recovered as generalized first-
order symmetries of the entire system. In contrast to the family
{P̆(τ 0, ξ 0)}, the other distinguished Lie symmetry of the essential
subsystem S0, J̆ , is related to ζ 1

r1
, which vanishes in the proof

of Theorem 18, and therefore this symmetry has no counterpart
amongst first-order symmetries of the system S.

First-order symmetries from the subspace {W̌(Ω)} can be
directly generalized to an arbitrary order.

Proposition 21. The system (5) admits generalized symmetries
of arbitrarily high order of the form W̌(Ω) = Ω∂r3 , where Ω
runs through the set of smooth functions of a finite, but unspecified
number of ωι = (er

2
−r1Dx)ιr3, ι ∈ N0, i.e., Ω = Ω(ω0, . . . , ωκ ) with

κ ∈ N0.

Proof. The differential operator A = er
2
−r1Dx commutes with the

operator B = Dt + (r1 + r2)Dx on solutions of the system (5) since

[B,A] = (Br2 − r2x − Br1 − r1x )A.

Therefore, the operator A maps solutions of Eq. (5c) to solutions
of the same equation. In particular, the equations Bωκ = 0 are
differential consequences of the system (5). This observation as
well as the fact that Eq. (5c) is both linear and of first order with
respect to r3 hints that W̌(Ω) is a generalized symmetry of the
system (5). Indeed, it satisfies the invariance criterion. □

In fact, the system (5) admits another family of generalized
symmetries of arbitrarily high order, which essentially differs
from the family {W̌(Ω)} and is obtained by the prolongation of
generalized symmetries of the essential subsystem to r3. In the
next paper on the system (5), we shall exhaustively describe all
generalized symmetries of this system.

11. Hydrodynamic conservation laws and their generaliza-
tions

Here we find the complete space of zeroth-order conservation
laws of the system (5), which is in fact exhausted by linear
combinations of a single non-translation-invariant conservation
law with hydrodynamic conservation laws. Recall that a conser-
vation law is called hydrodynamic if its density ρ is a function
of dependent variables only. Following [44], we also present the
complete set of first-order conservation laws whose densities do
not involve independent variables and a family of conservation
laws of arbitrarily high order.

Theorem 22. The space of zeroth-order conservation laws of
the system (5) is spanned by the single non-translation-invariant
conservation law with the conserved current

er
1
−r2
(
x − V 3t, V 3(x − V 3t) − t

)

and the space of hydrodynamic conservation laws of this system,
which is naturally isomorphic to the space of conserved currents of
the general form(
er

1
−r2Ω + Ψr1 − Ψr2 , (r

1
+ r2)er

1
−r2Ω + V 1Ψr1 − V 2Ψr2

)
.

Here Ω is an arbitrary smooth function of r3 and the parameter
function Ψ = Ψ (r1, r2) runs through the solution set of the equation
2Ψr1r2 = Ψr2 − Ψr1 , which is reduced to the Klein–Gordon equation
Ψ̃r1r2 = −Ψ̃ /4 by the transformation Ψ̃ = e(r

2
−r1)/2Ψ .

Proof. If ρ = ρ(t, x, r) is a density of a conservation law of the
system (5), then ĒD̄tρ = 0, where D̄t = ∂t −

∑3
i=1 V

irix∂ri is the
restricted reduced operator of total derivative with respect to t
in view of the system (5), Ē =

(
∂ri − Dx∂rix

, j = 1, 2, 3
)T is the

restricted Euler operator. The above condition is equivalent to the
system
3∑

i=1

(
(V j

−V i)ρrirj +V j
ri
ρrj −V i

rj
ρri
)
rix+ρrjt +V jρrjx = 0, j = 1, 2, 3.

Splitting this system with respect to rix gives three equations cor-
responding to summands without derivatives of r and a system
associated with coefficients of rix, i = 1, 2, 3, whose left-hand side
is antisymmetric with respect to the permutation of i and j. Hence
the latter system contains only three independent differential
equations on ρ. As a result, we derive a system of six determining
equations for ρ,
ρr1r3 = ρr3 , ρr2r3 = −ρr3 , 2ρr1r2 = ρr2 − ρr1 ,

ρtrj + V jρxrj = 0, j = 1, 2, 3.
(29)

Denoting R0
:= ρr1r3 − ρr3 and Rj

:= ρtrj + V jρxrj , j = 1, 2, 3, we
derive the differential consequence

∂r3R
1
− (∂t + V 1∂x)R0

− R3
= ρr3x = 0,

and thus also ρr3t = 0. The first two equations of the system (29)
can be rewritten as (er

2
−r1ρr3 )r1 = (er

2
−r1ρr3 )r2 = 0. Therefore,

the general solution of (29) admits the representation

ρ = er
1
−r2Ω + ρ̃(t, x, r1, r2),

where Ω = Ω(r3) is an arbitrary smooth function of r3, and
ρ̃ = ρ̃(t, x, r1, r2) is the general solution of the reduced system

2ρ̃r1r2 = ρ̃r2 − ρ̃r1 , ρ̃trj + V jρ̃xrj = 0, j = 1, 2. (30)

The last two equations of (30) integrate to ρ̃rj = f j(yj, r1, r2),
j = 1, 2, where f 1 and f 2 are smooth functions of their arguments,
and yj = x − V jt . The consistency of these representations for
the derivatives ρ̃r1 and ρ̃r2 with each other and with the first
equations of (30) leads to equations for f 1 and f 2,

(y1 − y2)f 1y1 + 2f 1
r2

= (y1 − y2)f 2y2 + 2f 2
r1

= f 2 − f 1. (31)

Successively differentiating these equations with respect to y1
and y2, we get f 1y1y1 = f 2y2y2 = 0, i.e., f j = g j(r1, r2)yj + hj(r1, r2)
for some smooth functions g j and hj of (r1, r2), j = 1, 2. Then the
splitting of Eqs. (31) with respect to y1 and y2 gives a system

g1
r2

= −g1, g2
r1

= g2, g1
= −g2, 2h1

r2
= 2h2

r1
= h2

− h1

for the coefficients g j and hj. The general solution of this system
can be represented in the form

g1
= −g2

= Cer
1
−r2 , h1

= Ψr1r2 − Ψr1r1 , h2
= Ψr2r2 − Ψr1r2 ,

where C is an arbitrary constant and Ψ = Ψ (r1, r2) is an arbitrary
solution of the equation 2Ψr1r2 = Ψr2 −Ψr1 . Simultaneously inte-
grating the equations ρ̃rj = f j in view of the derived expressions
for fj, j = 1, 2, we finally obtain

ρ̃ = Cer
1
−r2 (x − V 3t) + Ψr1 − Ψr2 + ρ0
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with ρ0 being an arbitrary smooth function of (t, x), which is the
density of a null divergence and should thus be neglected. To
find the flux σ associated with ρ = er

1
−r2Ω + ρ̃, we notice that

Dxσ = −D̄tρ = Dx
(
(r1+r2)er

1
−r2Ω+C(V 3(x−V 3t)−t)+V 1Ψr1 −

V 2Ψr2
)
. □

The conservation-law characteristic associated with the above
conserved current is

(er
1
−r2Ω + Ψr1r1 − Ψr1r2 , −er

1
−r2Ω + Ψr1r2 − Ψr2r2 , e

r1−r2Ωr3 ).

In addition to the standard equivalence of conservation laws
one can consider their equivalence up to the action of a point
symmetry group of the system of differential equations under
study, see [45,46] for details. A set of conservation laws that
generate a space of conservation laws via linear combining and
acting with point symmetries is called a generating set for this
space [45].

There are only two inequivalent values of the parameter func-
tion Ω(r3) up to transformations in the point symmetry group G
of the system (5) (see Theorem 9), Ω = 1 and Ω = r3. Moreover,
it is easily seen that the conserved current with (Ω,Ψ ) = (1, 0)
coincides with the conserved current with (Ω,Ψ ) = (0, er

1
−r2 ).

Corollary 23. A generating set for the space of hydrodynamic con-
servation laws of the system (5) up to the point symmetry group G of
this system consists of the conservation laws with conserved currents

DHC =

(
er

1
−r2r3, (r1 + r2)er

1
−r2r3

)
,

EHC(Ψ ) =
(
Ψr1 − Ψr2 , (r1 + r2 + 1)Ψr1 − (r1 + r2 − 1)Ψr2

)
,

where Ψ = Ψ (r1, r2) runs through the solution set of the equation
2Ψr1r2 = Ψr2 − Ψr1 , which is reduced by the transformation Ψ̃ =

e(r
2
−r1)/2Ψ to the Klein–Gordon equation Ψ̃r1r2 = −Ψ̃ /4.

Remark 24. Functions Φ and Ψ parameterizing first-order gen-
eralized symmetries and hydrodynamic conservation laws of the
system (5) satisfy adjoint differential equations. This can be ex-
plained by the fact that characteristics of conservations laws of
the system (5) are cosymmetries of this system, cf. [47].

For the system (4), the space of hydrodynamic conservation
laws is naturally isomorphic to the space of conserved currents of
the general form (evΩ+Ψv, uevΩ+uΨv+Ψu), whereΩ = Ω(w)
is an arbitrary smooth function of w and the parameter func-
tion Ψ = Ψ (u, v) runs through the solution set of the telegraph
equation Ψuu = Ψvv − Ψv . The conservation-law characteris-
tic associated with the above conserved current is (Ψuv, evΩ +

Ψvv, evΩw). A generating set of the space of hydrodynamic con-
servation laws of the system S consists of the conservation laws
with conserved currents (evw, uevw), (Ψv, uΨv + Ψu), where the
parameter function Ψ = Ψ (u, v) runs through the solution set of
the telegraph equation Ψuu = Ψvv − Ψv .

Many semi-Hamiltonian systems, including the system (5),
also possess first-order conservation laws [44,48] (see also [49,
50]). To construct such conservation laws for the system (5)
following [44, Theorem 5.1], we should first find some smooth
nonvanishing functions Gi(r), i = 1, 2, 3, that satisfy the equations

Gi
rj

Gi = −
V i
rj

V i − V j , i ̸= j.

We can take G1
= e−r2/2, G2

= er
1/2, G3

= er
1
−r2 . Every first-order

conserved current of the system (5) with density not involving
(t, x) is equivalent to the sum of a hydrodynamic conserved
current and a conserved current of the form(

2∑
i=1

(Gi)2f i

rix
+ G3Ω,

2∑
i=1

V i (G
i)2f i

rix
+ V 3G3Ω − 2x

2∑
i=1

V i
ri

(Gi)2f i

rix

)
,

where Ω = Ω(r3, r3x/G
3) is an arbitrary smooth function of its

arguments, and f 1 = f 1(r1) and f 2 = f 2(r2) are arbitrary smooth
functions of r1 and r2, respectively, that satisfy the condition
2∑

i=1

(Gi)2f i = const .

(The above summations are in the range {1, 2} since V 3
r3

= 0.)
Therefore, f 1(r1) = cer

1
and f 2(r2) = −ce−r2 , where c is an

arbitrary constant.

Proposition 25. The space of conserved currents of conserva-
tion laws of the system (5) of order not greater than one with
(t, x)-independent densities is spanned by a family of conserved
currents C1(Ω), C0 and the conserved currents EHC(Ψ ) presented
in Corollary 23. Here

C0 =

((
1
r1x

−
1
r2x

)
er

1
−r2 ,

(
V 1

r1x
−

V 2

r2x

)
er

1
−r2
)
,

C1(Ω) =

(
er

1
−r2Ω, (r1 + r2)er

1
−r2Ω

)
,

(32)

and Ω runs through the set of smooth functions of ω0
= r3 and

ω1
= r3xe

r2−r1 .

Since the system S is not genuinely nonlinear, Theorem 5.2
of [44] implies the following assertion.

Proposition 26. The system S possesses a family of nontrivial
conservation laws of arbitrarily high order with conserved cur-
rents C1(Ω) parameterized by an arbitrary function Ω of a finite,
but unspecified number of ωι = (er

2
−r1Dx)ιr3, ι ∈ N0.

Remark 27. In a fashion different from [44], existence of
higher-order conservation laws for the system (5) can be ex-
plained by actions of generalized symmetries W̌(Ω) = Ω∂r3 on
a hydrodynamic conserved current DHC, see Proposition 21 and
Corollary 23. This claim agrees with Proposition 25.

In fact, the system (5) admits another family of conservation
laws of arbitrarily high order, which essentially differs from the
family of conserved currents C1(Ω) and is obtained by pulling
back conservation laws of the essential subsystem with the pro-
jection to (t, x, r1, r2). In the next paper on the system (5), we
shall exhaustively describe all local conservation laws of this
system, including (t, x)-dependent ones.

12. Conclusions

In the present paper we have performed an extended symme-
try analysis of the isothermal no-slip drift flux model given by the
system (3). It turned out that the form (3) was not convenient
for the study within the symmetry framework. In particular,
the maximal Lie invariance algebra of the system (3) is difficult
to compute even using specialized computer algebra packages,
e.g. DESOLVII [51]. Therefore, transforming dependent variables
we have represented the model in the form (4). This represen-
tation has allowed us to compute the maximal Lie invariance al-
gebra g of the initial system. This algebra is infinite-dimensional.
Note that the infinite-dimensional part of g spanned by {W̃(Ω̃)}
was missed in [23].

Moreover, we have computed the complete point symmetry
group of the system S using the combined algebraic method.
Since the algebra g is infinite-dimensional, the straightforward
application of the automorphism-based method is not appropri-
ate. For this reason we have chosen to employ its megaideal-
based counterpart. However, the fact that the finite-dimensional
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part of the algebra g coincides with its radical r, which is a
megaideal, allowed us to partially use the automorphism-based
version of the algebraic method as well. To this end we have
computed the entire automorphism group of the radical r of g.
Finally, we have employed the constraints derived from the alge-
braic method to obtain the complete point symmetry group (10)
of the isothermal no-slip drift flux model S applying the direct
method.

Following the standard Lie reduction procedure [25], we have
also obtained optimal lists of one- and two-dimensional subal-
gebras of the algebra g, which were employed for finding appro-
priate solution ansatzes, using which we have found families of
invariant and partially invariant solutions of the system S.

Sections 7–8 and 9 of the present paper provide two alterna-
tive approaches to finding solutions of the system under study.
The first of them is based on the fact that the subsystem S0
is partially decoupled from the rest of the system, so we could
construct its solutions first and then solve the remaining equa-
tion (4c) in parametric form. This choice is justified by the fact
that the system S0 admits a larger Lie symmetry group than the
Lie symmetry group of S , and thus one can find more invariant or
partially invariant solutions. Moreover, one should keep in mind
the well-known fact that every hydrodynamic-type system in two
independent variables, say, x, t , and two dependent variables,
say, u, v, can be linearized via the two-dimensional hodograph
transformation with (p, q) = (t, x), (y, z) = (u, v) being the new
dependent and independent variables, respectively. It is worth
noticing that upon having applied the above hodograph trans-
formation to S0 the equation (4c) in the new variables remains
a first-order linear PDE in w which can be easily solved. The
above change of variables has led to the potential system (20)
of the telegraph equation (21). Using the subsequent change of
variables p̃ = p exp(−z/2) we obtained the famous Klein–Gordon
equation (22). As the latter equation is well studied, we could
construct large classes of exact solutions thereof, find p and solve
equation (4c), which allows us to find solutions of the initial
system S in parametric form.

The second approach to finding solutions for (4) is based on
the semi-Hamiltonian property of (5), which has allowed us to
employ the generalized hodograph transformation. Just as for
the previous method, the problem of finding solutions of the
system (4) was reduced to solving the Klein–Gordon equation.
Nevertheless, the solutions obtained via generalized hodograph
transformations are included in the list of solutions obtained via
the decoupling of (4).

We have computed the first-order generalized symmetries
for the system (5), amongst which we found both evolutionary
forms of point symmetries and genuinely generalized symme-
tries. Interestingly, some of genuinely generalized symmetries
are nothing but evolutionary forms of point symmetries of the
essential subsystem. Moreover, the system S possesses genuinely
generalized symmetries beyond the latter, see Remark 20.

We have also constructed the entire space of zero-order
conservation laws for the system (4), which is spanned by a sin-
gle non-translation-invariant conservation law and the (infinite-
dimensional) space of hydrodynamic conservation laws of this
system. Note that while the existence of hydrodynamic-type sys-
tems with an infinite number of independent hydrodynamic con-
servation laws was known for a long time [52,53], hydrodynamic-
type systems with non-hydrodynamic conservation laws are sig-
nificantly less common, cf. e.g. [54] and references therein. The
space of hydrodynamic conservation laws of a diagonalizable
semi-Hamiltonian system is parameterized by n arbitrary func-
tions of one variable [13], where n is the number of dependent
variables.

For the system (4) two of the arbitrary functions in question
are determined by solutions of the telegraph equation Φuu =

Φvv − Φv , while the third function is an arbitrary function
of w, which can be reduced to 1 by actions of point symmetries
unless it is zero. The first-order conservation laws with (t, x)-
independent densities have also been classified. Existence of
higher-order conservation laws has been justified using the fact
that system (5) is not genuinely nonlinear. Such conservation
laws have been found using the action of generalized symmetries
of the system (5) of arbitrarily high order.

We found only generalized symmetries and conservation laws
of the system S of order not greater than one as well as higher-
order generalized symmetries and conservation laws related to
the linearly degenerate part of the system S.

In general, it is quite a common situation when a
hydrodynamic-type system does not possess generalized symme-
tries of order greater than one. The key observation facilitating
the study of higher-order symmetries for the system S is the
fact that this system is only partially coupled, and the essential
subsystem S0 of the system S is linearized by the hodograph
transformation to the Klein–Gordon equation for which all gener-
alized symmetries are known [55–57]. The main conjecture here
is that the entire space of generalized symmetries of the system S
is spanned by generalized symmetries from the family presented
in Proposition 21 and prolongations of generalized symmetries of
the essential subsystem S0 to r3. The further work is to figure out
which of the generalized symmetries of S0 are locally prolonged
to generalized symmetries of the entire system S and how this
prolongation is performed.

Linearizability of the subsystem S0 can also be applied to
classification of all (local) conservation laws of the system S. Our
conjecture here is that the entire space of conservation laws of
the system S is spanned by conservation laws from the family
presented in Remark 27 and by those being pullbacks of con-
servation laws the essential subsystem S0 by the projection to
(t, x, r1, r2). Moreover, one does not need to prolong conservation
laws of the essential subsystem S0 to conservation laws of the
entire system S , which makes the problem easier than that of
finding generalized symmetries.

It is readily verified that system (5) admits a one-parameter
family of Hamiltonian operators of Dubrovin–Novikov type (see
e.g. the surveys [14,58] for more details on such operators) with
the parameter λ,

Pλ = er
2
−r1 diag

(
1,−1, λer

2
−r1
)
Dx

+
er

2
−r1

2

⎛⎝r2x − r1x r1x − r2x −2r3x
r2x − r1x r1x − r2x −2r3x
2r3x 2r3x −2λer

2
−r1
(
r1x − r2x

)
⎞⎠ , (33)

and the associated Hamiltonian representation

rt = Pλ(δH/δr),

where r = (r1, r2, r3)T, the Hamiltonian functional is given by

H = −
1
4

∫
er1−r2

(
(r1 + r2)2 + 2(r1 − r2)

)
dx,

δ/δr is the variational derivative, and the integral is understood
in the formal sense of calculus of variations; cf. e.g. [24, Chapter 4]
for the details on the latter.

The Hamiltonian operators (33) can be formally inverted if λ ̸=

0, and in view of this and of the above the ratio Rµν = Pµ ◦ P−1
ν

defines, for ν ̸= 0, a hereditary recursion operator for (5); see
e.g. [9,24] and references therein for more details on recursion
operators in general. Alas, the leading term of Rµν − I, where
I is the identity operator, is a degenerate matrix, which makes
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Rµν rather uninteresting from the point of view of generating
symmetries for (5).

In closing note that (5) also admits infinitely many Hamil-
tonian operators that are not of Dubrovin–Novikov type, and a
recursion operator which is free of the degeneracy of the above
kind. Also, it is well known that the Hamiltonian operators map
cosymmetries (in particular, characteristics of conservation laws)
into symmetries, which could lead to an interesting interplay
among the two for the system (5), and hence for S. All of this will
be discussed in more detail in the sequel to the present paper.
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