% PHYSICA {

ELSEVIER Physica D 143 (2000) 205-225

NI

www.elsevier.com/locate/physd

Two-frequency forced Faraday waves: weakly damped
modes and pattern selection

Mary Silber®*, Chad M. Topa2, Anne C. Skeldof

a Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
b Department of Mathematics, City University, Northampton Square, London EC1V OHB, UK

To the memory of John David Crawford

Abstract

Recent experiments [A. Kudrolli, B. Pier, J.P. Gollub, Physica D 123 (1998) 99-111] on two-frequency parametrically
excited surface waves produced an intriguing “superlattice” wave pattern near a codimension-two bifurcation point where
both subharmonic and harmonic waves onset simultaneously, but with different spatial wave numbers. The superlattice pattern
is synchronous with the forcing, spatially periodic on a large hexagonal lattice, and exhibits small-scale triangular structure.
Similar patterns have been shown to exist as primary solution branches of a generic 12-dimebsiefialequivariant
bifurcation problem, and may be stable if the nonlinear coefficients of the bifurcation problem satisfy certain inequalities
[M. Silber, M.R.E. Proctor, Phys. Rev. Lett. 81 (1998) 2450-2453]. Here we use the spatial and temporal symmetries of
the problem to argue that weakly damped harmonic waves may be critical to understanding the stabilization of this pattern
in the Faraday system. We illustrate this mechanism by considering the equations developed by Zhang and Vifals [J. Fluid
Mech. 336 (1997) 301-330] for small amplitude, weakly damped surface waves on a semi-infinite fluid layer. We compute
the relevant nonlinear coefficients in the bifurcation equations describing the onset of patterns for excitation frequency ratios
of % and%. For the% case, we show that there is a fundamental difference in the pattern selection problems for subharmonic
and harmonic instabilities near the codimension-two point. Also, we find tha§ ttase is significantly different from the

% case due to the presence of additional weakly damped harmonic modes. These additional harmonic modes can result in a
stabilization of the superpatterns. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Faraday waves are parametrically excited on the free surface of a fluid layer when it is subjected to a vertical
vibration of sufficient strength. This pattern-forming hydrodynamic system has proven to be especially versatile in
laboratory experiments [4,5], exhibiting the common patterns familiar from convection (stripes, squares, hexagons,
spirals), as well as more exotic patterns such as triangles [6], quasipatterns [1,7,8], superlattice patterns [1,9,10],
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time-dependent rhombic patterns [11] and localized waves [9,12]. See [13] for a recent review paper on Faraday
wave pattern formation.

The temporal period of the Faraday waves is typically twice that of the vibration in the case of purely sinusoidal
forcing. The observation of this subharmonic response is attributed to Faraday [14] and was first explained theoret-
ically by Benjamin and Ursell’s [15] linear stability analysis for inviscid, potential flow. More recently, it has been
shown that wavessynchronouswith the forcing, can be excited in thin layers of fluid vibrated at low frequency
[16-18], in certain viscoelastic fluids [9], and in fluids forced periodically, but with more than one frequency com-
ponent [7,19,20]. In each of these Faraday systems, it is possible to tune the forcing parameters in order to access
the transition between subharmonic and harmonic response. At this codimension-two point, both instabilities set in
simultaneously, but with different spatial wave numbers.

Many of the experimental [6,7,10-12,21,22] and theoretical studies [3,23—-25] of exotic patterns in the Faraday
system attribute their formation near the codimension-two (or “bicritical”) point to resonant triad interactions
involving the critical or near critical modes with different spatial wave numbers. In particular, the focus has been on
spatial triadk 1, ko andks = kj & ko, wherelk1| = |k»| is the wave number of one critical mode, dig| is the
wave number of the other critical mode. The anglewvhich separatels; andky, is readily tuned by changing the
frequency componenigw andne of a two-frequency periodic forcing function. It has been suggested, for example,
that by tuning this angle, different types of exotic wave patterns may be selected [7]. Such a simple mechanism for
nonlinearpattern selection, which is based on examininditiear instabilities of the spatially homogeneous state,
is naturally attractive, but warrants careful examination as we show.

Silber and Skeldon [26] recently showed that whether or not resonant triads associated with the bicritical point
affect pattern selection depends on the temporal characteristics of the competing instabilities. For instance, the
bicritical point of laboratory experiments typically involves a subharmonic mode (Floquet multiglieand a
harmonic mode (Floquet multiplier1). On the subharmonic side of the bicritical point, the onset pattern selection
problem is strongly influenced by the presence of the weakly damped harmonic mode. In contrast, on the harmonic
side, the onset pattern selection problem is completely insensitive to the presence of near critical subharmonic
modes. These general ideas were demonstrated in [26] through a bifurcation analysis of a hydrodynamic model of
one-dimensional Faraday waves.

Here, we extend the bifurcation analysis in [26] to two-dimensional spatially periodic patterns and to higher
forcing frequencies within the two-frequency forcing function. With the experimentally relevant higher forcing
frequencies (e.g.d and W) employed in this paper, we find the new possibility that spatially resonant triads
involving nearly criticalharmonicmodes may influence the harmonic wave pattern selection problem. This is not
an option for the lower forcing frequencies (e.@./2w» and 2v/3w) used in previous weakly nonlinear analyses of
the two-frequency Faraday problem [23,26].

We follow Crawford’s [27—-30] seminal work on Faraday waves by posing the pattern selection problem in terms
of a symmetry-breaking bifurcation of the trivial fixed point of a stroboscopic map. By restricting solutions to those
that are spatially periodic on some hexagonal lattice we obtain a finite-dimensional bifurcation problem that can be
analyzed using the methods of equivariant bifurcation theory [31]. For a review of this approach to hydrodynamic
pattern formation problems, see [32].

This formulation of the bifurcation problem allows us to address recent two-frequency Faraday wave experimental
observations [1] of a transition between simple hexagons and the triangular superlattice wave pattern depicted
in Fig. la. Specifically, we follow [2] and consider a bifurcation problem that is equivariant with respect to a
12-dimensional irreducible representation/ay+72, which is analyzed in [33,34]. The observed harmonic wave
states correspond to primary transcritical branches of the generic bifurcation problem. In order for the observed
hexagon—superlattice pattern transition to be reproduced by the bifurcation problem, we must consider a degenerate
case in which the quadratic coefficient vanishes. Moreover, the cubic coefficients must satisfy certain inequalities,
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Fig. 1. (a) Blow up of the experimental superlattice Faraday wave pattern described in [1] (courtesy of Kudrolli, Pier and Gollub). The forcing
function (1) hasn/n = % x = 61° and¢ = 20°. Note that the pattern is periodic on a (large) hexagonal lattice, and that in each hexagonal “tile”
there is small triangular structure. (b) The corresponding neutral stability curve, calculated from the full (linearized) hydrodynamic,equations
for the experimental parameters reported in [1]. (Sub)harmonic resonance tongues are given by solid (dashed) lines. The neutral curves are
computed using the method described in [20].

e.g. certain combinations of nonlinear cross-coupling coefficients must be small compared to the cubic self-coupling
coefficient.

In this paper we compute the quadratic and cubic nonlinear coefficients in the bifurcation problem from the
Zhang-Vifals equations [23] which apply to deep layers of low viscosity fluids subjected to a periodic acceleration.
We show that the necessary inequalities for stable superlattice patterns can be satisfied for the forcing frequencies
employed in the experimentsd@7w), and that a resonant triad involving a weakly damped harmonic mode plays
a key role in stabilizing the superpattern. Specifically, we find that the presence of a near critical harmonic mode
leads to a cancellation in one of the cubic cross-coupling coefficients, causing this coefficient to become small in
magnitude as required. This selects a preferred #hépethe superlattice patterns. In other words, it suggests which
of the countably infinite 12-dimensional irreducible representation8ggif 72 is most pertinent to this Faraday
wave problem.

The paper is organized as follows. Section 2.1 presents background linear stability results for the two-frequency
Faraday experiment, while Section 2.2 reviews results from [26] on the influence of spatio-temporally resonant
triads on pattern selection. Section 2.3 then formulates the generic bifurcation problem relevant to our investigation.
The bifurcation results derived from the two-frequency Faraday problem modeled by the Zhang-Vifials equations
are presented in Section 3; the coefficients of the leading nonlinear terms are evaluated numerically from expressions
derived perturbatively in Appendix A. We consider two different cases. In Section 3.2, we consider an example
involving forcing frequencies in ratim/n = % focusing on differences between the pattern selection problems
for subharmonic and harmonic wave onset in a vicinity of the bicritical point. Section 3.3 then turns to an example
involving higher forcing frequenciesin ratio/n = %’, and shows how weakly damped harmonic modes can stabilize
harmonic wave superpatterns involving the arigl@ssociated with a harmonic wave resonant triad. Finally, Section
4 concludes the paper with a brief summary of our results and some discussion of issues we hope to address in the
future.
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2. Background
2.1. Linear results

In the two-frequency Faraday wave problem a container of fluid is accelerated in the vertical direction with an
excitation of the form

g(t) = go + g,(cox) comwt) + sin(x) coSnwt + ¢)). 1)

Herem andn are co-prime integers, so the forcing function is periodic with pefiod 27 /w, andgg is the usual
gravitational acceleration. For small amplitude acceleragiothe surface of the fluid remains flat and the fluid
layer is merely translated up and down with the drive. For higher valugswéves are parametrically excited on
the surface of the fluid layer.

Besson et al. [20], starting with the Navier—Stokes equations for the free boundary problem, determined the linear
stability of the flat surface in the case that the fluid layer has finite depth but is unbounded horizontally. They used
a Floquet—Fourier ansatz and solved the linear stability problem numerically to determine, for each spatial wave
numbelk, the value ok, where a Floquet multiplier first crosses the unit circle. The resulting neutral stability curves
show that the primary instability is due to either subharmonic or harmonic waves depending on the yaarelof
the values ofn andn. (Harmonic/subharmonic response is relative to the forcing pé&tied2r /w.) Typically, if x
is small so that cag ) cogmwt) is of greater significance than $jn) coSnwt + ¢), then the response is harmonic
if m is even and subharmonic#t is odd. Similarly, if x is close tO%n, the primary instability is (sub)harmonic
if n is even (odd). At the so-called bicritical point,= xc, both harmonic and subharmonic instabilities onset at
the same value of the excitation amplitude, but with different wave numbers. The harmonic superlattice pattern of
Fig. 1a, observed by Kudrolli et al. [1], was obtained near the bicritical pointfor = & forcing in (1). The
pertinent neutral stability curve, computed using the experimental fluid parameters, is given in Fig. 1b.

2.2. Spatio-temporally resonant triads

When the hydrodynamic problem is posed on a horizontally unbounded domain there is no preferred direction
(in the horizontal) so that each critical wave number from linear analysis actually corresponds to a circle of critical
wave vectors. There are two such critical circles at the bicritical point as shown in Fig. 2. In this situation it has
been argued that resonant triads may play a central role in the Faraday wave pattern selection problem [6,7,22—-24].
Resonant triads are comprised of three critical wave vectors that sum to zero; two examples are shown in Fig. 2.
In the first examplek,,,, + k.., — k, = 0, and in the second examptg, — k,, — k,, = 0. Here the subscripts
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Fig. 2. (a) A plot of a neutral stability curvg (k) showing minima ak = k,, andk = k,. (b) An associated spatially resonant triag , K,,,,
andk, = ky,;; + Ku,. (c) An associated spatially resonant triad, k,,, andk,, = k,;; — K.
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m, n indicate that the critical wave numbers can be roughly associated with@rendnw excitation terms in (1).
We identify with each resonant triad an angle= (0, :—an], which separates the critical wave vectors with the same
length. For instance, the angle in Fig. 2b satisfies

cos(éﬁ) _ )

2 2k’
while the angle in Fig. 2c satisfies
e ki
sin| = ) = —. 3
| (2> 2%, )

To illustrate the potential for resonant triads to influence pattern formation in parametrically excited systems
we consider a bifurcation problem involving the three critical Fourier modes associated with the resonant triads of
Fig. 2. Much of this discussion is a review of the key theoretical ideas in [26]. Because of the periodic forcing of
the system, it is natural to formulate the bifurcation problem in terms of a stroboscopic map [27]. Specifically, we
denote the free surface height= h(x, 1), x € R? attimer = pT, p € Z by

h(x, pT) = A(p) expliky, - X} + B(p) expliky, - X} + C(p) expli(k;;, +Kp,) - X} +c.C.+ -+ . (4)

Here A, B andC are the complex amplitudes of the linear modes that are neutrally stable at the bicritical point
and which form a resonant triad. In this discussion we assume that theéatglveerk;, andk;, is not%n o]

that the critical modes interact nonlinearly to generate other modes on a rhombic (rather than hexagonal) lattice.
These additional modes, denoted-by above, are linearly damped at the bicritical point. We may then use the
spatial reflection and translation symmetries to determine the general form of the bifurcation equations that govern
the dynamics on a center manifold. Specifically, to cubic order, the codimension-two bifurcation problem takes the
form

A— oA+ aBC + (a|A|? +b|B)? + ¢|C]?)A, B — 0B+ aAC + (a|B|> + b|A> + ¢|C|?)B,
C — uC +8AB+ (d|A]° + d|BI> + ¢|C|P)C, (5)

where A is the complex conjugate of, and the coefficients are all real. The Floquet multiplierand .« are
either+1 or —1 depending on whether the linear modesB, andC are harmonically or subharmonically excited,
respectively.

In deriving (5) we considered only the spatial symmetries associated with the resonant triad. Following [27], we
enforce the temporal symmetry associated with the triad through a normal form transformation of (5). Specifically,
there exists a near identity nonlinear transformation that removes all nonlinear terms in (5) which do not commute
with LT, whereL is the Jacobian matrix associated with the linearized problem (see, e.g., Crawford’s [35] review
paper on bifurcation theory). Here

c 0 O
L=|0 o 0], (6)
0 0 u

where|o| = |u| = 1. The normal form symmetry may be interpreted in terms of time translation. Specifically,
advancing by one period in time maps period-doubled modes to their negativesyue=g-ifl, then advancing one
period take<” — —C.

In the case that = +1 (0 = £1), the bifurcation problem (5) is already in normal form. This observation is
trivial if o = +1. If o = —1, then the normal form symmetry is equivalent in action to that associated with the
spatial translation symmetsy— x + d, whered satisfiesk;, -d =k;, -d = x.
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In contrast, in the case that= —1, a normal form transformation removes the quadratic terms in the bifurcation
problem (5). The normal form of the bifurcation problem, through cubic order, is then

A— oA+ (a|A]? + b|B)? + c|CDA, B — 0B + (a|B|> + b|A]? + ¢|C|?) B,
C — —C + (d|A* +d|B|? +¢|C]A)C. @

We note thatC = 0 is a dynamically invariant subspace of (7). This is true to all orders of the normal form since
C = 0Ois the fixed point subspace of a (spatio-)temporal symmetry. Specificatly=if-1 thenC = 0 is the fixed

point subspace associated with the time translation by one periot4i.8, C) — (A, B, —C). And if o = —1,

thenC = 0 is the fixed point subspace associated with the spatio-temporal symmetry involving time translation by
one period followed by spatial translation bywhere agairk;, -d =k, - d = 7.

We now examine (5) more closely in the cas@.cE +1 so that we cannot remove the quadratic nonlinearities by
normal form transformation. We focus on a detuning from the bicritical point such th@ttiede is weakly damped,
whiletheA, B modes are neutrally stable. Inthis cdsg¢,= 1,1 < 1, we can further reduce the bifurcation problem
to one involving the critical modes and B, with C constrained to the center manifold:= (§/(1 — w))AB—+- - -.

We then obtain the reduced bifurcation problem

A — oA+ alAPA + B6)|BI%A, B — 0B +a|BI’B + B(6;)|AI°B, (8)

where the cross-coupling coefficient is

ol

B =0b+ 1 9)
We see that in this case, the near critical spatio-temporally resonant@uodés) can contribute significantly to
the cross-coupling coefficient(6;) since 0< 1 — u « 1in (9). For example, fop sufficiently close to 1, the
second term in (9) dominates afd);) becomes large in magnitude. However, we also point out thaaifda§
have opposite signs, thét(6;) could actually vanish for some — 1 > 0. Examples of these two very different
situations are given in Sections 3.2 and 3.3, respectively.

We contrast the above with what happens whea: —1 at the bicritical point. In this case = § = 0 in the
normal form (7) andC = 0O is an invariant subspace with associated dynamics of the form (8)3th = b. In
this case, the triad is spatially resonant, but not temporally resonant, and the cross-coupling coefficient is insensitive
to any parameter proximity to the bicritical point.

These observations abo8itd;) are important for understanding which patterns might be observable near onset
since branching direction and stability of patterns are determined by various nonlinear (cross-coupling) coefficients
in the amplitude equations. We discuss this further at the end of Section 2.3.

Finally, we note that results similar to the= —1 case above apply when there are weakly damped modes with
complexFloquet multipliers. Specifically, these modes do not contribute significantly to the cubic cross-coupling
coefficients(0), even when they are spatially resonant with the critical modes. Only damped modes with Floquet
multiplier u sufficiently close tot+1 contribute.

2.3. Hexagonal lattice bifurcation problem

The analysis of Section 2.2 led to certain conclusions about the nonlinear coefficients in the general rhombic
lattice bifurcation problem

v1 — ovr + @12+ BO)v2lPvr,  v2 = ov2 + (alval? + B(O)|v1P)va. (10)
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Herews, vy are the complex amplitudes of two critical Fourier modes with wave vektgis, (k1| = |K2| = k¢)

that are separated by an angles (0, %n] (6 # %n). In particular, it follows from (9) that if a weakly damped
harmonic mode is removed via center manifold reduction, @) may become large in magnitude when the
spatial resonance condition is met, i.e. wher= 6;. This is in contrast to the situation where there are weakly
damped subharmonic modes, which have no special influence on the pattern selection problem at onset.

We now lay the framework for examining possible implications of these results for stability of harmonic hexag-
onal and triangular superpatterns. We follow [2] and introduce the 12-dimendigral2-equivariant bifurcation
problems that enable us to determine the relative stability of simple hexagonal patterns, stripe patterns and certain
rhombic and superlattice patterns. We make use of bifurcation results derived in [2,33,34], which apply when there
is a single critical wave numbég, to demonstrate how the magnitude of the cross-coupling terms are pivotal in
determining pattern stability. As before, we consider a stroboscopic map, but now restrict analysis to patterns that
are doubly periodic on some hexagonal lattice. For instance, the free surface height takes the form

h(x,pT) = Y hm(p) expli(miks + moka) - X} + c.c. (11)
meZz?2
attimer = pT, wherekq, ks € R2 generate a hexagonal dual lattife;( = |k2| andky -ky = —%|k1|2); see Fig. 3.

The 12-dimensional irreducible representationsgfi-72 apply to the bifurcation problem when there are 12
integer pairgm1, my) in (11) such thatm1ky + moko| = k¢, wherek is the critical wave number of the instability
at the bifurcation point (see Fig. 3 for an example). Following [33] we will associate with each 12-dimensional
irreducible representation an integer p@ii, n»2); in particularn, andn, are co-primen1 > ny > %n1 > 0, and
n1 + n2 is not a multiple of 3. The neutral modes that span the center eigenspace at the bifurcation point take the
form

{z1expliK1 - X} + zoexpliK2 - X} + zz exp{iK 3 - X} + z4 expliK4 - X} + zs exp{iK 5 - X}

+ z6expliKe - X} + C.C.|lz; € C}, (12)
where
K1=n1k1 + noko, K2 = (—n1 + n2)k1 — nika, K3 = —noky + (n1 — n2)ka,
Kg=n1k1 + (n1 — no)ko, Ks = —noky —niko, Ke = (n2 — n1)ka + noka. (13)
[ ] [ ] [ [ ) [ )

Fig. 3. Hexagonak-space lattice, with critical circle of radiig superimposed. In this examples, n2) = (3, 2) in (13), and the critical circle
intersects 12 points that lie at the vertices of two hexagons rotatégl t@yative to each other.
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Note that+K 1, =K, £K 3 point to the vertices of a hexagon, as#i# 4, £K5, +Kg, and that the two hexagons
are rotated relative to each other by an agle (0, %7‘[) indicated in Fig. 3. This angle is related (o, n2) by

n% + 2n1ny — an

. 14
2(n% —niny + n%) (14)

cogth) =

Also note that the ratio of lengthscales for superpatterns depends; om). Specifically,|k1| determines the
larger periodicity scale of the superpatterns, wiilg| = k. determines the smaller lengthscale associated with
the instability; thus the lengthscale ratio is

K .

% = (n% —ninp + n%)l/2 > V7. (15)

1
The example of Fig. 3 corresponds(tq, n2) = (3, 2), for which6, ~ 22° in (14) and the lengthscale ratio (15) is
the smallest associated with a hexagonal lattice, nari@lyThese are the angle and lengthscale ratios that apply
to the experimental superlattice pattern reproduced from [1] in Fig. 1a.
The general form of the 12-dimensionag-72-equivariant mappings are derived in [34]. Through cubic order

in z;, they take the form

21— o ((L+ A)z1 + €273 + (b1lzal? + balz2l? + balz3l? + balzal? + bs|z5|® + bslz6?)z1),
22— 0 (1 + Mzz + €213 + (balz2l® + balz1|? + bolza|? + balzs|? + bs|z6|? + bslzal?)z2),
23— o (1+ M)z3 + €21%2 + (balzal® + balza|® + balz2|? + balzel|® + bs|zal? + belzs|?)z3),
24— o (1 + A)z4 + €Z526 + (b1lzal® + bolzs|? + balze|® + balz1|? + bs|zal? + belz2])z4),
25— 0 (1+ A)z5 + €24Z6 + (balzs|® + balzal® + balze|* + balz2|? + bs|z1]? + belz3l?)zs),
26— 0 (1 + A)z6 + €2475 + (b1lzel® + balzal® + balzs|? + balza|? + bs|z2|? + bslz1?)z6), (16)

wherei measures the distance from the critical excitation amplitudegaadt+1(—1) in the case of (sub)harmonic
instability. All nonlinear coefficients are real.df = —1 then a normal form transformation removes all even terms
on the right-hand side of (16) and hence- 0. The dependence of the general equivariant bifurcation problem on
(n1, n2) does not appear until higher than cubic order in its Taylor expansion [34].

We now recall some basic results pertaining to the bifurcation problem (16). tn the-1 case the equivariant
branching lemma [31] ensures the existence of harmonic wave solution branches in the form of stripes, simple
hexagons, rhombs, and super hexagons [33]. A primary solution branch with submaximal isotropy, named super
triangles, was also shown to exist in [2]. See Fig. 1a for an example of this pattern. Table 1 gives the general form
of these solutions along with their branching and stability assignments. The general bifurcation results in the case
thato = —1 can be found in [34]; this bifurcation problem differs from the harmonic case in that it possesses an
additional 2 normal form symmetry. The equivariant branching lemma then ensures existence of five additional
solution branches to those listed in Table 1 [34].

The generic presence of a quadratic term in (16) for the harmonic case renders all of the solutions in Table 1
unstable at bifurcation. Hence the transition from the flat state to the patterned harmonic wave state is expected to be
hysteretic. In order to capture stable weakly nonlinear solutions, we must focus our analysis on the unfolding of the
degenerate bifurcation problem= 0. Note that wher = 0O the stability of simple and super hexagons/triangles
is not determined at cubic order since the phasesf solutionsz; = r; expli¢;} to (16) are then arbitrary. Even
in the case of O< |¢| « 1 the relative stability of super hexagons and super triangles depends on terms that are
at least fifth-order. However, we may use the cubic truncation to determine that one (and only one) of these two
solutions is stable. The higher-order terms are only needed to determine whether it is the hexagonal or triangular
superpattern [2].
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Table 1

Branching equations and stability assignments for the harmonic ¢asef1)?

Planform and branching equation Stabllity

Stripes; sgN(b1), sgrex+(ba—b1)x?), sgn(—ex+(ba—b1)x?), sgnbs—b1), sgn(bs —ba), sgribs—b1)

z=(x,0,0,0,0,0),
0=ix +bi1x3+ OGP

Simple hexagons; sgn(ex + 2(b1 + 2b2)x?2), sgr(—ex + (b1 — b2)x2), sSgN(—ex + (ba + bs + b — b1 — 2b2)x2),
z=(x,x,x,0,0,0), sgn(—ex + O(x3))
0= Ax + ex2 4 (b1 + 2b2)x3 + O(x?)

Rhombs (Rb); SgN(b1+bs), SQN(bs — ba), SYN(E1), SGN(L2), Wheregs + Lo = (—2b1 — 2ba+ 2b + bs + bg)x2,
z=(x,0,0,x,0,0), 2182 = —€2x? + (b1 + ba — by — bs) (b1 + ba — by — bg)x*
0= Ax + (b1 + ba)x® + O(x5)

Rhombs (Rb); Same as Rhwith b4 <> bsg
z=(x,0,0,0,x,0)

Rhombs (Rb); Same as Rhwith b4 < bg
z=(x,0,0,0,0,x)

Super hexagons; sgn(ex + 2(b1 + 2bo + ba + bs + be)x2), sgn(ex + 2(b1 + 2by — bs — bs — be)x2),
Z=(x,x,x,x,x,x), sgn—ex + O(x3)), sgn(¢1), sgn&2), wherery + o = —4ex + 4(by — bo)x2,
0= Ax + ex? + (by + 2b2)x3 122 = Aex — (b1 — b2)x*)? — 2((ba — bs)? + (ba — be)? + (bs — bg)?))x*,
+ (ba + bs + be)x® + O(x% sgn(¢s), wheregz = O(x2m11-1)

Super triangles; Same as super hexagons exagpt> —¢3

Z2=1(2,2,2,%,2, 2
z=xexpliv}, v #0,7,...
4, b1, ..., bg are coefficients in the bifurcation equations (16).
bA solution is stable if all quantities in this column are negative (see [2,33,34] for more details).

When O< |e] « 1, it follows from Table 1 that a necessary condition for one of the superpatterns to be stable
over some range of values near onset is for

b1+ 2by < —|ba+ bs + bg| < O. (17)

The combinatiorb; + 2b5 is independent of the lattice andlgin (14); it is computed from a hydrodynamic model

of the two-frequency Faraday problem in Appendix A.2 by considering bifurcation to simple hexagons. In contrast,
the combinatiorbs + b5 + bg depends oy, and is computed in Appendix A.1 from the hydrodynamic equations

by considering the rhombic lattice bifurcation problem (10). Specifically, the cross-coupling coeffigiehssbe

are

ba=PBh).  bs=PBEh+35m),  be=pbh—57). (18)

whered, is the angle betweeld1 andK4 given by (14). (The functio(6) may be extended from e (O, %n] to
anglest € (0, 2r) usingB(0) = B(—0) = B(6 + m), identities that follow from the symmetries of the rhombic
lattice bifurcation problem.)

The inequality (17) will be satisfied (if at all) only for thosg values wherébs + bs + bg| is small compared
to |b1 + 2b2]. Moreover, ifb1 — b < 0 in addition to (17), then simple hexagons become unstable on a given
hexagonal lattice when

. €2(bg + bs + bg)
(b1 + 2by — bs — bs — bp)?
If by + bs + bg < O for all 6, then simple hexagons first lose stability with increasing a perturbation in the

direction of a superpattern for that valueggfthat minimizegb4 + bs + bg|. If bg + bs + be > 0 for anyé, then
small amplitude simple hexagons are unstable when0. Thus, we expect the stability properties of superpatterns

(19)
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and simple hexagons to be affected by the presence of a weakly damped harmonic modg evitant %n is
neard; (or = + 6;), the resonant triad angle, since it is in this situation that one of the cross-coupling coefficients
ba, bs or bg may suddenly change in magnitude.

3. Results

This section shows explicitly the role of resonant triads and weakly damped harmonic modes in the pattern
selection problem for two-frequency forced Faraday waves. We examine how the cubic nonlinear coefficients in
(16), for the Zhang—Vifals hydrodynamic equations vary as a functiaiy,ahe lattice angle, and explain how
this can be related t, the resonant triad angle. The details of the computation of the coefficients are relegated to
Appendix A. We focus on two examples involving forcing frequency ratigs = % and%. The% case demonstrates
the basic difference between the pattern selection problems for subharmonic and harmonic instabilities near the
bicritical point. Our investigation also reveals a fundamental difference between harmonic wave pattern selection
in the% and% cases, due to the presence of additional harmonic wave resonance tongues for thé fogting
frequencies (see Fig. 4).

3.1. The Zhang-Vifials hydrodynamic equations

The quadratic and cubic nonlinear coefficients in the hexagonal bifurcation problem (16) are computed in
Appendix A from a model of the two-frequency Faraday problem derived by Zhang and Vifals [3] from the
Navier—Stokes equations. Their equations, which apply to weakly damped, small amplitude surface waves on
a semi-infinite layer of fluid, describe the evolution of the surface héigktt) and surface velocity potential
® (X, 7). Specifically,

9ch =y V2h + D — V- (hV®) + 3V2(h?D®) — D(hD®) + DIhDhDP) + 1h*V2d],
9:® =y V20 + [gV2h — G(0)h + 3(D®)?
—1(V®)? — (DO)[AV2® + D(hD®)] — ATV - (Vh)(VR)?), (20)

20

~ o — T_,-—"/// (b)

Fig. 4. Neutral stability curves computed from (20) linearized athost® = 0. Floquet multipliers oft-1 (—1) are indicated by solid (dashed)
lines. (@)m/n = 2,¢ = 0°, x = xc = 66.6°, I'o = 0.53,Go = 0.47 andy = 0.09 in (20) and (21). (byu/n = §, ¢ = 0°, x = xc = 53.0°,
I'p = 7.5,Go = 1.5 andy = 0.08.
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whereD is a nonlocal operator that multiplies each Fourier component of a field by its wave numig2exgik -
x} = |k| explik - x}. Here time has been scaled &yso that the (non-dimensionalized) two-frequency acceleration
is

G(t) = Go — f(cogx)cogmrt) + Sin(x) cognt + ¢)). (21)

The damping numbey, capillarity numberg, gravity numbeiGo, and dimensionless acceleratigrare related
to the forcing function (1) and the fluid parameters by

2vk§ _Tig Go — 80k 8zko

= s I'o= —=, = —, =
14 - 2 0="" f

. 22
> (22)
Herev is the kinematic viscosity] the surface tensiom the fluid density, and the wave numbgris chosen to
satisfy the dispersion relation

k3
goko + 70 = (3mw)%. (23)

3.2. Example 1m/n = 3

This example demonstrates a result of the general normal form analysis of Section 2.2, namely that proximity
to the subharmonic/harmonic bicritical point will strongly influence the pattern selection problem for subharmonic
waves, but not for harmonic waves. Specifically, we examine the cross-coupling coeffigigimt (10) as a function
of the angle for onset of both harmonic and subharmonic waves near the bicritical point. We show that only in the
subharmonic case dog&(0)| become large at the resonant angjlén (3).

Asdescribedin Section 2.1, the primary instability changes from harmonic (Floquet mukifies subharmonic
(Floquet multiplier—1) asy in (21) is increased through the bicritical pojat This transition is determined from
the linear hydrodynamic problem, which for the Zhang—Vifials model (20) takes the form of a damped Mathieu
equation for each Fourier mode= Ky (t) exp{ikx}:

hy + 2yk2hy + (y%k* + QDhi = fk[cos(x) cosimT) + sin(x) cosnT)]hy. (24)

Here the natural frequency; satisfies the dispersion reIati@f = Gok + I'ok®. A numerically computed neutral
curve f (k) for m/n = % forcing andy = xc = 66.6° is given in Fig. 4a. The other parameters of this example are
¢ =0° Tg=0.53,Gog = 0.47 andy = 0.09.

We now varyy near yc, holding all other parameters fixed, and examine the rhombic lattice cross-coupling
coefficients () in (10) for onset subharmonic/harmonic waves, as appropriate. We have scaled the amplitudes
andvy in (10) so thats = —1. We note that in the harmonic cagaliverges a® — 60°, i.e. when the rhombic
lattice approaches the hexagonal one and there is an additional mode associated with the center manifold dynamics.
This is in contrast to the subharmonic case, for which there is a normal form symmetry that ensures existence of a
dynamically invariant subspace spanned by a pair of subharmonic modes separatedby§0n the subharmonic
cases remains finite ab = 60°.

For x > xc the primary instability is to subharmonic waves. For instance xfoe 66.7° the minimum of
the neutral curve occurs at wave numlige = 1.415 with forcing amplitudefe = 0.842, and is associated
with a Floquet multipliec = —1. The nearly critical harmonic resonance tongue has its minimuii, g =
(0.962 0.846). In this case, there is a spatio-temporally resonant triad comprised of the weakly damped harmonic
mode and, from (3), two subharmonic modes separategl by 39.9°. It follows from our general analysis of
Section 2.2 thap(0) will be large in magnitude fop near6,. Fig. 5a showss(9) for this case, and indeed,
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Fig. 5. Cross-coupling coefficienfs(®) in (10) computed in Appendix A from (20) for the casgn = % and¢ = 0° in (21). The fluid
parameters used are given in the caption of Fig. 4ax(a} 66.7° > xc, when the bifurcation is to subharmonic waves. Note the dip at

0 = 6, = 39.9°. (b) x = 66.5° < xc, when the bifurcation is to harmonic waves. Because the (nearly) critical modes are not in temporal
resonances (6) shows no special structureat= 6, = 85.7°. We have removed from this plot the region néar 60°, whereg(0) diverges.

the nonlinear coefficient exhibits a large dip centered at 6, = 39.9°. At this angle,|8(0)| takes on its
largest value. Similar observations have been made by Zhang and Vifals [23] for forcing frequencies in the ratio
m/n = %

In contrast, whery < xc, so that the first instability to occur with increasirfgis harmonic, we find that the
weakly damped subharmonic mode leaves no signature in thg @t For instance, foly = 66.5° the primary
instability is to harmonic waves at wave numbkgp = 0.963 and forcing amplitud¢; = 0.841. The subharmonic
resonance tongue has a minimum(atf) = (1.415 0.843). While there is aspatially resonant triad involving
two critical harmonic modes, which by (2) are separateé, by 85.7°, the triad of modes is n@patio-temporally
resonant. Fig. 5b shows the cross-coupling coefficity for this case (with the region near 6€emoved). As
anticipated, there is no signature of the weakly damped subharmonic mode in the plot. Similar observations have
been made by Silber and Skeldon [26] in the setting of one-dimensional surface wave patterns.

3.3. Example 2m/n = $

This example demonstrates a fundamental difference between harmonic wave pattern selection for low forcing
frequencies (e.g.@/3w) and for high forcing frequencies (e.gvB7w). This difference is due to the presence of
multiple harmonic resonance tongues in the neutral curve associated with the higher forcing frequencies (see Fig. 4).
In particular, these resonance tongues suggest the possibility that weakly damped harmonic modes may influence
the harmonic wave pattern selection problem. This is in contrast te the= % example of Section 3.2, for which
only subharmonic wave pattern competition was affected by weakly damped harmonic waves. In this section, we
also demonstrate that the weakly damped harmonic modes may stabilize harmonic wave superpatterns at a lattice
angled, ~ 6;, due to a near cancellation of the two terms that contributg(fp) given by (9) as described in
Section 2.2.

We focus on bifurcation to harmonic waves fpe= 52.4°, which is close to the bicritical valug. = 53.0°. The
remaining parameters age= 0°, I'p = 7.5, Go = 1.5 andy = 0.08. We note that while the forcing frequency
ratiom/n = ‘73 coincides with that used in the experiments of Kudrolli et al. [1], the remaining parameters do not
coincide with the experiment. One problem with using the experimental parameters in the Zhang-Vifials equations
is that the primary instability then moves to a subharmonic resonance tongue at very small wave number, i.e. the
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Fig. 6. (a) Cross-coupling coefficiegt#) in (10) computed from (20) for the case/n = %, ¢ = 0°andy = 524° < xcin (21), and for

fluid parameters given in the caption of Fig. 4b. (b) Plotéof 25, (dashed) ands + bs + be (solid) versush. We note thaby only takes on

the discrete values satisfying (14). (c) Cross-coupling coeffigéht for 6w forcing only; we have used the same parameters as in (a) except
that nowy = 0°. (d) Neutral curve for single frequency forcing. Floquet multiplierstdf (—1) are indicated by solid (dashed) lines, and are
computed relative to the periddl = %7‘[. The primary harmonic resonance tongue from the two-frequency case of Fig. 4b is superimposed as
a dotted line.

first resonance tongue of Fig. 4b. This is because the Zhang-Vifials model does not accurately capture the damping
at smallk that is due to finite depth effects.

In this example we find two prominent features in the plot of the cross-coupling coeffgientn Fig. 6a: a
large dip ath = 67.6° and a small spike & = 22.2°. We now discuss the origin of these two features.

The large dip around = 67.6° is not a consequence of two-frequency forcing. Specifically, the dip remains in
B(0) even for purely @ forcing (i.e. in the limity — 0); cf. plots of8(9) in Figs. 6a and ¢ which are obtained
with x = 52.4° andy = 0°, respectively. Thus, this feature may be understood in the context of single frequency
forcing, and has in fact already been investigated by Zhang and Vifials [3] in that setting. Specifigaky, Gf
then the forcing period i§’ = %T = %n and the primary instability is to subharmonic waves with peri@d. 2
A plot of the corresponding neutral curve is given in Fig. 6d with the primary harmonic resonance tongue from
Fig. 4b superimposed on it. In this single-frequency setting the feature@ti67understood as being due to the
damped harmonic mode aroukd= 1.7 in Fig. 6d. Perhaps more relevant to this discussion is our observation that
this feature, which leads to a large valugif + bs + bg|, is destabilizingfor superpatterns. To see this, we refer
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Fig. 7. Floguet multipliersu = & exp{iyy} computed from (24) for the parameters used in Fig. 4b and for critical forcing amplitude

f = fc = 1.552. (a) Magnitudé, and (b) phase versus wave numbér. The solid lines in (a) and (b) are computed numerically, while the

dotted lines are obtained by considering the unforced prolflem0; see Eq. (26). (c) Numerically computed real gacbsys of the Floquet

multipliers. The “bubbles” correspond to real-valued Floquet multipliers. The boxed region, shown blown up in (d), reveals a tiny “bubble”
aroundk = 0.383, with real Floquet multiplier = 0.93.

to the discussion surrounding Eq. (17) and to Fig. 6b, which shows that

0> b1+ 2bp > bg+ bs + bg = B(6h) + B(6h + 120°) + B(6h — 120°)
= B(6h) + B(60° —6h) + B(6O° +6) for 60° + 6y ~ 67.6°. (25)

In contrast the spike &t = 22.2° in Fig. 6a minimizes$b4 + bs + bg| atbp ~ 22.2° as shown in Fig. 6b. As we show
below, this feature can lead to a stabilization of superpatterns and a destabilization of the simple hexagons. First
we provide strong evidence that the spike is due to a resonance between the primary harmonic instabili}y (
and a weakly damped harmonic mode with a real Floquet multiplighat is close to 1 (see (5) and (9) of Section
2.2). In order to show this we must first compute the Floquet multipli€ks at the critical forcing amplitudg; to
determine the wave numberat whichy =~ 1 at the onset of instability.
We determine the Floquet multipliergk) at f = f. = 1.552 numerically from the linear problem (24). These
are presented in Fig. 7. We find that the multipliers are well approximated away from the two primary resonance
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tongues by considering the unforced problefn= 0 in Eq. (24)), for which
pt = expl2rii}, Ar = —ykZ+iy. (26)

Figs. 7a and b show the magnitugland the phasé of the Floquet multiplierg. = & exp{iv} both as computed
numerically from (24) (solid line) and approximated by (26) (dotted line). Fig. 7c shows the real part of the Floquet
multipliers, & cosyr, versus wave numbétr. The “bubbles” in this plot correspond to wave numbers at which
the Floquet multipliers are real (as opposed to a complex conjugate pair). Weakly damped harmonic modes are
associated with bubbles near a Floquet multiplies-df Numerically, we find that there are small bubbles of real
Floquet multipliers whenever the phages a multiple ofr; this is demonstrated in Fig. 7d. In particular, we find a
bubble at wave number= 0.383 with associated real Floquet multiplier= 0.93. This mode is weakly damped

and forms a resonant triad with primary harmonic modes separatég y22.2°. (Herekcn = 0.997 for the
primary instability, which corresponds &g in (3), with k,, = 0.393 determined by the weakly damped harmonic
mode.) Here we have focused on the wave numbers associated with real Floquet multipliers=neiat since
weakly damped modes with complex Floquet multipliers do not form a spatio-temporally resonant triad with the
primary harmonic modes.

We now present some hexagonal lattice bifurcation results for the specific parameters of this example, which are
given in Fig. 4b. The computation of the quadratic and cubic coefficients in the bifurcation problem (16) is described
in Appendix A. We scale the amplitudes in (16) so that; = —1, in which case we find that = 0.00014 and
by = —2.73. Thus, we expect results of Section 2.3, which focused on the unfolding of the degenerate bifurcation
probleme = 0, to apply.

We find that simple hexagons, super hexagons and super triangles all bifurcate transcritically with the subcritical
branch turning around in a saddle-node bifurcation. The stripes and rhombs solutions arise in supercritical pitchfork
bifurcations. These claims are true for all lattice anglesince the cubic coefficients, ... , bg in (16) are always
negative (see Fig. 6a). Moreover, we find that simple hexagons are always stabilized in a saddle-node bifurcation
and that they do not lose stability until after they reach the supercritical regim®. In contrast, super hexagons
and super triangles are always unstable at 0, since at that point the sign of the second eigenvalue in Table 1 is
determined by sgib1 + 2b, — 3b4 — 3bs — 3bg), Which is positive for alb (see Fig. 6b). Thus, asis increased
through 0, we expect a jump to finite amplitude simple hexagons as the other primary branches of (16) are unstable.

We find that simple hexagons eventually lose stability. &screases since the following two expressions from
Table 1 change sign to positive (at least for sdix)e

sgn(—ex + (b1 — bo)x?), sgn(—ex + (ba + bs + bg — b1 — 2b2)x?) (27)

as the amplituder of simple hexagons grows with. The first quantity changes from negative to positive at

1 ~ 3.2 x 108, The second quantity changes sign with increasingly for those values of, wherebs + bs +

be — b1 — 2bp > 0, a condition which is met fof, > 11.5°. Fig. 8a shows the value afwhere the expressions

of (27) change sign as a function &. It follows that simple hexagons lose stability first on the lattice with angle

6n ~ 22.2°. This instability has an associated eigenvector in the direction of super hexagon/triangles, and at this
value of, super hexagons (or triangles) are stable. These results are summarized in Fig. 8b, which shows part of
the bifurcation diagram computed for the hexagonal lattice withno) = (3, 2), which corresponds to an angle

6n = 21.8°. Note that when simple hexagons lose stability, both rhombs (Rh) and a superpattern are stable. Because
the instability that first destabilizes the simple hexagons is in the direction of a superpattefh with2.2°, we

expect that the transition would be a hysteretic one involving the simple hexagons and a superpattern, at least in the
absence of noise and other imperfections. We cannot determine whether the superpattern is hexagonal or triangular
from our calculations, since this requires knowledge of fifth-order terms in the bifurcation problem [34].
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Fig. 8. (a)x value at which the first (dashed) and second (solid) eigenvalue expressions in (27) turn positive versus the latijce\atglinat

simple hexagons (H) first lose stability to perturbations in the super hexagon/triangle (SH/ST) diretien22.2°. (b) Schematic bifurcation

diagram for then1, np) = (3, 2) lattice of Fig. 3, which corresponds g = 21.8°. Stable (unstable) solutions are indicated by a solid (dotted)

line. We do not show secondary branches or primary branches that are never stable. The stable rhombs solution (Rh) corresponds to one with an
angle of 818°, which is the rhombs solution closest to°d0r this hexagonal lattice. The other two rhombs solutions are unstable.

4. Conclusions

In this paper, we have examined the effect of spatio-temporally resonant triads on two-dimensional pattern
selection in parametrically excited systems. Using a normal form transformation to enforce temporal symmetry
and center manifold reduction, we have argued that weakly dahmguetbnicmodes can strongly influence pattern
selection by causing certain cubic cross-coupling coefficients in a 12-dimenslg#dl2-equivariant bifurcation
problem to suddenly vary in magnitude for certain lattice angled his suggests an important consideration in
choosing one over another of the countable set of 12-dimensional representations relevant to hexagonal bifurcation
problems. Weakly damped subharmonic modes, on the other hand, do not have such an effect.

Our general analysis applies to any parametrically excited pattern forming system, but in particular is relevant
to the interpretation of many recent experiments on two-frequency forced Faraday waves. In such experiments, a
bicritical point exists where subharmonic and harmonic instabilities are simultaneously excited. On one side of the
bicritical point, a subharmonic mode is excited and there is a weakly damped harmonic mode, while on the other,
it is the harmonic mode which is excited and the subharmonic mode which is weakly damped. We showed that this
weakly damped subharmonic mode does not influence the harmonic wave pattern selection problem.

We have derived the quadratic and cubic coefficients in the rhombic and hexagonal bifurcation equations de-
scribing the onset of patterns from the hydrodynamic equations of Zhang and Vifals. We presented results for two
different sets of parameters. In the first case, the two forcing frequencies are in tl“é aatiche modes near the
bicritical point are the only ones of relevance. As expected from our normal form analysis, for subharmonic waves,
the weakly damped harmonic mode affects the cross-coupling coefficients, while for harmonic waves, the weakly
damped subharmonic mode had no effect.

Inthe second case éfforcing we have shown that in addition to the modes near the bicritical point, there are other
harmonic modes that are important. These modes are not close to onset in the sense that they only become critical
at a much higher value of the excitation amplitude, but are weakly damped and thus must be taken into account. We
demonstrate that they can have a stabilizing effect on superlattice patterns at a lattice angle approximately equal to
the angle of the harmonic—harmonic resonance. This can occur if the contribution of these weakly damped modes
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to the nonlinear cross-coupling coefficient nearly cancels the other contributions to this term, and hence is a subtle
effect that depends on certain details of the nonlinear problem, as well as the results of the linear analysis which
identifies the near critical modes. For the parameters we have chosen, the onset pattern is simple hexagons, but upon
a further increase of the forcing, there is an instability to a superlattice pattern associated with a hexagonal lattice
with (n1, n2) = (3, 2).

The experiments of Kudrolli et al. [1] found, near the bicritical point, a superlattice pattern which sits on a lattice
with (n1, n2) = (3, 2). The work in this paper suggests that the observation of this pattern could be explained by the
interaction of the primary harmonic instability and weakly damped harmonic modes. However, the Zhang-Vifals
equations are not valid in the parameter regime where this experiment was performed, and thus a study of the
full hydrodynamic problem is necessary to confirm this conjecture. A complete study should also involve a more
complete analysis of the codimension-two bifurcation point and the associated dynamics, in the spirit of Crawford’s
[27] early work on competing instabilities in the Faraday problem. This would be of interest in light of recent
two-frequency experiments by Arbell and Fineberg [11] that show a variety of dynamic states near the bicritical
point, which involve both critical modes.
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Appendix A. Perturbation theory

Here we outline the computation of the coefficients in (10) and (16) from the equations of Zhang and Vifials (20).
A multiple-scale perturbation method is used to derive expressions for the coefficients which are then evaluated
numerically using a pseudospectral approach. This follows closely the method described in [26] for the onset of
one-dimensional patterns and we refer the reader there for further details.

The coefficients can be derived by considering two different calculations, namely the bifurcation problem (16)
restricted in turn to a rhombic and simple hexagonal subspace.

A.1. Rhombic lattice computation

In order to compute the coefficiemtand the cross-coupling coefficiefitd) in (10) we seek solutions which are
periodic on a rhombic lattice associated with an adgh/e are thereby able to compute the coefficiéntd,, bs,
andbg in the bifurcation equations (16) sinég = a, ba = B(6h), bs = B(6h + %n), andbg = B(6h — %n).

First we introduce a small parametgrsuch that

h(x,y, 1) =nh1(x,y, 7. T) + n’ha(x, y, T, T) + n°h3(x, y, 7. T) + -+ - ,
d(x,y, 1)=nP1(x,y,7,T) + n2d>2(x, v, 7, T)+ 173CI>3(x, v, ., T)+--- (A.1)
in (20), where

T = n’t, f=fet+n*fo (A.2)
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Here f; is the critical excitation amplitude. The terms in the expansioih fand® may be written in the following
separable Floquet—Fourier form:

h1 =[w1(T) explikex} + wa(T) explikc(cx+ sy} + c.c.]p1(z),
@1 =[w1(T) explikex} + wa(T) explikc(cx+ sy} + c.c]qi(z),
ha = [w2(T) exp(2ikex} + w(T) exp2ikc(CX+ Sy} p2.1(7)
+w1(T)w4(T) explikc((1 — c)x — sY}p2,2(7)
+w1(T)wa(T) explikc((1 + ¢)x + sY}p2,3(t) + c.C.,
@, = [wi(T) expl2ikex} + w3(T) exp(2ikc(cx+ sY}lg2,1(7)
+w1(T)wa(T) explikc((1 — c)x — sY}gz,2(7)
+w1(T)wa(T) explike((1 + ¢)x + SY)}g2.3(t) + C.C., (A.3)

wherec = cosf, s = sind, andd is not a multiple of%n. Herep; andg; are real Z -periodic functions of the fast
time 7 in the case of harmonic waves; in the case of subharmonic waves they gueribdic int. Additionally,
p2. andgz, (r = 1, 2, 3) are real Z-periodic functions of. The wave numbek. is associated with the critical
mode at onset.

At O(n) we recover the linear problem which determiigsand f, as well as the functiongs, ¢1 to within
a multiplicative constant. AO(n2), equations are found which allow us to solve for the functipps andga .
Finally, atO(5%), we apply a solvability condition to ensure that a periodic solution exists. This condition leads to
the amplitude equations

dwy dwa
8o =afawit AlwilPwy + B(@)|wal?ws, 8 =afawat AlwalPwa + B@)|w1l?ws,  (Ad)
where
1 4 5 ke 4 .
= —/ (py + vkEp1) padr, o= —/ [cos(x) cosmt) + sin(x) cont + ¢)] p1p1 dr,
27 Jo 4 Jo
k2 4 ~
=1 \ [—ke(p2q1) — ykEp2q1 — 2(qip2,) — 2yk2qip2a + k2qip1 + 3k3Top3] p1 dr,

k2 4
B() = ﬁ /O [(L—c—@2=20)Y?)[(p1922) + ykZp1g2.2 — keqrq2.2]

+(L+c— 2+ 20Y?)[(p1g23) + ykZp1g2.3 — keq142.3]

—(1— O(p22q1) + vkép22q1] — L+ O)[(p2:3q1) + ykZp2,3q1]

—(6— 22— 20)Y/% — 22+ 20)"?)[ke(piq) + ykEpEa1 — kG pag?]

+To(3c? + sH)k3pP] pr dr., (A5)

In the above, a prime denotes differentiation with respeetdand p; is the equivalent op; for the adjoint problem
atO(n). The amplitude equations (A.4) may be rescaled and then comparison with the map (10) yields

B
a = b1 =sgnAa), BO) = sgr(Aa)%. (A.6)
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A.2. Hexagonal lattice computation

Similarly, we compute the coefficiendésandb, in the bifurcation equations (16) by seeking solutions in the form
of simple hexagons. Here we use a three-timing perturbation method, writing the solution as

h(x,y,T)=nhi(x,y, 7, T1, To) + n°ha(x, y, 7. T1, T2) + n°h3(x, y, 1. T1, T2) + -+, ®(x,y.7)
=n®1(x, y, T, Tr, To) + n°®a(x, y, 7, T1, To) + n°®@3(x, y, T, T1, To) + - - , (A.7)
where
Ty = nr, T = nzr, (A.8)
and

h1 = wi(T1, T2) p1(v)[explikex} + explike(—5x + 3+/3y)} + explike(— 3x — 3v/3y)} + c.cl,

®1 = wi(T1, T2)qa(v)[explikex) + explike(—3x + 3v/3y)} + explike(— 3x — 3+v/3y)) + c.cl,

ho = w2(T1, T2){p2.1(T)[explike2x} + explike(—x + /3y)} + explike(—x — +/3y)} + c.c]
+p2.2(v)[explikex} + explike(—2x + 3+/3y)} + explikc(—2x — 1v/3y)} + c.c]
+p2.3(0)[explike(3x — 3v/3y)} + explikev/3y} + explikeGx + 1v/3y)} + c.cl),

P = wi(T1, To){gz,1(v)[explikc2x} + explike(—x + v/3y)} + explike(—x — /3y)} + c.c]
+q2,2(0)[explikex} + explikc(—3x + 3+/3y)} + explike(—2x — 3+/3y)} + c.c]
+q2,3(0)[explike(3x — 3v/3y)} + explikev/3y} + explike(Gx + 1+/3y)} +c.c). (A.9)

As with the rhombic cases1, g1, p2.» andg - are real. Additionally, we take the amplitude (71, 7») to be real.
For the harmonic case, @(5?) the solvability condition

Jwy 2
§—= — A.10
aTy IBOwl ( )

must be satisfied, whebes given by (A.5). The quadratic coefficient is

k2 A _
Bo = ﬁ/o [—(p1g1) — k2 p1gr + Skeq?] prdr. (A.11)

There is no solvability condition for subharmonic wave®at?), reflecting the fact that there are no even terms in
the amplitude equations (16) for this case.

At O(n2), we again apply a solvability condition to ensure that a periodic solution exists. This condition leads to
the amplitude equation

9
5# = afowt + (A + 282w, (A.12)
2

The coefficient$, «, andA are given by (A.5), and
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1 4
B2= E/o [(% — V3k2[(p1923) + ykZp192.3 — keq142.3]
+(2V3 - DK (p3q0) + vkZpiar — kepra?] — 3K2[(p2,3q1) + vkEp2,3q1 — Dok p3]
—2k2[(p1g2,2) + vkZP1g2.2 + (p2.2q1) + YkEp2,2q1 — keq1q2.2]

0 0 ~
—% [k§p1q1 + %m +2py,+ 2Vk§pz,zﬂ p1dz. (A.13)

By rescalingyw; (T1, T2) — w;(T) andn?af> — af, we obtain the reconstituted hexagonal bifurcation equation

dw
b = ef2q1+ Powd + (A + 282w, (A.14)
Finally, after rescaling as for the rhombic case, and comparing (A.14) to (16) we find that
e =sgre) -2 b, = sgram P2 (A.15)
[A] A
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