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Abstract

Recent experiments [A. Kudrolli, B. Pier, J.P. Gollub, Physica D 123 (1998) 99–111] on two-frequency parametrically
excited surface waves produced an intriguing “superlattice” wave pattern near a codimension-two bifurcation point where
both subharmonic and harmonic waves onset simultaneously, but with different spatial wave numbers. The superlattice pattern
is synchronous with the forcing, spatially periodic on a large hexagonal lattice, and exhibits small-scale triangular structure.
Similar patterns have been shown to exist as primary solution branches of a generic 12-dimensionalD6+̇T 2-equivariant
bifurcation problem, and may be stable if the nonlinear coefficients of the bifurcation problem satisfy certain inequalities
[M. Silber, M.R.E. Proctor, Phys. Rev. Lett. 81 (1998) 2450–2453]. Here we use the spatial and temporal symmetries of
the problem to argue that weakly damped harmonic waves may be critical to understanding the stabilization of this pattern
in the Faraday system. We illustrate this mechanism by considering the equations developed by Zhang and Viñals [J. Fluid
Mech. 336 (1997) 301–330] for small amplitude, weakly damped surface waves on a semi-infinite fluid layer. We compute
the relevant nonlinear coefficients in the bifurcation equations describing the onset of patterns for excitation frequency ratios
of 2

3 and 6
7. For the2

3 case, we show that there is a fundamental difference in the pattern selection problems for subharmonic
and harmonic instabilities near the codimension-two point. Also, we find that the6

7 case is significantly different from the
2
3 case due to the presence of additional weakly damped harmonic modes. These additional harmonic modes can result in a
stabilization of the superpatterns. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Faraday waves are parametrically excited on the free surface of a fluid layer when it is subjected to a vertical
vibration of sufficient strength. This pattern-forming hydrodynamic system has proven to be especially versatile in
laboratory experiments [4,5], exhibiting the common patterns familiar from convection (stripes, squares, hexagons,
spirals), as well as more exotic patterns such as triangles [6], quasipatterns [1,7,8], superlattice patterns [1,9,10],
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time-dependent rhombic patterns [11] and localized waves [9,12]. See [13] for a recent review paper on Faraday
wave pattern formation.

The temporal period of the Faraday waves is typically twice that of the vibration in the case of purely sinusoidal
forcing. The observation of this subharmonic response is attributed to Faraday [14] and was first explained theoret-
ically by Benjamin and Ursell’s [15] linear stability analysis for inviscid, potential flow. More recently, it has been
shown that waves,synchronouswith the forcing, can be excited in thin layers of fluid vibrated at low frequency
[16–18], in certain viscoelastic fluids [9], and in fluids forced periodically, but with more than one frequency com-
ponent [7,19,20]. In each of these Faraday systems, it is possible to tune the forcing parameters in order to access
the transition between subharmonic and harmonic response. At this codimension-two point, both instabilities set in
simultaneously, but with different spatial wave numbers.

Many of the experimental [6,7,10–12,21,22] and theoretical studies [3,23–25] of exotic patterns in the Faraday
system attribute their formation near the codimension-two (or “bicritical”) point to resonant triad interactions
involving the critical or near critical modes with different spatial wave numbers. In particular, the focus has been on
spatial triadsk1, k2 andk3 = k1 ± k2, where|k1| = |k2| is the wave number of one critical mode, and|k3| is the
wave number of the other critical mode. The angleθr, which separatesk1 andk2, is readily tuned by changing the
frequency componentsmω andnω of a two-frequency periodic forcing function. It has been suggested, for example,
that by tuning this angle, different types of exotic wave patterns may be selected [7]. Such a simple mechanism for
nonlinearpattern selection, which is based on examining thelinear instabilities of the spatially homogeneous state,
is naturally attractive, but warrants careful examination as we show.

Silber and Skeldon [26] recently showed that whether or not resonant triads associated with the bicritical point
affect pattern selection depends on the temporal characteristics of the competing instabilities. For instance, the
bicritical point of laboratory experiments typically involves a subharmonic mode (Floquet multiplier−1) and a
harmonic mode (Floquet multiplier+1). On the subharmonic side of the bicritical point, the onset pattern selection
problem is strongly influenced by the presence of the weakly damped harmonic mode. In contrast, on the harmonic
side, the onset pattern selection problem is completely insensitive to the presence of near critical subharmonic
modes. These general ideas were demonstrated in [26] through a bifurcation analysis of a hydrodynamic model of
one-dimensional Faraday waves.

Here, we extend the bifurcation analysis in [26] to two-dimensional spatially periodic patterns and to higher
forcing frequencies within the two-frequency forcing function. With the experimentally relevant higher forcing
frequencies (e.g. 6ω and 7ω) employed in this paper, we find the new possibility that spatially resonant triads
involving nearly criticalharmonicmodes may influence the harmonic wave pattern selection problem. This is not
an option for the lower forcing frequencies (e.g. 1ω/2ω and 2ω/3ω) used in previous weakly nonlinear analyses of
the two-frequency Faraday problem [23,26].

We follow Crawford’s [27–30] seminal work on Faraday waves by posing the pattern selection problem in terms
of a symmetry-breaking bifurcation of the trivial fixed point of a stroboscopic map. By restricting solutions to those
that are spatially periodic on some hexagonal lattice we obtain a finite-dimensional bifurcation problem that can be
analyzed using the methods of equivariant bifurcation theory [31]. For a review of this approach to hydrodynamic
pattern formation problems, see [32].

This formulation of the bifurcation problem allows us to address recent two-frequency Faraday wave experimental
observations [1] of a transition between simple hexagons and the triangular superlattice wave pattern depicted
in Fig. 1a. Specifically, we follow [2] and consider a bifurcation problem that is equivariant with respect to a
12-dimensional irreducible representation ofD6+̇T 2, which is analyzed in [33,34]. The observed harmonic wave
states correspond to primary transcritical branches of the generic bifurcation problem. In order for the observed
hexagon–superlattice pattern transition to be reproduced by the bifurcation problem, we must consider a degenerate
case in which the quadratic coefficient vanishes. Moreover, the cubic coefficients must satisfy certain inequalities,
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Fig. 1. (a) Blow up of the experimental superlattice Faraday wave pattern described in [1] (courtesy of Kudrolli, Pier and Gollub). The forcing
function (1) hasm/n = 6

7 ,χ = 61◦ andφ = 20◦. Note that the pattern is periodic on a (large) hexagonal lattice, and that in each hexagonal “tile”
there is small triangular structure. (b) The corresponding neutral stability curve, calculated from the full (linearized) hydrodynamic equations,
for the experimental parameters reported in [1]. (Sub)harmonic resonance tongues are given by solid (dashed) lines. The neutral curves are
computed using the method described in [20].

e.g. certain combinations of nonlinear cross-coupling coefficients must be small compared to the cubic self-coupling
coefficient.

In this paper we compute the quadratic and cubic nonlinear coefficients in the bifurcation problem from the
Zhang–Viñals equations [23] which apply to deep layers of low viscosity fluids subjected to a periodic acceleration.
We show that the necessary inequalities for stable superlattice patterns can be satisfied for the forcing frequencies
employed in the experiments (6ω/7ω), and that a resonant triad involving a weakly damped harmonic mode plays
a key role in stabilizing the superpattern. Specifically, we find that the presence of a near critical harmonic mode
leads to a cancellation in one of the cubic cross-coupling coefficients, causing this coefficient to become small in
magnitude as required. This selects a preferred angleθr for the superlattice patterns. In other words, it suggests which
of the countably infinite 12-dimensional irreducible representations ofD6+̇T 2 is most pertinent to this Faraday
wave problem.

The paper is organized as follows. Section 2.1 presents background linear stability results for the two-frequency
Faraday experiment, while Section 2.2 reviews results from [26] on the influence of spatio-temporally resonant
triads on pattern selection. Section 2.3 then formulates the generic bifurcation problem relevant to our investigation.
The bifurcation results derived from the two-frequency Faraday problem modeled by the Zhang–Viñals equations
are presented in Section 3; the coefficients of the leading nonlinear terms are evaluated numerically from expressions
derived perturbatively in Appendix A. We consider two different cases. In Section 3.2, we consider an example
involving forcing frequencies in ratiom/n = 2

3, focusing on differences between the pattern selection problems
for subharmonic and harmonic wave onset in a vicinity of the bicritical point. Section 3.3 then turns to an example
involving higher forcing frequencies in ratiom/n = 6

7, and shows how weakly damped harmonic modes can stabilize
harmonic wave superpatterns involving the angleθr associated with a harmonic wave resonant triad. Finally, Section
4 concludes the paper with a brief summary of our results and some discussion of issues we hope to address in the
future.
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2. Background

2.1. Linear results

In the two-frequency Faraday wave problem a container of fluid is accelerated in the vertical direction with an
excitation of the form

g(t) = g0 + gz(cos(χ) cos(mωt)+ sin(χ) cos(nωt + φ)). (1)

Herem andn are co-prime integers, so the forcing function is periodic with periodT = 2π/ω, andg0 is the usual
gravitational acceleration. For small amplitude accelerationgz the surface of the fluid remains flat and the fluid
layer is merely translated up and down with the drive. For higher values ofgz waves are parametrically excited on
the surface of the fluid layer.

Besson et al. [20], starting with the Navier–Stokes equations for the free boundary problem, determined the linear
stability of the flat surface in the case that the fluid layer has finite depth but is unbounded horizontally. They used
a Floquet–Fourier ansatz and solved the linear stability problem numerically to determine, for each spatial wave
numberk, the value ofgz where a Floquet multiplier first crosses the unit circle. The resulting neutral stability curves
show that the primary instability is due to either subharmonic or harmonic waves depending on the value ofχ and
the values ofm andn. (Harmonic/subharmonic response is relative to the forcing periodT = 2π/ω.) Typically, if χ
is small so that cos(χ) cos(mωt) is of greater significance than sin(χ) cos(nωt+φ), then the response is harmonic
if m is even and subharmonic ifm is odd. Similarly, ifχ is close to1

2π , the primary instability is (sub)harmonic
if n is even (odd). At the so-called bicritical point,χ = χc, both harmonic and subharmonic instabilities onset at
the same value of the excitation amplitude, but with different wave numbers. The harmonic superlattice pattern of
Fig. 1a, observed by Kudrolli et al. [1], was obtained near the bicritical point form/n = 6

7 forcing in (1). The
pertinent neutral stability curve, computed using the experimental fluid parameters, is given in Fig. 1b.

2.2. Spatio-temporally resonant triads

When the hydrodynamic problem is posed on a horizontally unbounded domain there is no preferred direction
(in the horizontal) so that each critical wave number from linear analysis actually corresponds to a circle of critical
wave vectors. There are two such critical circles at the bicritical point as shown in Fig. 2. In this situation it has
been argued that resonant triads may play a central role in the Faraday wave pattern selection problem [6,7,22–24].
Resonant triads are comprised of three critical wave vectors that sum to zero; two examples are shown in Fig. 2.
In the first example,km1 + km2 − kn = 0, and in the second examplekn1 − kn2 − km = 0. Here the subscripts

Fig. 2. (a) A plot of a neutral stability curvegz(k) showing minima atk = km andk = kn. (b) An associated spatially resonant triadkm1, km2

andkn = km1 + km2. (c) An associated spatially resonant triadkn1, kn2 andkm = kn1 − kn2.
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m, n indicate that the critical wave numbers can be roughly associated with themω andnω excitation terms in (1).
We identify with each resonant triad an angleθr ∈ (0, 1

2π ], which separates the critical wave vectors with the same
length. For instance, the angle in Fig. 2b satisfies

cos

(
θr

2

)
= kn

2km
, (2)

while the angle in Fig. 2c satisfies

sin

(
θr

2

)
= km

2kn
. (3)

To illustrate the potential for resonant triads to influence pattern formation in parametrically excited systems
we consider a bifurcation problem involving the three critical Fourier modes associated with the resonant triads of
Fig. 2. Much of this discussion is a review of the key theoretical ideas in [26]. Because of the periodic forcing of
the system, it is natural to formulate the bifurcation problem in terms of a stroboscopic map [27]. Specifically, we
denote the free surface heightz = h(x, t), x ∈ R2 at timet = pT, p ∈ Z by

h(x,pT) = A(p)exp{ik l1 · x} + B(p)exp{ik l2 · x} + C(p)exp{i(kl1 + kl2) · x} + c.c.+ · · · . (4)

HereA,B andC are the complex amplitudes of the linear modes that are neutrally stable at the bicritical point
and which form a resonant triad. In this discussion we assume that the angleθr betweenkl1 andkl2 is not 1

3π so
that the critical modes interact nonlinearly to generate other modes on a rhombic (rather than hexagonal) lattice.
These additional modes, denoted by· · · above, are linearly damped at the bicritical point. We may then use the
spatial reflection and translation symmetries to determine the general form of the bifurcation equations that govern
the dynamics on a center manifold. Specifically, to cubic order, the codimension-two bifurcation problem takes the
form

A→ σA+ αBC + (a|A|2 + b|B|2 + c|C|2)A, B → σB + αAC + (a|B|2 + b|A|2 + c|C|2)B,
C →µC + δAB+ (d|A|2 + d|B|2 + e|C|2)C, (5)

whereA is the complex conjugate ofA, and the coefficients are all real. The Floquet multipliersσ andµ are
either+1 or−1 depending on whether the linear modesA,B, andC are harmonically or subharmonically excited,
respectively.

In deriving (5) we considered only the spatial symmetries associated with the resonant triad. Following [27], we
enforce the temporal symmetry associated with the triad through a normal form transformation of (5). Specifically,
there exists a near identity nonlinear transformation that removes all nonlinear terms in (5) which do not commute
with LT, whereL is the Jacobian matrix associated with the linearized problem (see, e.g., Crawford’s [35] review
paper on bifurcation theory). Here

L =

 σ 0 0

0 σ 0
0 0 µ


 , (6)

where|σ | = |µ| = 1. The normal form symmetry may be interpreted in terms of time translation. Specifically,
advancing by one period in time maps period-doubled modes to their negatives, e.g. ifµ = −1, then advancing one
period takesC → −C.

In the case thatµ = +1 (σ = ±1), the bifurcation problem (5) is already in normal form. This observation is
trivial if σ = +1. If σ = −1, then the normal form symmetry is equivalent in action to that associated with the
spatial translation symmetryx → x + d, whered satisfieskl1 · d = kl2 · d = π .
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In contrast, in the case thatµ = −1, a normal form transformation removes the quadratic terms in the bifurcation
problem (5). The normal form of the bifurcation problem, through cubic order, is then

A→ σA+ (a|A|2 + b|B|2 + c|C|2)A, B → σB + (a|B|2 + b|A|2 + c|C|2)B,
C → −C + (d|A|2 + d|B|2 + e|C|2)C. (7)

We note thatC = 0 is a dynamically invariant subspace of (7). This is true to all orders of the normal form since
C = 0 is the fixed point subspace of a (spatio-)temporal symmetry. Specifically, ifσ = +1 thenC = 0 is the fixed
point subspace associated with the time translation by one period, i.e.(A,B,C) → (A,B,−C). And if σ = −1,
thenC = 0 is the fixed point subspace associated with the spatio-temporal symmetry involving time translation by
one period followed by spatial translation byd, where againkl1 · d = kl2 · d = π .

We now examine (5) more closely in the case ofµ = +1 so that we cannot remove the quadratic nonlinearities by
normal form transformation. We focus on a detuning from the bicritical point such that theCmode is weakly damped,
while theA,Bmodes are neutrally stable. In this case,|σ | = 1,µ < 1, we can further reduce the bifurcation problem
to one involving the critical modesA andB, withC constrained to the center manifold:C = (δ/(1−µ))AB+ · · · .
We then obtain the reduced bifurcation problem

A → σA+ a|A|2A+ β(θr)|B|2A, B → σB + a|B|2B + β(θr)|A|2B, (8)

where the cross-coupling coefficient is

β(θr) = b + αδ

1 − µ
. (9)

We see that in this case, the near critical spatio-temporally resonant modeC in (5) can contribute significantly to
the cross-coupling coefficientβ(θr) since 0< 1 − µ � 1 in (9). For example, forµ sufficiently close to 1, the
second term in (9) dominates andβ(θr) becomes large in magnitude. However, we also point out that ifb andαδ
have opposite signs, thenβ(θr) could actually vanish for someµ − 1 > 0. Examples of these two very different
situations are given in Sections 3.2 and 3.3, respectively.

We contrast the above with what happens whenµ = −1 at the bicritical point. In this caseα = δ = 0 in the
normal form (7) andC = 0 is an invariant subspace with associated dynamics of the form (8) withβ(θr) = b. In
this case, the triad is spatially resonant, but not temporally resonant, and the cross-coupling coefficient is insensitive
to any parameter proximity to the bicritical point.

These observations aboutβ(θr) are important for understanding which patterns might be observable near onset
since branching direction and stability of patterns are determined by various nonlinear (cross-coupling) coefficients
in the amplitude equations. We discuss this further at the end of Section 2.3.

Finally, we note that results similar to theµ = −1 case above apply when there are weakly damped modes with
complexFloquet multipliers. Specifically, these modes do not contribute significantly to the cubic cross-coupling
coefficientβ(θ), even when they are spatially resonant with the critical modes. Only damped modes with Floquet
multiplierµ sufficiently close to+1 contribute.

2.3. Hexagonal lattice bifurcation problem

The analysis of Section 2.2 led to certain conclusions about the nonlinear coefficients in the general rhombic
lattice bifurcation problem

v1 → σv1 + (a|v1|2 + β(θ)|v2|2)v1, v2 → σv2 + (a|v2|2 + β(θ)|v1|2)v2. (10)



M. Silber et al. / Physica D 143 (2000) 205–225 211

Herev1, v2 are the complex amplitudes of two critical Fourier modes with wave vectorsk1, k2 (|k1| = |k2| = kc)
that are separated by an angleθ ∈ (0, 1

2π ] (θ 6= 1
3π ). In particular, it follows from (9) that if a weakly damped

harmonic mode is removed via center manifold reduction, thenβ(θ) may become large in magnitude when the
spatial resonance condition is met, i.e. whenθ = θr. This is in contrast to the situation where there are weakly
damped subharmonic modes, which have no special influence on the pattern selection problem at onset.

We now lay the framework for examining possible implications of these results for stability of harmonic hexag-
onal and triangular superpatterns. We follow [2] and introduce the 12-dimensionalD6+̇T 2-equivariant bifurcation
problems that enable us to determine the relative stability of simple hexagonal patterns, stripe patterns and certain
rhombic and superlattice patterns. We make use of bifurcation results derived in [2,33,34], which apply when there
is a single critical wave numberkc, to demonstrate how the magnitude of the cross-coupling terms are pivotal in
determining pattern stability. As before, we consider a stroboscopic map, but now restrict analysis to patterns that
are doubly periodic on some hexagonal lattice. For instance, the free surface height takes the form

h(x,pT) =
∑

m∈ZZZ2

ĥm(p)exp{i(m1k1 +m2k2) · x} + c.c. (11)

at timet = pT, wherek1, k2 ∈ R2 generate a hexagonal dual lattice (|k1| = |k2| andk1 ·k2 = −1
2|k1|2); see Fig. 3.

The 12-dimensional irreducible representations ofD6+̇T 2 apply to the bifurcation problem when there are 12
integer pairs(m1,m2) in (11) such that|m1k1 +m2k2| = kc, wherekc is the critical wave number of the instability
at the bifurcation point (see Fig. 3 for an example). Following [33] we will associate with each 12-dimensional
irreducible representation an integer pair(n1, n2); in particularn1 andn2 are co-prime,n1 > n2 >

1
2n1 > 0, and

n1 + n2 is not a multiple of 3. The neutral modes that span the center eigenspace at the bifurcation point take the
form

{z1 exp{iK 1 · x} + z2 exp{iK 2 · x} + z3 exp{iK 3 · x} + z4 exp{iK 4 · x} + z5 exp{iK 5 · x}
+ z6 exp{iK 6 · x} + c.c.|zj ∈ C}, (12)

where

K1 = n1k1 + n2k2, K2 = (−n1 + n2)k1 − n1k2, K3 = −n2k1 + (n1 − n2)k2,

K4 = n1k1 + (n1 − n2)k2, K5 = −n2k1 − n1k2, K6 = (n2 − n1)k1 + n2k2. (13)

Fig. 3. Hexagonalk-space lattice, with critical circle of radiuskc superimposed. In this example(n1, n2) = (3,2) in (13), and the critical circle
intersects 12 points that lie at the vertices of two hexagons rotated byθh relative to each other.
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Note that±K1,±K2,±K3 point to the vertices of a hexagon, as do±K4,±K5,±K6, and that the two hexagons
are rotated relative to each other by an angleθh ∈ (0, 1

3π) indicated in Fig. 3. This angle is related to(n1, n2) by

cos(θh) = n2
1 + 2n1n2 − 2n2

2

2(n2
1 − n1n2 + n2

2)
. (14)

Also note that the ratio of lengthscales for superpatterns depends on(n1, n2). Specifically,|k1| determines the
larger periodicity scale of the superpatterns, while|K j | = kc determines the smaller lengthscale associated with
the instability; thus the lengthscale ratio is

|K j |
|k1| = (n2

1 − n1n2 + n2
2)

1/2 ≥
√

7. (15)

The example of Fig. 3 corresponds to(n1, n2) = (3,2), for whichθh ≈ 22◦ in (14) and the lengthscale ratio (15) is
the smallest associated with a hexagonal lattice, namely

√
7. These are the angle and lengthscale ratios that apply

to the experimental superlattice pattern reproduced from [1] in Fig. 1a.
The general form of the 12-dimensionalD6+̇T 2-equivariant mappings are derived in [34]. Through cubic order

in zj , they take the form

z1 → σ((1 + λ)z1 + εz2z3 + (b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2)z1),

z2 → σ((1 + λ)z2 + εz1z3 + (b1|z2|2 + b2|z1|2 + b2|z3|2 + b4|z5|2 + b5|z6|2 + b6|z4|2)z2),

z3 → σ((1 + λ)z3 + εz1z2 + (b1|z3|2 + b2|z1|2 + b2|z2|2 + b4|z6|2 + b5|z4|2 + b6|z5|2)z3),

z4 → σ((1 + λ)z4 + εz5z6 + (b1|z4|2 + b2|z5|2 + b2|z6|2 + b4|z1|2 + b5|z3|2 + b6|z2|2)z4),

z5 → σ((1 + λ)z5 + εz4z6 + (b1|z5|2 + b2|z4|2 + b2|z6|2 + b4|z2|2 + b5|z1|2 + b6|z3|2)z5),

z6 → σ((1 + λ)z6 + εz4z5 + (b1|z6|2 + b2|z4|2 + b2|z5|2 + b4|z3|2 + b5|z2|2 + b6|z1|2)z6), (16)

whereλmeasures the distance from the critical excitation amplitude, andσ = +1(−1) in the case of (sub)harmonic
instability. All nonlinear coefficients are real. Ifσ = −1 then a normal form transformation removes all even terms
on the right-hand side of (16) and henceε = 0. The dependence of the general equivariant bifurcation problem on
(n1, n2) does not appear until higher than cubic order in its Taylor expansion [34].

We now recall some basic results pertaining to the bifurcation problem (16). In theσ = +1 case the equivariant
branching lemma [31] ensures the existence of harmonic wave solution branches in the form of stripes, simple
hexagons, rhombs, and super hexagons [33]. A primary solution branch with submaximal isotropy, named super
triangles, was also shown to exist in [2]. See Fig. 1a for an example of this pattern. Table 1 gives the general form
of these solutions along with their branching and stability assignments. The general bifurcation results in the case
thatσ = −1 can be found in [34]; this bifurcation problem differs from the harmonic case in that it possesses an
additional Z2 normal form symmetry. The equivariant branching lemma then ensures existence of five additional
solution branches to those listed in Table 1 [34].

The generic presence of a quadratic term in (16) for the harmonic case renders all of the solutions in Table 1
unstable at bifurcation. Hence the transition from the flat state to the patterned harmonic wave state is expected to be
hysteretic. In order to capture stable weakly nonlinear solutions, we must focus our analysis on the unfolding of the
degenerate bifurcation problemε = 0. Note that whenε = 0 the stability of simple and super hexagons/triangles
is not determined at cubic order since the phasesφj of solutionszj = rj exp{iφj } to (16) are then arbitrary. Even
in the case of 0< |ε| � 1 the relative stability of super hexagons and super triangles depends on terms that are
at least fifth-order. However, we may use the cubic truncation to determine that one (and only one) of these two
solutions is stable. The higher-order terms are only needed to determine whether it is the hexagonal or triangular
superpattern [2].
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Table 1
Branching equations and stability assignments for the harmonic case (σ = +1)a

Planform and branching equation Stabilityb

Stripes;
z = (x,0,0,0,0,0),
0 = λx + b1x

3 + O(x5)

sgn(b1), sgn(εx+(b2−b1)x
2), sgn(−εx+(b2−b1)x

2), sgn(b4−b1), sgn(b5−b1), sgn(b6−b1)

Simple hexagons;
z = (x, x, x,0,0,0),
0 = λx + εx2 + (b1 + 2b2)x

3 + O(x4)

sgn(εx+ 2(b1 + 2b2)x
2), sgn(−εx+ (b1 − b2)x

2), sgn(−εx+ (b4 + b5 + b6 − b1 − 2b2)x
2),

sgn(−εx + O(x3))

Rhombs (Rh4);
z = (x,0,0, x,0,0),
0 = λx + (b1 + b4)x

3 + O(x5)

sgn(b1+b4), sgn(b1−b4), sgn(ζ1), sgn(ζ2), whereζ1+ζ2 = (−2b1−2b4+2b2+b5+b6)x
2,

ζ1ζ2 = −ε2x2 + (b1 + b4 − b2 − b5)(b1 + b4 − b2 − b6)x
4

Rhombs (Rh5);
z = (x,0,0,0, x,0)

Same as Rh4 with b4 ↔ b5

Rhombs (Rh6);
z = (x,0,0,0,0, x)

Same as Rh4 with b4 ↔ b6

Super hexagons;
z = (x, x, x, x, x, x),
0 = λx + εx2 + (b1 + 2b2)x

3

+ (b4 + b5 + b6)x
3 + O(x4)

sgn(εx + 2(b1 + 2b2 + b4 + b5 + b6)x
2), sgn(εx + 2(b1 + 2b2 − b4 − b5 − b6)x

2),
sgn(−εx + O(x3)), sgn(ζ1), sgn(ζ2), whereζ1 + ζ2 = −4εx + 4(b1 − b2)x

2,
ζ1ζ2 = 4(εx − (b1 − b2)x

2)2 − 2((b4 − b5)
2 + (b4 − b6)

2 + (b5 − b6)
2))x4,

sgn(ζ3), whereζ3 = O(x2(n1−1))

Super triangles;
z = (z, z, z, z, z, z),
z = x exp{iψ}, ψ 6= 0, π, . . .

Same as super hexagons exceptζ3 → −ζ3

aε, b1, . . . , b6 are coefficients in the bifurcation equations (16).
bA solution is stable if all quantities in this column are negative (see [2,33,34] for more details).

When 0< |ε| � 1, it follows from Table 1 that a necessary condition for one of the superpatterns to be stable
over some range ofλ values near onset is for

b1 + 2b2 < −|b4 + b5 + b6| < 0. (17)

The combinationb1 + 2b2 is independent of the lattice angleθh in (14); it is computed from a hydrodynamic model
of the two-frequency Faraday problem in Appendix A.2 by considering bifurcation to simple hexagons. In contrast,
the combinationb4 + b5 + b6 depends onθh and is computed in Appendix A.1 from the hydrodynamic equations
by considering the rhombic lattice bifurcation problem (10). Specifically, the cross-coupling coefficientsb4, b5, b6

are

b4 = β(θh), b5 = β(θh + 2
3π), b6 = β(θh − 2

3π), (18)

whereθh is the angle betweenK1 andK4 given by (14). (The functionβ(θ) may be extended fromθ ∈ (0, 1
2π ] to

anglesθ ∈ (0,2π) usingβ(θ) = β(−θ) = β(θ + π), identities that follow from the symmetries of the rhombic
lattice bifurcation problem.)

The inequality (17) will be satisfied (if at all) only for thoseθh values where|b4 + b5 + b6| is small compared
to |b1 + 2b2|. Moreover, ifb1 − b2 < 0 in addition to (17), then simple hexagons become unstable on a given
hexagonal lattice when

λ = − ε2(b4 + b5 + b6)

(b1 + 2b2 − b4 − b5 − b6)2
. (19)

If b4 + b5 + b6 < 0 for all θh, then simple hexagons first lose stability with increasingλ to a perturbation in the
direction of a superpattern for that value ofθh that minimizes|b4 + b5 + b6|. If b4 + b5 + b6 > 0 for anyθh, then
small amplitude simple hexagons are unstable whenλ > 0. Thus, we expect the stability properties of superpatterns
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and simple hexagons to be affected by the presence of a weakly damped harmonic mode whenθh or θh ± 2
3π is

nearθr (or π ± θr), the resonant triad angle, since it is in this situation that one of the cross-coupling coefficients
b4, b5 or b6 may suddenly change in magnitude.

3. Results

This section shows explicitly the role of resonant triads and weakly damped harmonic modes in the pattern
selection problem for two-frequency forced Faraday waves. We examine how the cubic nonlinear coefficients in
(16), for the Zhang–Viñals hydrodynamic equations vary as a function ofθh, the lattice angle, and explain how
this can be related toθr, the resonant triad angle. The details of the computation of the coefficients are relegated to
Appendix A. We focus on two examples involving forcing frequency ratiosm/n = 2

3 and6
7. The2

3 case demonstrates
the basic difference between the pattern selection problems for subharmonic and harmonic instabilities near the
bicritical point. Our investigation also reveals a fundamental difference between harmonic wave pattern selection
in the 2

3 and 6
7 cases, due to the presence of additional harmonic wave resonance tongues for the higher6

7 forcing
frequencies (see Fig. 4).

3.1. The Zhang–Viñals hydrodynamic equations

The quadratic and cubic nonlinear coefficients in the hexagonal bifurcation problem (16) are computed in
Appendix A from a model of the two-frequency Faraday problem derived by Zhang and Viñals [3] from the
Navier–Stokes equations. Their equations, which apply to weakly damped, small amplitude surface waves on
a semi-infinite layer of fluid, describe the evolution of the surface heighth(x, τ ) and surface velocity potential
8(x, τ ). Specifically,

∂τh= γ∇2h+ D̂8− ∇ · (h∇8)+ 1
2∇2(h2D̂8)− D̂(hD̂8)+ D̂[hD̂(hD̂8)+ 1

2h
2∇28],

∂τ8= γ∇28+ 00∇2h−G(τ)h+ 1
2(D̂8)

2

−1
2(∇8)2 − (D̂8)[h∇28+ D̂(hD̂8)] − 1

200∇ · ((∇h)(∇h)2), (20)

Fig. 4. Neutral stability curves computed from (20) linearized abouth = 8 = 0. Floquet multipliers of+1 (−1) are indicated by solid (dashed)
lines. (a)m/n = 2

3 , φ = 0◦, χ = χc = 66.6◦, 00 = 0.53,G0 = 0.47 andγ = 0.09 in (20) and (21). (b)m/n = 6
7 , φ = 0◦, χ = χc = 53.0◦,

00 = 7.5,G0 = 1.5 andγ = 0.08.
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whereD̂ is a nonlocal operator that multiplies each Fourier component of a field by its wave number, i.e.D̂ exp{ik ·
x} = |k| exp{ik · x}. Here time has been scaled byω so that the (non-dimensionalized) two-frequency acceleration
is

G(τ) = G0 − f (cos(χ) cos(mτ)+ sin(χ) cos(nτ + φ)). (21)

The damping numberγ , capillarity number00, gravity numberG0, and dimensionless accelerationf are related
to the forcing function (1) and the fluid parameters by

γ ≡ 2νk2
0

ω
, 00 ≡ 0k3

0

ρω2
, G0 ≡ g0k0

ω2
, f ≡ gzk0

ω2
. (22)

Hereν is the kinematic viscosity,0 the surface tension,ρ the fluid density, and the wave numberk0 is chosen to
satisfy the dispersion relation

g0k0 + 0k3
0

ρ
= (1

2mω)
2. (23)

3.2. Example 1:m/n = 2
3

This example demonstrates a result of the general normal form analysis of Section 2.2, namely that proximity
to the subharmonic/harmonic bicritical point will strongly influence the pattern selection problem for subharmonic
waves, but not for harmonic waves. Specifically, we examine the cross-coupling coefficientβ(θ) in (10) as a function
of the angleθ for onset of both harmonic and subharmonic waves near the bicritical point. We show that only in the
subharmonic case does|β(θ)| become large at the resonant angleθr in (3).

As described in Section 2.1, the primary instability changes from harmonic (Floquet multiplier+1) to subharmonic
(Floquet multiplier−1) asχ in (21) is increased through the bicritical pointχc. This transition is determined from
the linear hydrodynamic problem, which for the Zhang–Viñals model (20) takes the form of a damped Mathieu
equation for each Fourier modeh = hk(τ )exp{ikx}:

h′′
k + 2γ k2h′

k + (γ 2k4 +�2
k)hk = f k[ cos(χ) cos(mτ)+ sin(χ) cos(nτ)]hk. (24)

Here the natural frequency�k satisfies the dispersion relation�2
k = G0k+00k

3. A numerically computed neutral
curvef (k) for m/n = 2

3 forcing andχ = χc = 66.6◦ is given in Fig. 4a. The other parameters of this example are
φ = 0◦, 00 = 0.53,G0 = 0.47 andγ = 0.09.

We now varyχ nearχc, holding all other parameters fixed, and examine the rhombic lattice cross-coupling
coefficientβ(θ) in (10) for onset subharmonic/harmonic waves, as appropriate. We have scaled the amplitudesv1

andv2 in (10) so thata = −1. We note that in the harmonic caseβ diverges asθ → 60◦, i.e. when the rhombic
lattice approaches the hexagonal one and there is an additional mode associated with the center manifold dynamics.
This is in contrast to the subharmonic case, for which there is a normal form symmetry that ensures existence of a
dynamically invariant subspace spanned by a pair of subharmonic modes separated by 60◦. Thus, in the subharmonic
caseβ remains finite atθ = 60◦.

For χ > χc the primary instability is to subharmonic waves. For instance, forχ = 66.7◦ the minimum of
the neutral curve occurs at wave numberkc,s = 1.415 with forcing amplitudefc = 0.842, and is associated
with a Floquet multiplierσ = −1. The nearly critical harmonic resonance tongue has its minimum at(k, f ) =
(0.962,0.846). In this case, there is a spatio-temporally resonant triad comprised of the weakly damped harmonic
mode and, from (3), two subharmonic modes separated byθr = 39.9◦. It follows from our general analysis of
Section 2.2 thatβ(θ) will be large in magnitude forθ nearθr. Fig. 5a showsβ(θ) for this case, and indeed,
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Fig. 5. Cross-coupling coefficientsβ(θ) in (10) computed in Appendix A from (20) for the casem/n = 2
3 andφ = 0◦ in (21). The fluid

parameters used are given in the caption of Fig. 4a. (a)χ = 66.7◦ > χc, when the bifurcation is to subharmonic waves. Note the dip at
θ = θr = 39.9◦. (b) χ = 66.5◦ < χc, when the bifurcation is to harmonic waves. Because the (nearly) critical modes are not in temporal
resonance,β(θ) shows no special structure atθ = θr = 85.7◦. We have removed from this plot the region nearθ = 60◦, whereβ(θ) diverges.

the nonlinear coefficient exhibits a large dip centered atθ = θr = 39.9◦. At this angle,|β(θ)| takes on its
largest value. Similar observations have been made by Zhang and Viñals [23] for forcing frequencies in the ratio
m/n = 1

2.
In contrast, whenχ < χc, so that the first instability to occur with increasingf is harmonic, we find that the

weakly damped subharmonic mode leaves no signature in the plotβ(θ). For instance, forχ = 66.5◦ the primary
instability is to harmonic waves at wave numberkc,h = 0.963 and forcing amplitudefc = 0.841. The subharmonic
resonance tongue has a minimum at(k, f ) = (1.415,0.843). While there is aspatially resonant triad involving
two critical harmonic modes, which by (2) are separated byθr = 85.7◦, the triad of modes is notspatio-temporally
resonant. Fig. 5b shows the cross-coupling coefficientβ(θ) for this case (with the region near 60◦ removed). As
anticipated, there is no signature of the weakly damped subharmonic mode in the plot. Similar observations have
been made by Silber and Skeldon [26] in the setting of one-dimensional surface wave patterns.

3.3. Example 2:m/n = 6
7

This example demonstrates a fundamental difference between harmonic wave pattern selection for low forcing
frequencies (e.g. 2ω/3ω) and for high forcing frequencies (e.g. 6ω/7ω). This difference is due to the presence of
multiple harmonic resonance tongues in the neutral curve associated with the higher forcing frequencies (see Fig. 4).
In particular, these resonance tongues suggest the possibility that weakly damped harmonic modes may influence
the harmonic wave pattern selection problem. This is in contrast to them/n = 2

3 example of Section 3.2, for which
only subharmonic wave pattern competition was affected by weakly damped harmonic waves. In this section, we
also demonstrate that the weakly damped harmonic modes may stabilize harmonic wave superpatterns at a lattice
angleθh ≈ θr, due to a near cancellation of the two terms that contribute toβ(θr) given by (9) as described in
Section 2.2.

We focus on bifurcation to harmonic waves forχ = 52.4◦, which is close to the bicritical valueχc = 53.0◦. The
remaining parameters areφ = 0◦, 00 = 7.5,G0 = 1.5 andγ = 0.08. We note that while the forcing frequency
ratiom/n = 6

7 coincides with that used in the experiments of Kudrolli et al. [1], the remaining parameters do not
coincide with the experiment. One problem with using the experimental parameters in the Zhang–Viñals equations
is that the primary instability then moves to a subharmonic resonance tongue at very small wave number, i.e. the
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Fig. 6. (a) Cross-coupling coefficientβ(θ) in (10) computed from (20) for the casem/n = 6
7 , φ = 0◦ andχ = 52.4◦ < χc in (21), and for

fluid parameters given in the caption of Fig. 4b. (b) Plots ofb1 + 2b2 (dashed) andb4 + b5 + b6 (solid) versusθh. We note thatθh only takes on
the discrete values satisfying (14). (c) Cross-coupling coefficientβ(θ) for 6ω forcing only; we have used the same parameters as in (a) except
that nowχ = 0◦. (d) Neutral curve for single frequency forcing. Floquet multipliers of+1 (−1) are indicated by solid (dashed) lines, and are
computed relative to the periodT ′ = 2

6π . The primary harmonic resonance tongue from the two-frequency case of Fig. 4b is superimposed as
a dotted line.

first resonance tongue of Fig. 4b. This is because the Zhang–Viñals model does not accurately capture the damping
at smallk that is due to finite depth effects.

In this example we find two prominent features in the plot of the cross-coupling coefficientβ(θ) in Fig. 6a: a
large dip atθ = 67.6◦ and a small spike atθ = 22.2◦. We now discuss the origin of these two features.

The large dip aroundθ = 67.6◦ is not a consequence of two-frequency forcing. Specifically, the dip remains in
β(θ) even for purely 6ω forcing (i.e. in the limitχ → 0); cf. plots ofβ(θ) in Figs. 6a and c which are obtained
with χ = 52.4◦ andχ = 0◦, respectively. Thus, this feature may be understood in the context of single frequency
forcing, and has in fact already been investigated by Zhang and Viñals [3] in that setting. Specifically, ifχ = 0◦

then the forcing period isT ′ = 1
6T = 2

6π and the primary instability is to subharmonic waves with period 2T ′.
A plot of the corresponding neutral curve is given in Fig. 6d with the primary harmonic resonance tongue from
Fig. 4b superimposed on it. In this single-frequency setting the feature at 67.6◦ is understood as being due to the
damped harmonic mode aroundk = 1.7 in Fig. 6d. Perhaps more relevant to this discussion is our observation that
this feature, which leads to a large value of|b4 + b5 + b6|, is destabilizingfor superpatterns. To see this, we refer
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Fig. 7. Floquet multipliersµ = ξ exp{iψ} computed from (24) for the parameters used in Fig. 4b and for critical forcing amplitude
f = fc = 1.552. (a) Magnitudeξ , and (b) phaseψ versus wave numberk. The solid lines in (a) and (b) are computed numerically, while the
dotted lines are obtained by considering the unforced problemf = 0; see Eq. (26). (c) Numerically computed real partξ cosψ of the Floquet
multipliers. The “bubbles” correspond to real-valued Floquet multipliers. The boxed region, shown blown up in (d), reveals a tiny “bubble”
aroundk = 0.383, with real Floquet multiplierµ = 0.93.

to the discussion surrounding Eq. (17) and to Fig. 6b, which shows that

0> b1 + 2b2 > b4 + b5 + b6 = β(θh)+ β(θh + 120◦)+ β(θh − 120◦)
= β(θh)+ β(60◦ − θh)+ β(60◦ + θh) for 60◦ + θh ≈ 67.6◦. (25)

In contrast the spike atθ = 22.2◦ in Fig. 6a minimizes|b4+b5+b6| atθh ≈ 22.2◦ as shown in Fig. 6b. As we show
below, this feature can lead to a stabilization of superpatterns and a destabilization of the simple hexagons. First
we provide strong evidence that the spike is due to a resonance between the primary harmonic instability (σ = 1)
and a weakly damped harmonic mode with a real Floquet multiplierµ that is close to 1 (see (5) and (9) of Section
2.2). In order to show this we must first compute the Floquet multipliersµ(k) at the critical forcing amplitudefc to
determine the wave numbersk at whichµ ≈ 1 at the onset of instability.

We determine the Floquet multipliersµ(k) atf = fc = 1.552 numerically from the linear problem (24). These
are presented in Fig. 7. We find that the multipliers are well approximated away from the two primary resonance
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tongues by considering the unforced problem (f = 0 in Eq. (24)), for which

µ± = exp{2πλ±}, λ± = −γ k2 ± i�k. (26)

Figs. 7a and b show the magnitudeξ and the phaseψ of the Floquet multipliersµ = ξ exp{iψ} both as computed
numerically from (24) (solid line) and approximated by (26) (dotted line). Fig. 7c shows the real part of the Floquet
multipliers, ξ cosψ , versus wave numberk. The “bubbles” in this plot correspond to wave numbers at which
the Floquet multipliers are real (as opposed to a complex conjugate pair). Weakly damped harmonic modes are
associated with bubbles near a Floquet multiplier of+1. Numerically, we find that there are small bubbles of real
Floquet multipliers whenever the phaseψ is a multiple ofπ ; this is demonstrated in Fig. 7d. In particular, we find a
bubble at wave numberk = 0.383 with associated real Floquet multiplierµ = 0.93. This mode is weakly damped
and forms a resonant triad with primary harmonic modes separated byθr = 22.2◦. (Herekc,h = 0.997 for the
primary instability, which corresponds tokn in (3), with km = 0.393 determined by the weakly damped harmonic
mode.) Here we have focused on the wave numbers associated with real Floquet multipliers nearµ = +1 since
weakly damped modes with complex Floquet multipliers do not form a spatio-temporally resonant triad with the
primary harmonic modes.

We now present some hexagonal lattice bifurcation results for the specific parameters of this example, which are
given in Fig. 4b. The computation of the quadratic and cubic coefficients in the bifurcation problem (16) is described
in Appendix A. We scale the amplitudeszj in (16) so thatb1 = −1, in which case we find thatε = 0.00014 and
b2 = −2.73. Thus, we expect results of Section 2.3, which focused on the unfolding of the degenerate bifurcation
problemε = 0, to apply.

We find that simple hexagons, super hexagons and super triangles all bifurcate transcritically with the subcritical
branch turning around in a saddle-node bifurcation. The stripes and rhombs solutions arise in supercritical pitchfork
bifurcations. These claims are true for all lattice anglesθh since the cubic coefficientsb1, . . . , b6 in (16) are always
negative (see Fig. 6a). Moreover, we find that simple hexagons are always stabilized in a saddle-node bifurcation
and that they do not lose stability until after they reach the supercritical regimeλ > 0. In contrast, super hexagons
and super triangles are always unstable atλ = 0, since at that point the sign of the second eigenvalue in Table 1 is
determined by sgn(b1 + 2b2 − 3b4 − 3b5 − 3b6), which is positive for allθ (see Fig. 6b). Thus, asλ is increased
through 0, we expect a jump to finite amplitude simple hexagons as the other primary branches of (16) are unstable.

We find that simple hexagons eventually lose stability asλ increases since the following two expressions from
Table 1 change sign to positive (at least for someθh)

sgn(−εx + (b1 − b2)x
2), sgn(−εx + (b4 + b5 + b6 − b1 − 2b2)x

2) (27)

as the amplitudex of simple hexagons grows withλ. The first quantity changes from negative to positive at
λ ≈ 3.2 × 10−8. The second quantity changes sign with increasingλ only for those values ofθh whereb4 + b5 +
b6 − b1 − 2b2 > 0, a condition which is met forθh > 11.5◦. Fig. 8a shows the value ofλ where the expressions
of (27) change sign as a function ofθh. It follows that simple hexagons lose stability first on the lattice with angle
θh ≈ 22.2◦. This instability has an associated eigenvector in the direction of super hexagon/triangles, and at this
value ofλ, super hexagons (or triangles) are stable. These results are summarized in Fig. 8b, which shows part of
the bifurcation diagram computed for the hexagonal lattice with(n1, n2) = (3,2), which corresponds to an angle
θh = 21.8◦. Note that when simple hexagons lose stability, both rhombs (Rh) and a superpattern are stable. Because
the instability that first destabilizes the simple hexagons is in the direction of a superpattern withθh ≈ 22.2◦, we
expect that the transition would be a hysteretic one involving the simple hexagons and a superpattern, at least in the
absence of noise and other imperfections. We cannot determine whether the superpattern is hexagonal or triangular
from our calculations, since this requires knowledge of fifth-order terms in the bifurcation problem [34].
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Fig. 8. (a)λ value at which the first (dashed) and second (solid) eigenvalue expressions in (27) turn positive versus the lattice angleθh. Note that
simple hexagons (H) first lose stability to perturbations in the super hexagon/triangle (SH/ST) direction atθh ≈ 22.2◦. (b) Schematic bifurcation
diagram for the(n1, n2) = (3,2) lattice of Fig. 3, which corresponds toθh = 21.8◦. Stable (unstable) solutions are indicated by a solid (dotted)
line. We do not show secondary branches or primary branches that are never stable. The stable rhombs solution (Rh) corresponds to one with an
angle of 81.8◦, which is the rhombs solution closest to 90◦ for this hexagonal lattice. The other two rhombs solutions are unstable.

4. Conclusions

In this paper, we have examined the effect of spatio-temporally resonant triads on two-dimensional pattern
selection in parametrically excited systems. Using a normal form transformation to enforce temporal symmetry
and center manifold reduction, we have argued that weakly dampedharmonicmodes can strongly influence pattern
selection by causing certain cubic cross-coupling coefficients in a 12-dimensionalD6+̇T 2-equivariant bifurcation
problem to suddenly vary in magnitude for certain lattice anglesθh. This suggests an important consideration in
choosing one over another of the countable set of 12-dimensional representations relevant to hexagonal bifurcation
problems. Weakly damped subharmonic modes, on the other hand, do not have such an effect.

Our general analysis applies to any parametrically excited pattern forming system, but in particular is relevant
to the interpretation of many recent experiments on two-frequency forced Faraday waves. In such experiments, a
bicritical point exists where subharmonic and harmonic instabilities are simultaneously excited. On one side of the
bicritical point, a subharmonic mode is excited and there is a weakly damped harmonic mode, while on the other,
it is the harmonic mode which is excited and the subharmonic mode which is weakly damped. We showed that this
weakly damped subharmonic mode does not influence the harmonic wave pattern selection problem.

We have derived the quadratic and cubic coefficients in the rhombic and hexagonal bifurcation equations de-
scribing the onset of patterns from the hydrodynamic equations of Zhang and Viñals. We presented results for two
different sets of parameters. In the first case, the two forcing frequencies are in the ratio2

3 and the modes near the
bicritical point are the only ones of relevance. As expected from our normal form analysis, for subharmonic waves,
the weakly damped harmonic mode affects the cross-coupling coefficients, while for harmonic waves, the weakly
damped subharmonic mode had no effect.

In the second case of6
7 forcing we have shown that in addition to the modes near the bicritical point, there are other

harmonic modes that are important. These modes are not close to onset in the sense that they only become critical
at a much higher value of the excitation amplitude, but are weakly damped and thus must be taken into account. We
demonstrate that they can have a stabilizing effect on superlattice patterns at a lattice angle approximately equal to
the angle of the harmonic–harmonic resonance. This can occur if the contribution of these weakly damped modes
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to the nonlinear cross-coupling coefficient nearly cancels the other contributions to this term, and hence is a subtle
effect that depends on certain details of the nonlinear problem, as well as the results of the linear analysis which
identifies the near critical modes. For the parameters we have chosen, the onset pattern is simple hexagons, but upon
a further increase of the forcing, there is an instability to a superlattice pattern associated with a hexagonal lattice
with (n1, n2) = (3,2).

The experiments of Kudrolli et al. [1] found, near the bicritical point, a superlattice pattern which sits on a lattice
with (n1, n2) = (3,2). The work in this paper suggests that the observation of this pattern could be explained by the
interaction of the primary harmonic instability and weakly damped harmonic modes. However, the Zhang–Viñals
equations are not valid in the parameter regime where this experiment was performed, and thus a study of the
full hydrodynamic problem is necessary to confirm this conjecture. A complete study should also involve a more
complete analysis of the codimension-two bifurcation point and the associated dynamics, in the spirit of Crawford’s
[27] early work on competing instabilities in the Faraday problem. This would be of interest in light of recent
two-frequency experiments by Arbell and Fineberg [11] that show a variety of dynamic states near the bicritical
point, which involve both critical modes.
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Appendix A. Perturbation theory

Here we outline the computation of the coefficients in (10) and (16) from the equations of Zhang and Viñals (20).
A multiple-scale perturbation method is used to derive expressions for the coefficients which are then evaluated
numerically using a pseudospectral approach. This follows closely the method described in [26] for the onset of
one-dimensional patterns and we refer the reader there for further details.

The coefficients can be derived by considering two different calculations, namely the bifurcation problem (16)
restricted in turn to a rhombic and simple hexagonal subspace.

A.1. Rhombic lattice computation

In order to compute the coefficienta and the cross-coupling coefficientβ(θ) in (10) we seek solutions which are
periodic on a rhombic lattice associated with an angleθ . We are thereby able to compute the coefficientsb1, b4, b5,
andb6 in the bifurcation equations (16) sinceb1 = a, b4 = β(θh), b5 = β(θh + 2

3π), andb6 = β(θh − 2
3π).

First we introduce a small parameterη, such that

h(x, y, τ )= ηh1(x, y, τ, T )+ η2h2(x, y, τ, T )+ η3h3(x, y, τ, T )+ · · · ,
8(x, y, τ )= η81(x, y, τ, T )+ η282(x, y, τ, T )+ η383(x, y, τ, T )+ · · · (A.1)

in (20), where

T = η2τ, f = fc + η2f2. (A.2)
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Herefc is the critical excitation amplitude. The terms in the expansion forh and8may be written in the following
separable Floquet–Fourier form:

h1 = [w1(T )exp{ikcx} + w4(T )exp{ikc(cx+ sy)} + c.c.]p1(τ ),

81 = [w1(T )exp{ikcx} + w4(T )exp{ikc(cx+ sy)} + c.c.]q1(τ ),

h2 = [w2
1(T )exp{2ikcx} + w2

4(T )exp{2ikc(cx+ sy)}]p2,1(τ )

+w1(T )w4(T )exp{ikc((1 − c)x − sy)}p2,2(τ )

+w1(T )w4(T )exp{ikc((1 + c)x + sy)}p2,3(τ )+ c.c.,

82 = [w2
1(T )exp{2ikcx} + w2

4(T )exp{2ikc(cx+ sy)}]q2,1(τ )

+w1(T )w4(T )exp{ikc((1 − c)x − sy)}q2,2(τ )

+w1(T )w4(T )exp{ikc((1 + c)x + sy)}q2,3(τ )+ c.c., (A.3)

wherec = cosθ , s = sinθ , andθ is not a multiple of13π . Herep1 andq1 are real 2π -periodic functions of the fast
time τ in the case of harmonic waves; in the case of subharmonic waves they are 4π -periodic inτ . Additionally,
p2,r andq2,r (r = 1,2,3) are real 2π -periodic functions ofτ . The wave numberkc is associated with the critical
mode at onset.

At O(η) we recover the linear problem which determineskc andfc, as well as the functionsp1, q1 to within
a multiplicative constant. AtO(η2), equations are found which allow us to solve for the functionsp2,r andq2,r .
Finally, atO(η3), we apply a solvability condition to ensure that a periodic solution exists. This condition leads to
the amplitude equations

δ
dw1

dT
= αf2w1 + A|w1|2w1 + B(θ)|w4|2w1, δ

dw4

dT
= αf2w4 + A|w4|2w4 + B(θ)|w1|2w4, (A.4)

where

δ = 1

2π

∫ 4π

0
(p′

1 + γ k2
cp1)p̃1 dτ, α = kc

4π

∫ 4π

0
[ cos(χ) cos(mτ)+ sin(χ) cos(nτ + φ)]p1p̃1 dτ,

A= k2
c

4π

∫ 4π

0
[−kc(p

2
1q1)

′ − γ k3
cp

2
1q1 − 2(q1p2,1)

′ − 2γ k2
cq1p2,1 + k2

cq
2
1p1 + 3

2k
3
c00p

3
1]p̃1 dτ,

B(θ)= k2
c

4π

∫ 4π

0
[(1 − c − (2 − 2c)1/2)[(p1q2,2)

′ + γ k2
cp1q2,2 − kcq1q2,2]

+(1 + c − (2 + 2c)1/2)[(p1q2,3)
′ + γ k2

cp1q2,3 − kcq1q2,3]

−(1 − c)[(p2,2q1)
′ + γ k2

cp2,2q1] − (1 + c)[(p2,3q1)
′ + γ k2

cp2,3q1]

−(6 − 2(2 − 2c)1/2 − 2(2 + 2c)1/2)[kc(p
2
1q1)

′ + γ k3
cp

2
1q1 − k2

cp1q
2
1]

+00(3c
2 + s2)k3

cp
3
1)]p̃1 dτ. (A.5)

In the above, a prime denotes differentiation with respect toτ andp̃1 is the equivalent ofp1 for the adjoint problem
atO(η). The amplitude equations (A.4) may be rescaled and then comparison with the map (10) yields

a = b1 = sgn(Aα), β(θ) = sgn(Aα)
B(θ)

A
. (A.6)
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A.2. Hexagonal lattice computation

Similarly, we compute the coefficientsε andb2 in the bifurcation equations (16) by seeking solutions in the form
of simple hexagons. Here we use a three-timing perturbation method, writing the solution as

h(x, y, τ )= ηh1(x, y, τ, T1, T2)+ η2h2(x, y, τ, T1, T2)+ η3h3(x, y, τ, T1, T2)+ · · · , 8(x, y, τ )

= η81(x, y, τ, T1, T2)+ η282(x, y, τ, T1, T2)+ η383(x, y, τ, T1, T2)+ · · · , (A.7)

where

T1 = ητ, T2 = η2τ, (A.8)

and

h1 =w1(T1, T2)p1(τ )[exp{ikcx} + exp{ikc(−1
2x + 1

2

√
3y)} + exp{ikc(−1

2x − 1
2

√
3y)} + c.c.],

81 =w1(T1, T2)q1(τ )[exp{ikcx} + exp{ikc(−1
2x + 1

2

√
3y)} + exp{ikc(−1

2x − 1
2

√
3y)} + c.c.],

h2 =w2
1(T1, T2){p2,1(τ )[exp{ikc2x} + exp{ikc(−x +

√
3y)} + exp{ikc(−x −

√
3y)} + c.c.]

+p2,2(τ )[exp{ikcx} + exp{ikc(−1
2x + 1

2

√
3y)} + exp{ikc(−1

2x − 1
2

√
3y)} + c.c.]

+p2,3(τ )[exp{ikc(
3
2x − 1

2

√
3y)} + exp{ikc

√
3y} + exp{ikc(

3
2x + 1

2

√
3y)} + c.c.]},

82 =w2
1(T1, T2){q2,1(τ )[exp{ikc2x} + exp{ikc(−x +

√
3y)} + exp{ikc(−x −

√
3y)} + c.c.]

+q2,2(τ )[exp{ikcx} + exp{ikc(−1
2x + 1

2

√
3y)} + exp{ikc(−1

2x − 1
2

√
3y)} + c.c.]

+q2,3(τ )[exp{ikc(
3
2x − 1

2

√
3y)} + exp{ikc

√
3y} + exp{ikc(

3
2x + 1

2

√
3y)} + c.c.]}. (A.9)

As with the rhombic case,p1, q1, p2,r andq2,r are real. Additionally, we take the amplitudew1(T1, T2) to be real.
For the harmonic case, atO(η2) the solvability condition

δ
∂w1

∂T1
= β0w

2
1 (A.10)

must be satisfied, whereδ is given by (A.5). The quadratic coefficient is

β0 = k2
c

4π

∫ 4π

0
[−(p1q1)

′ − γ k2
cp1q1 + 1

2kcq
2
1]p̃1 dτ. (A.11)

There is no solvability condition for subharmonic waves atO(η2), reflecting the fact that there are no even terms in
the amplitude equations (16) for this case.

At O(η3), we again apply a solvability condition to ensure that a periodic solution exists. This condition leads to
the amplitude equation

δ
∂w1

∂T2
= αf2w1 + (A+ 2β2)w

3
1. (A.12)

The coefficientsδ, α, andA are given by (A.5), and
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β2 = 1

4π

∫ 4π

0

[
(3

2 −
√

3)k2
c[(p1q2,3)

′ + γ k2
cp1q2,3 − kcq1q2,3]

+(2
√

3 − 4)k3
c[(p2

1q1)
′ + γ k2

cp
2
1q1 − kcp1q

2
1] − 3

2k
2
c[(p2,3q1)

′ + γ k2
cp2,3q1 − 00k

3
cp

3
1]

−1
2k

2
c[(p1q2,2)

′ + γ k2
cp1q2,2 + (p2,2q1)

′ + γ k2
cp2,2q1 − kcq1q2,2]

−β0

δ

[
k2

cp1q1 + β0

δ
p1 + 2p′

2,2 + 2γ k2
cp2,2

]]
p̃1 dτ. (A.13)

By rescalingηwj (T1, T2) → wj(T ) andη2αf2 → αf2, we obtain the reconstituted hexagonal bifurcation equation

δ
dw1

dT
= αf2q1 + β0w

2
1 + (A+ 2β2)w

3
1. (A.14)

Finally, after rescaling as for the rhombic case, and comparing (A.14) to (16) we find that

ε = sgn(α)
β0√|αA| , b2 = sgn(Aα)

β2

A
. (A.15)
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