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a b s t r a c t

We investigate the spectral stability of the travelling wave solution for the coupled motion of a free
surface and grain boundary that arises in materials science. In this problem a grain boundary, which
separates two materials that are identical except for their crystalline orientation, evolves according to
mean curvature. At a triple junction, this boundary meets the free surfaces of the two crystals, which
move according to surface diffusion. The model is known to possess a unique travelling wave solution.
We study the linearization about the wave, which necessarily includes a free boundary at the location of
the triple junction. This makes the analysis more complex than that of standard travelling waves, and we
discuss how existing theory applies in this context. Furthermore, we compute numerically the associated
point spectrum by restricting the problem to a finite computational domain with appropriate physical
boundary conditions. Numerical results strongly suggest that the two-dimensional wave is stable with
respect to both two- and three-dimensional perturbations.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many physical processes in materials science and other fields
can be approximately described using geometrical motion. For
example, interfaces between crystal grains in an annealing
process can be described in terms of curvature motion in an
idealized, isotropic setting. In two-dimensional (2D) processes
these interfaces meet at triple junctions at prescribed angles. A
comprehensive introduction to grain boundary motion is given
in [1]. This type of geometric curve network problem has
attracted much interest in the literature, both analytical [2,3] and
numerical [4,5]. The statistics of grain sizes and their change with
time is also of interest [6].
In this paper, we investigate the spectral stability of travelling

waves in a model for coupled surface and grain boundary motion.
This is an important phenomenon controlling the grain growth
in materials processing and synthesis. The basic physics for this
phenomenon was introduced in Dunn et al. [7] in the so-called
‘‘quarter-loop’’ geometry shown in Fig. 1. The grain boundary
runs parallel to a free surface before it turns up and attaches
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to the upper free surfaces at a groove root. The point at which
the three curves meet is often referred to as a triple junction.
In certain applications, when heated at a specific temperature,
the grain boundary can migrate to reduce the surface energy
and to heal the orientation mismatch. This can lead to waves
travelling at a constant speed, where one grain grows at the
expense of the other. Semi-explicit formulae for these travelling
wave solutions can be found in [8,9]. The grain boundary curve in
Fig. 1 moves with curvature motion, that is with normal velocity
equal to the local curvature. The free surface curves in Fig. 1
move with surface diffusion. Because the quarter-loop problem
in Fig. 1 involves both curvature motion (second-order parabolic)
and surface diffusion (fourth-order parabolic) we describe it as a
mixed-order problem. Although the detailed composition of the
material can be quite complex, a simple model composed of a
grain boundaries separating components that are identical except
for their crystalline orientation can help elucidate certain aspects
of the way the material behaves. For example, these models give
insight into a mixture of electrical steel and silicon that is an
important component in transformers [10]. In this application, the
properties of the material are closely related to the orientation of
the grains.
In general, this process is three-dimensional. As suggested

by Fig. 1, we will make the standard assumption that the bi-
crystal is uniform along the cross-sectional direction [11] leading
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Fig. 1. The quarter-loop bi-crystal geometry.
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Fig. 2. A curvature motion model.

to a two-dimensional model. Ultimately, one would like to
understand the spectral stability of the travelling wave for the
full three-dimensional mixed-order problem. Roughly speaking,
this means linearizing the system about the 2D travelling wave
and determining the spectrum of the resulting operator. If the
spectrum,which consists of both continuous and point spectra, lies
in the left half of the complex plane, then the wave is said to be
spectrally stable. In general, it is possible to analytically determine
the location of the continuous spectrum, but difficult to do so for
the point spectrum, also known as the eigenvalues. Therefore, we
will compute the eigenvalues numerically. This will be done using
the partial differential algebraic equation (PDAE) formulation of
the problem proposed in [5] which has several advantages in this
setting and is described in more detail below and in Section 2.
In Sections 4 and 5, we will present numerical results that strongly
suggest such two-dimensional travelling wave solutions for the
mixed-order problem shown in Fig. 1 are stable against two- and
three-dimensional perturbations. This is the main contribution
of this work. There is little analysis or computational work in
the literature for this mixed-order problem in 3D. The work in
this paper helps to fill that gap for this well-studied process. See
also [12] for recent computational work on this problem in 3D.
In addition to this mixed-order problem, we also consider a

simplified equal-order model, shown in Fig. 2, that involves only
grain boundary (curvature) motion. In this model, three grain
boundaries meet at a triple junction and evolve by curvature
motion. At the triple junction, the curves meet at the given angles
θ shown. Far away from the triple junction, they run parallel to the
horizontal direction.
Solving general geometric curve motion problems with junc-

tions numerically has received a lot of recent attention [13,14,
4,15]. A number of numerical approaches were considered in
[16,17], applied to the quarter-loop problem of interest in the cur-
rent paper. The PDAE formulationwas identified as having superior
numerical properties during this study and was presented in [5].
The travelling wave solutions considered here were used to ver-
ify convergence of this method. The approach discovered indepen-
dently in [4], although presented quite differently, has underlying
similarities to our approach. This formulation is used in the present
work for the numerical eigenvalue determination for the linearized
problem around travelling waves.
A theoretical study of stability is most easily performed for

problems written in Cartesian formulations. In that context, we
must allow for perturbations not just of the wave but also of the
location of the triple junction. As discussed in Section 2 below,
this leads to the presence of a free boundary in the linearized
problem, which can potentially create additional difficulties and
new phenomena in the analysis. Stability theory in the presence
of free boundaries has been studied rigorously in [18,19], and
below we will discuss what these results imply about the current
models. Our theoretical discussion is less rigorous for the PDAE
formulation of the mixed-order problem, although we observe
good agreement between theoretical predictions of the absolute
spectrum and numerical results.
Another issue that we must deal with is that numerical

calculation of the eigenvalues necessarily involves the truncation
of the unbounded spatial domain to one of finite length, and one
must be careful in choosing the boundary conditions so as not to
create spurious eigenvalues. Rigorous results for stability problems
in this context can be found in [20–22], which we will use to
determine the appropriate boundary conditions for this model.
The outline of the remainder of the paper is as follows. The

equations of the models are described in detail in Section 2.
We then present a theoretical discussion, mainly targeted at the
simple, equal-order problem, in Section 3. For this problem, there
exists an explicit travelling wave solution in Cartesian coordinates.
We recall here existing linear stability theory, including that
involving a free boundary and domain truncation for numerical
calculation of the point spectra. In Section 4, the PDAE method
is used to investigate the stability to 2D perturbations of the
travelling wave in the simplified model and the mixed-order
problem. In Section 5 the analysis is extended to 3D perturbations
of themixed-order problem. Our results indicate that the travelling
waves are stable in all of these settings.

2. Model formulation

2.1. The simple, equal-order grain boundary model

The equations and junction conditions for the simple model
shown in Fig. 2 are described below first in terms of two-
dimensional Cartesian coordinates. This Cartesian formulation is
amenable to the theoretical discussion in Section 3 of the travelling
waves that we consider. An alternative formulation, the PDAE
formulation, is subsequently described which is the basis of the
numerical investigation of the point spectra.
To describe the simple curvature motion network problem

shown in Fig. 2 in terms of Cartesian coordinates, let yi(x, t), i =
1, 2, 3, be the vertical displacement of each curve. The location
x = q(t) of the junction must be introduced as an additional
unknown. In this formulation, the problem is of free boundary type.
Curvature motion of the three curves is described by

∂tyi =
∂2x yi

1+ (∂xyi)2
, (1)

with junction conditions

y1(q(t), t) = y2(q(t), t) = y3(q(t), t)
arctan[∂xy1(q(t), t)] − arctan[∂xy2(q(t), t)] = θ
arctan[∂xy1(q(t), t)] − arctan[∂xy3(q(t), t)] = −θ (2)
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and far field conditions

y1(−∞, t) = 0, y2(+∞, t) = 1, y3(+∞, t) = −1. (3)

This free boundary, Cartesian formulation forms the basis of the
discussion in Section 3.
The curves in the simple curvature motion network problem

shown in Fig. 2 can also be described as parametrized curves
Xi(σ , t) with parameter σ ∈ [0,∞) with σ = 0 corresponding
to the junction. Here, X denotes a quantity with two components
(x, y) in 2D and three components (x, y, z) in 3D. In this
formulation, curves that are not single-valued functions can be
described. Such curves can be present in mixed-order travelling
waves as shown in Fig. 7. An additional numerical advantage
of this parametrized curve formulation is that the junction is a
fixed boundary condition, not a free boundary one. For general
parametrized curves in 2D, the tangent T and normalN vectors and
the curvature κ can be calculated as follows:

T =
∂σX
|∂σX |

N = T⊥

κ =
∂2σX · N
|∂σX |2

.

The correct normal motion is achieved when

∂tXi · Ni = κi (4)

for i = 1, 2, 3, where κi and Ni are computed from derivatives of
Xi with respect to σ as indicated above. Notice that the tangential
velocity away from the junction can be chosen arbitrarily. An
additional condition for specifying the parametrization with good
numerical properties was identified in [5] and independently
in [4]. Additional details about the formulation and alternative
approaches to the problem can be found in these papers. The
additional condition is

∂σXi · ∂2σXi = 0. (5)

This enforces that the parametrization remains a scaled arc length,
although the scaling can change in time for finite length curves.
This is seen by rewriting the condition above as

1
2
∂σ |∂σXi|2 = 0.

The junction conditions for the parametrized formulation above
are

X1(0, t) = X2(0, t) = X3(0, t)
∂σX1(0, t)
|∂σX1(0, t)|

·
∂σXi(0, t)
|∂σXi(0, t)|

= cos θ i = 2, 3 (6)

and the far field conditions are

X1(∞, t) = (−∞, 0)
X2(∞, t) = (∞, 1)
X3(∞, t) = (∞,−1) (7)
|∂σXi(∞, t)| = 1, i = 1, 2, 3.

The last condition fixes the parametrization σ to be arc length.
Note that σ = +∞ represents the far field for all curves in this
formulation.
Free Surface
Free Surface
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Fig. 3. A labelled close-up of the junction in themixed-order, quarter-loop problem
shown in Fig. 1.

2.2. The mixed-order, quarter-loop model

We now return to the mixed-order, quarter-loop problem
shown in Fig. 1. Aspects of themodel of this phenomenondescribed
below were originally proposed in [23], and its present form
was developed in [24] but rewritten in the PDAE formulation of
parametrized curves developed in [5]. Let X1(σ , t) denote the grain
boundary and X2,3(σ , t) denote the free surfaces to the left and
right of the triple junction. The curves are parametrizedwithσ ≥ 0
as above. Again σ will remain arc length and σ = 0 corresponds
to the triple junction. A close-up of the junction is shown in Fig. 3.
Note that the numbering of the curves follows a different pattern
than in the simple equal-order model problem discussed above.
As mentioned above, the quarter-loop geometry contains two

types of motion: mean curvature motion for the grain boundary
and motion by surface diffusion for the upper free surfaces.
The normal velocity of the grain boundary is proportional to its
curvature,
∂tX1 · N1 = Aκ1,
which can be computed from derivatives of X1 as in the simple
equal-order model above. A is a positive physical constant. The
normal velocities of the free surfaces undergoing surface diffusion
are proportional to the surface Laplacian of curvature, which in 2D
is ∂2s κ where s is arc length. In our formulation in which σ is scaled
arc length, this term can be written as

∂2s κ =
∂2σκ

|∂σX |2

and so can be written simply in terms of derivatives of X with
respect to σ . For the infinite length curves of this model, σ can
remain arc length, so the denominator above is unity. The motion
of the free surfaces (upper curves) is then described by
∂tX2,3 · Ni = −B∂2σκi, i = 2, 3
where B is a positive physical parameter. One can show that, by an
appropriate rescaling of space and time, the constants A and B can
be taken to be 1 [5]. Therefore, the model that we will study is

∂tX1 · N1 = κ1
∂tX2 · N2 = −∂2σκ2
∂tX3 · N3 = −∂2σκ3.

(8)

In addition to Eq. (8), one must also include

∂σXi · ∂2σXi = 0, i = 1, 2, 3. (9)
to fix the parametrization as discussed above. Junction conditions
are listed below:
X1(0, t) = X2(0, t) = X3(0, t)
∂sX1 · ∂sXi = cos θ i = 2, 3 (10)
κ2 = −κ3

∂sκ2 = ∂sκ3
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where derivatives in arc length s can be written as scaled
derivatives in σ as discussed above. The first equation in (10)
expresses that the curves meet at a common junction. The second
equation, Young’s Law, represents a balance of surface tensions.
Here θ = π/2+ arcsin(m/2) denotes the angle between the grain
boundary and the exterior surfaces and m = γgrain/γexterior ≥ 0
is a constant measuring the relative surface tensions γ , between
them. These junction conditions are modelled in the simple,
equal-order model above. The remaining conditions are necessary
for completing the specification of the fourth-order, free surface
problem. The third condition in (10) reflects the continuity of the
surface chemical potentials, and the last condition represents the
balance of mass flux. Again, the reader can refer to [24] for a
discussion of the model Eq. (8) and junction conditions (10) and
to [5] for a discussion of the parametrization constraint (9). In this
paper, we consider the linear stability (to 2D and 3D perturbations)
of 2D travelling waves for this system known in the literature. To
consider 3D perturbations, a 3D version of the problem must be
considered. The technical details of this case are left to Section 5.
Far field conditions for the travelling wave are
X1(∞, t) = (∞,−H)
X2(∞, t) = (−∞, 0)
X3(∞, t) = (∞, 0) (11)
∂σ xi(∞, t) = 1, i = 1, 2, 3
∂σ yi(∞, t) = 0, i = 2, 3
where (xi, yi) are the components of the curve Xi and H is a
specified grain thickness in the far field that enters as a parameter
in the travelling wave. The first four conditions above parallel the
ones for the simple, equal-order model and the last condition is
needed for asymptotic flatness of the higher order free surface
curves.
Existence of the travelling wave was proven in [8] form . 0.92

and in [9] for all m ∈ [0, 2). In these papers, implicit formulae for
the travelling waves are also given. Recall thatm is a parameter in
Young’s Law that determines the angles between the free surfaces
and the grain boundary. For 1.81 . m < 2 the wave is no longer
a single-valued one (for y as a function of x) and so it is referred to
as a ‘‘non-classical travelling wave’’. An example of such a solution
is shown in Fig. 7.

3. Spectral stability of travelling waves

This section contains a theoretical discussion of travelling wave
stability in the context of geometric motion with junctions. Some
rigorous statements can be made on the simple, equal-order
model of grain boundary motion shown in Fig. 2. This problem is
particularly amenable to analysis because it possesses an explicit
travellingwave solution in terms of Cartesian coordinates, which is
presented below. We discuss the linearization about the wave and
related stability theory, including that involving a free boundary
and domain truncation. Some less rigorous statements are made
about themixed-order problem,motivated by the discussion of the
equal-order problem. The discussion of this section indicates the
stability of travelling waves up to the possible presence of point
spectra, which are investigated numerically in later sections.

3.1. The simple, equal-order model

The simple model (1) with junction (2) and far field (3)
conditions has an explicit travelling wave solution given by

ȳ1(ξ) = 0

ȳ2(ξ) = 1−
1
c
arcsin[sin(c)e−cξ ]

ȳ3(ξ) = −1+
1
c
arcsin[sin(c)e−cξ ],

(12)
where the wave speed is c = π − θ , the junction location is given
by q(t) = ct , and themoving coordinate ξ is defined by ξ = x−ct .
For a derivation of this solution see [25].
We need to allow for a perturbation not just of the grain

boundaries but also of the junction location. This is in contrast to
the case of studying the stability of a travelling wave without the
presence of a junction. In that case, if the original PDE is translation
invariant, then any fixed translate of the travelling wave will also
be a solution. This manifests itself in the stability problem through
the presence of a zero eigenvalue with associated eigenfunction
given by the derivative of thewave. Any changes in the speed of the
travelling wave, and hence changes in the location of the interface,
can be captured by the behaviour of perturbations. In the present
context, we should still allow for perturbations that are simply
translates of the underlying wave. To do this, we need to allow for
a change in the junction location q(t). Otherwise, there would be a
mismatch in the junction conditions between the perturbation and
the underlying wave. We will see this explicitly, below.
Write the junction location as

q(t) = ct + p(t)

and define a new coordinate x̃ = x − q(t). We proceed below
with equations for the curves y1(x̃, t), dropping the tildes on the x
variables. Following [18,19], wewrite the perturbation of thewave
as

yi(x, t) = ȳi(x)+ p(t)∂xȳi(x)+ vi(x, t), i = 1, 2, 3. (13)

Note that, to leading order in p, this is equivalent to

yi(x, t) = ȳi(ξ)+ vi(x, t).

The motivation for this can be understood as follows. It is
advantageous to work in the coordinates (x, t) because then the
junction becomes fixed at x = 0. However, simply defining

yi(x, t) = ȳi(x)+ vi(x, t)

would introduce a term of the form ṗ∂xȳi into the linearized
equation. Using the ansatz (13) allows one to remove this term at
the expense of complicating the conditions at the junction.
Inserting (13) into (1)–(2) and retaining only the terms that are

linear in vi and p, we obtain

∂tvi =

(
1

1+ (∂xȳi)2

)
∂2x vi +

(
c −

2∂xȳi∂2x ȳi
(1+ (∂xȳi)2)2

)
∂xvi

=: Livi, (14)

for i = 1, 2, 3, with the junction conditions

tan(c)p(t) = v1(0, t)− v2(0, t) = −v1(0, t)+ v3(0, t)
tan(c)+ tan(θ) = [1− tan(θ) tan(c)]∂xv1(0, t)− ∂xv2(0, t)

− 2c sec2(c) tan(c)p(t)
tan(c)+ tan(θ) = [−1+ tan(θ) tan(c)]∂xv1(0, t)+ ∂xv3(0, t)

− 2c sec2(c) tan(c)p(t)

(15)

and asymptotic condition

v1(−∞, t) = v2(+∞, t) = v3(+∞, t) = 0. (16)

Note that we can combine the equations in (15) to obtain

0 = −2v1(0, t)+ v2(0, t)+ v3(0, t)
tan(c)+ tan(θ) = [1− tan(θ) tan(c)]∂xv1(0, t)− ∂xv2(0, t)

− 2c sec2(c)[v1(0, t)− v2(0, t)]
tan(c)+ tan(θ) = [−1+ tan(θ) tan(c)]∂xv1(0, t)+ ∂xv3(0, t)

+ 2c sec2(c)[v1(0, t)− v3(0, t)].

(17)
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Below,wewill use the fact that, since c and θ are fixed, (17) is linear
in the six variables (v1(0, t), v2(0, t), v3(0, t), ∂xv1(0, t), ∂xv2
(0, t), ∂xv3(0, t)).
In order to rigorously analyse the spectral stability of the

wave, one would need to verify several things about the system
(14)–(16). In particular, one would need to formulate the linear
operator in (14) as acting on an appropriate function space that
incorporates the boundary and asymptotic conditions (15) and
(16). In addition, one would need to calculate the spectrum of
the operator on that space, or at least prove that the spectrum
was contained entirely within the left half of the complex plane.
Since here our focus is primarily the numerical computation of
the spectrum, we will be content to simply indicate why (14)–(16)
provide a reasonable way to formulate the stability problem.
In [18,19] the stability of travellingwaves in the presence of free

boundaries was analysed rigorously. In those works, the authors
use an ansatz of the form (13) to fix the location of the boundary
at the expense of converting a linear condition at the boundary
to a fully nonlinear one. They prove that this leads to a well
defined spectral problemanduse it to rigorously prove the stability
of travelling waves with free boundaries in several applications.
Our setting, (1)–(2), is slightly more complicated because the
equations themselves are more complex and the conditions at the
free boundary are, at the outset, nonlinear. However, we expect a
similar analysis to apply.
When studying unbounded linear operators, there are several

ways to characterize different elements of the spectrum. For
linear operators on unbounded domains, such as the one in
Eq. (14), the most useful way is to divide the spectrum into the so-
called continuous, or essential, spectrum and the point spectrum,
or eigenvalues. The point spectrum is defined to be the set of
all isolated eigenvalues of finite multiplicity, and the essential
spectrum is its complement within the spectrum. The reason that
this is a useful characterization is because in general one can
explicitly compute the essential spectrum using the asymptotic
limits of the operator [21,22].
For example, as x→±∞, Eq. (14) becomes

∂tvi = ∂
2
x vi + c∂xvi =: L∞vi, i = 1, 2, 3. (18)

The associated eigenvalue equation is

λv = L∞v,

which has explicit solutions given by exponentials. A bounded
solution exists only when λ = −k2 + ick for some k ∈ R, and
therefore the spectrumof L∞ is given exactly by this set. The results
in [21] then imply that the essential spectrum associated with
(14)–(16) is given by

Σess = {λ = −k2 + ick : k ∈ R}. (19)

Determining the point spectrum is, in general, much more
difficult. In certain situations, for example if the equation has
conserved quantities or some type of fast–slow structure, one can
analytically determine the eigenvalues or prove that they all lie
in the left half of the complex plane. For details, we refer the
reader to the review [21] and, for the situation involving free
boundaries, [18]. Here this is not the case, and so we will compute
the eigenvalues numerically. Eigenvalues correspond to values of
λ ∈ C for which the system

λvi = Livi, i = 1, 2, 3 (20)

has a solution that satisfies (15)–(16). One can explicitly check that,
for λ = 0, vi = δ∂xȳi, i = 1, 2, 3, is an eigenfunction with
p(t) = −δ. As discussed above, this is expected and related to
translations of the underlying wave.
Another way to think of the linearized problem (14)–(16) is

in terms of the Fredholm properties of the linear operator. Since
on each half-line the operators Li are just convection–diffusion
operators, one can verify that system (20) for i = 1, 2, 3 has
Fredholm index 3 for values of λ to the right of the essential
spectrum. A bordering lemma can then be used to show that, after
the addition of the boundary conditions at the junction, (15), the
Fredholm index becomes zero. Thus, to understand the spectral
stability of the travelling waves, one really need only look for
eigenvalues to the right of the curve (19). For a discussion of the
relationship between the Fredholm and spectral properties of a
linear operator, see [21, Section 3.3]. A bordering lemma can be
found in [26, Lemma 3.5].
Because any numerical calculations necessarily take place on

a finite computational domain, one must truncate the domain to
(−L, 0) for v1 and (0, L) for v2,3 and impose appropriate boundary
conditions at±L. (Note that the junction conditions at zero remain
as in Eq. (15).) In general, one needs to be careful when imposing
artificial conditions at the ends of the finite domain, as spurious
eigenvalues can be created. A rigorous study of domain truncation
in the context of stability was conducted in [22]. In that work
the authors did not consider situations involving a free boundary.
However, Eq. (17) shows how the free boundary can be eliminated
from conditions at the junction. Thus, the framework of [22] is
applicable to the current setting, and sowenow recall someof their
results.
In [22], the authors consider a certain class of operators

L, including for example that which one would obtain when
linearizing a system of reaction–diffusion equations around a
travelling wave, defined on the infinite spatial domain R. For
the truncated domain (−L, L), the potential boundary conditions
at ±L were divided into two categories: periodic and separated.
Periodic implies that any eigenfunction must satisfy v(−L) =
v(L), and separated includes Dirichlet, v(±L) = 0, and Neumann,
v′(±L) = 0, conditions. The authors were interested in studying
how the point spectrum ofL on the truncated domain,ΣL, with a
given set of boundary conditions was related to the spectrum on
the infinite domain, Σ . They found that, for periodic conditions,
in the limit L → ∞, ΣL accurately approximates both the point
and the essential spectrum ofL. However, for separated boundary
conditions, although ΣL will capture the point spectrum of L in
the limit L→∞, additional eigenvalues can also be created. These
spurious eigenvalues are not necessarily relevant for the stability
on the infinite domain and are created by the boundary conditions.
Thus, in general, it is better to use periodic conditions when
numerically computing point spectra.
However, it is not possible for us to use periodic boundary

conditions for (20). This is due to the presence of the triple junction.
Condition (15), which any eigenfunctionmust satisfy, is effectively
a separated boundary condition imposed at one end of the domain
(x = 0) for each of the functions vi. Therefore, periodic boundary
conditions don’t really make sense in this context. Since we will
necessarily use separated boundary conditions, the most natural
conditions to impose at±L are therefore the physical conditions

v1(−L) = 0, v2,3(+L) = 0, (21)

which correspond to the asymptotic condition (16). We must
check that these boundary conditions do not create any spurious
eigenvalues, and in [22, Section 4.3] a condition is derived that
allows one to do this. In order to explain this condition, we must
reformulate the eigenvalue problem (20).
For notational clarity, fix v = vi and ȳi = ȳ, for i = 1, 2, 3. We

can write (20) as

d
dx
V = A(x, λ)V , V =

(
v
vx

)
, (22)
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where

A(x, λ)

=

 0 1

λ(1+ ȳ2x(x)) −
[
c(1+ ȳ2x(x))−

2ȳx(x)ȳxx(x)
1+ ȳ2x(x)

] , (23)

and we note that

A±(λ) := lim
x→±∞

A(x, λ) =
(
0 1
λ −c

)
. (24)

This formulation is often referred to as a spatial dynamical system,
since it is an ODE in the spatial variable x. In addition to satisfying
the junction condition, an eigenfunction V must decay to zero
as x → ±∞. This can be related to the asymptotic matrices
A±, which are equal due to the fact that only derivatives of the
underlyingwave appear in the linearized problem. The eigenvalues
of this matrix are given by νs(λ) = [−c −

√
c2 + 4λ]/2 and

νu(λ) = [−c +
√
c2 + 4λ]/2. The subscripts stand for stable

and unstable and are present due to the fact that, for λ > 0,
Reνs(λ) < 0 andReνu(λ) > 0. These eigenvalues are often referred
to as spatial eigenvalues to distinguish them from the temporal
eigenvalues λ. The associated stable and unstable subspaces are

Es(λ) =
(
1

νs(λ)

)
, Eu(λ) =

(
1

νu(λ)

)
.

In order for V to decay to zero it would need to be asymptotic to Es

as x→+∞ and asymptotic to Eu as x→−∞.
As shown in [22], spurious eigenvalues can be created by the

boundary conditions in the following way. Let Q = (0, 1)T . Any
function V that satisfies the Dirichlet boundary conditions must
satisfy V (±L) ∈ span{Q }. If Q is parallel to either Es(λ∗) or Eu(λ∗)
for some λ∗, then the truncated eigenvalue problem can have a
solution that actually becomes unbounded near±L as L→∞. The
reason for this is that, when Q is parallel to either eigendirection,
the function V can satisfy the boundary conditions but lie entirely
in the stable subspace at−L, or the unstable subspace at+L. Thus,
even though λ∗ appears to be an eigenvalue, V would have the
wrong asymptotic behaviour as L → ∞. Conversely, if Q is not
parallel to either subspace, one can use this fact to construct true
eigenfunctions for the eigenvalue λ∗.
One can see explicitly that Q is not parallel to Es or Eu for any

value of λ, and so the physical Dirichlet boundary conditions (21)
will not create spurious eigenvalues. Note, however, that if one
were to use Neumann boundary conditions, which correspond to
Q̃ = (1, 0)T , then this condition would be violated at λ = 0.
In Section 4, we will see that the zero eigenvalue does indeed
appear to have a highermultiplicity if one usesNeumann boundary
conditions.
We conclude this section with a few remarks on the so-called

absolute spectrum, which is defined in terms of the asymptotic
limits of the operator. See [22, Definition 3.5] and Section 3.2 for
more details. On unbounded domains, the absolute spectrum is
not actually part of the spectrum. However, it can provide useful
information related to the spectrum. In particular, for separated
boundary conditions, the spectrum of the truncated operator
ΣL will approximate the absolute spectrum, in addition to the
true point spectrum, as L → ∞. One can explicitly compute the
absolute spectrum for (20) and see that it is (−∞,−c2/4]. This
is why, in the numerical calculations of Section 4, one sees
approximations of this interval in addition to the eigenvalue zero.
3.2. The mixed-order, quarter-loop problem

It would be much more difficult to analyse the mixed-order
problem with the same rigour as the equal-order problem above.
In this work, more of the burden is placed on the numerical
calculations in Sections 4 and 5. However, we can follow
formally the steps above and predict an absolute spectrum in
the finite domain that corresponds to that seen in the numerical
computations.
Here,we consider the problem in 3Dbut linearized about the 2D

travelling wave. We can formally consider the problem in the far
field in terms of parametrized curves y(x, z, t) (recall that near the
junction, the travelling wave may not be a single-valued one). As
above, we replace x with a coordinate moving with the travelling
wave speed but retain the same name x below. As x→±∞

∂tv = L∞v := −∆∆v + c∂xv

where v is the linear perturbation to the travelling wave ȳ in the
moving frame with travelling wave speed c and the biharmonic
term−∆∆ = −(∂2x + ∂

2
z )
2 is the linearization of surface diffusion

at a flat interface. This equation is the analogue of (18) above.
The associated eigenvalue equation is

λv = L∞v,

which as above has explicit solutions given by exponentials:

Σess = {λ = −(k2 + ω2)2 + ick : k, ω ∈ R}. (25)

Here, we introduce the wavenumber ω for perturbations in
the z direction that will appear as a parameter in the stability
calculations in Section 5.
The absolute spectrum which corresponds to this problem is

not known analytically even in 2D (ω = 0). However, the absolute
spectrum of the 2D case

λv = −∂4x v + c∂xv, (26)

can be partially dealt with analytically and investigated numeri-
cally using [22, Definition 3.5].We briefly review this for later com-
parison with the numerical results in Section 4.3.
The absolute spectrum is defined in terms of the roots of the

characteristic equation associated with (26), given by

ν4 − cν + λ = 0. (27)

If the four spatial eigenvalues, which are simply roots of this
equation, are ordered so that

Re(ν1(λ)) ≤ Re(ν2(λ)) ≤ Re(ν3(λ)) ≤ Re(ν4(λ)),

then the absolute spectrum is defined as

Σabs = {λ : Re(ν2(λ)) = Re(ν3(λ))}.

For c = −1, the numerically computed absolute spectrum of (26)
is shown in Fig. 4.
Although it is difficult to analytically determine the roots of (27)

– formulae exist for roots of a quartic but they are very complicated
– one can calculate the boundary of the absolute spectrum, shown
by the points labelled P1,2,3 in Fig. 4.
Assume that λ = λr + iλi and ν = a + ib. Equating real and

imaginary parts in the fourth-order polynomial (27), we obtain

f1(a, b; λr, λi) = a4 − 6a2b2 + b4 − ca+ λr = 0,
f2(a, b; λr, λi) = 4a3b− 4ab3 − cb+ λi = 0.

At any point in the absolute spectrum, there will be two solutions
to this equation given by (a, b) and (a, b̃). Thus, it will not be
possible to write b = b(a) near those points; i.e. the conditions
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Fig. 4. Numerical computation of the absolute spectrum of (26) for c = 1.

of the implicit function will fail. Therefore, to find these points, we
just need to find where

∂bf1 = −12a2b+ 4b3 = 0, ∂bf2 = 4a3 − 12ab2 − c = 0.

The solution is given by (a1, 0) and (a2,3, b2,3), where

a1 = 3
( c
4

)4/3
, a2,3 = −

( c
32

)1/3
,

b2,3 = ±
√
3
( c
32

)1/3
.

Thus, we see that

P1 = −
21
100

(
5c2

2

)2/3
,

P2,3 = −
3c
8

( c
4

)1/3
± i
3
√
3c
8

( c
4

)1/3
. (28)

This absolute spectrum is seen approximately in the finite
difference numerical computations in Section 4.3 below.

4. Numerical results in 2D

In this section, we compute the spectrum numerically for
travelling waves both for the simple, equal-order problem
and the mixed-order, quarter-loop problem. The discussion
in Section 3 addressed the continuous spectra for these problems.
The numerical results in this section are done primarily to rule out
possible unstable point spectra. However, the results also confirm
the predictions of the theory on the absolute spectrum which
for the mixed-order problem are not completely rigorous. The
linearization and numerical approximation procedure is discussed
below for the equal-order model which is less complex but
representative.

4.1. Linearization and numerical approximation of the simple, equal-
order model

We describe here the linearization and numerical approxima-
tion of the spectra for the PDAE formulation of the equal-order
model given in Section 2.1. Let

X̄i = (x̄i(σ ), ȳi(σ )) (29)

represent the parametrized travelling wave solution in the
moving frame x̃ = x − ct with wave speed c = π − θ .
This parametrized solution is obtained numerically by converting
the Cartesian formulation (12) to a curve with parameter σ that
is approximately arc length. Starting at the junction, points are
determined that both lie on the travelling wave and are the given,
fixed resolution distance h = ∆σ apart.
System (4) and (5) in the moving frame becomes

∂tXi · Ni = κi − C · Ni (30)
∂σXi · ∂2σXi = 0

for i = 1, 2, 3 where C = (c, 0). Obviously, X̄ defined by (29) is a
steady state solution of above system.
To analyse the linear stability of the travelling wave solution,

we consider a linear perturbation X̂i to the steady state X̄i, i.e.,

Xi = X̄i + εX̂i

and linearize system (30) around X̄ to get a linear system.We begin
with the linearization of

|∂σX | ≈ 1+ ε∂σ X̄ · ∂σ X̂

where the fact that the travelling wave parameter is arc length is
used. The linearization of the normal N is thus

N ≈ N̄ + ε
(
∂σ X̂⊥ − (∂σ X̄ · ∂σ X̂)N̄

)
and curvature

κ =
∂2σX · N
|∂σX |2

≈ κ̄ + ε
(
∂2σ X̂ · N̄ − 3∂σ X̄ · ∂σ X̂ κ̄ + ∂

2
σ X̄ · ∂σ X̂

⊥

)
Inserting these linear expressions in (30) gives

∂tXi · N̄i = ∂2σXi · N̄i − 3∂σ X̄i · ∂σXiκ̄i + ∂
2
σ X̄i · ∂σX

⊥

i
− C ·

(
∂σX⊥i − (∂σ X̄i · ∂σXi)N̄i

)
(31)

0 = (∂σ X̄i · ∂2σXi)+ (∂σXi · ∂
2
σ X̄i)

for i = 1, 2, 3. Here we have dropped the hats that indicate
the O(ε) terms. The associated eigenvalue problem is given by
replacing the time derivative ∂tXi in the first equation of (31) by
λXi. The junction conditions (6) can be linearized to give boundary
conditions for this problem at σ = 0. Boundary conditions that
are homogeneous versions of (7) are applied at a finite distance
in arc length σ = L from the junction. In (31) derivatives in
σ of the perturbation are approximated by finite differences and
derivatives of the base solution can be found analytically. We now
have a large, generalized eigenvalue problem. It is generalized
because λ does not appear in the constraint equations or in the
approximation of the linearization of the junction conditions (6).
Numerical calculations of the eigenvalues for the discrete problem
above are done using MATLAB’s eig routine. The results are
discussed below.

4.2. Numerical results for the simple, equal-order problem

The eigenvalues of the generalized boundary value problem
that corresponds to the equal-order model derived above are
approximated computationally. The distribution of the eigenvalues
is shown in Fig. 5 for a domain size of L = 20, discretization
h = ∆σ = 0.1 and equal angles θ = 2π/3. As expected, there
is a single zero eigenvalue with associated eigenfunction given
by the derivative of the travelling wave which corresponds to its
translation invariance. This eigenvalue is the only member of the
point spectrum found in the computations. Except for the zero
eigenvalue, all other eigenvalues from the discrete problem are in
the left half-plane. These other discrete eigenvalues approximate
the absolute spectrum of the continuous problem. Recall that
the absolute spectrum for the limiting problem (20) is given by
(−∞, b] with b = −c2/4. For the equal-angle problem, c =
π − θ = π/3 and b ≈ −0.2742. It can be seen from Fig. 5
that there is good agreement with this analytic result. This is
confirmed by resolution studies in L and ∆σ shown in Table 1.
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Fig. 5. Approximate eigenvalue distribution for the equal-order model problem. The computational domain size is L = 20, discretization h = ∆σ = 0.1 and the angles are
equal: θ = 2π/3. The right picture is a close look at the left picture near the origin.
Table 1
Real part of the leading non-zero approximate eigenvalue λ for the equal-
order model problem showing convergence to the predicted value −0.2742 with
resolution h = ∆σ (left) and domain size L (right).

L = 20 fixed h = 0.1 fixed
h λ L λ

0.12 −0.2872 7.5 −0.3404
0.06 −0.2870 15 −0.2948
0.03 −0.2869 30 −0.2809
0.015 −0.2868 60 −0.2764

Note that as L is further increased, the discrete eigenvalue problem
becomes ill-conditioned and gives spurious results in complex
pairs, although otherwise the results are not easily recognized as
incorrect. This phenomena occurs even for simple problems like
(18). It also occurs for large L computations for the mixed-order
problem discussed below. Resolving this numerical difficulty is of
interest but outside the scope of this work.
The stability of travelling waves with different wave speeds

(obtained by varying the angle θ shown in Fig. 2) are also
investigated. All exhibit behaviour similar to that shown above.
Other computations with Neumann far field boundary conditions
give similar results but with three zero eigenvalues (horizontal
translation, vertical shift, and change in wave speed induced by a
widening of the curves in the far field). More details of these and
other results can be found in [25]. In summary, the computational
results of this section give strong evidence that there are no
unstable point spectra and thus this equal-order travelling wave
is spectrally stable.

4.3. Stability of travelling waves for the mixed-order model

For the coupled surface and grain boundarymotion, a travelling
wave solution was found in [8,9] using an angle formulation for
a range of the physical parameter m. An additional parameter in
the travelling wave is the asymptotic thickness H of the upper
grain, although this parameter appears in a different form in
the scaling of [8,9]. In this section, we consider the stability of
these travelling waves. The procedure for deriving the discrete,
approximate generalized eigenvalue problem is the same as that
described in Section 4.2 above, except that the derivatives of the
exact solution are computed using numerical differentiation of the
solution on grid points.
The distribution of eigenvalues for a mixed-order travelling

wave is shown in Fig. 6. Like for the simple equal-order problem,
there is only one zero eigenvalue with associated eigenfunction
given by the derivative of the wave. There are no other point
spectra. All other eigenvalues are contained in the left half-plane
which indicates that the travelling wave is stable. It is convincing
that the other discrete eigenvalues approximate the absolute
spectrum of the far field problem (26). The points P1, P2,3 of Fig. 4
scale to−0.803 and−0.491±0.850i respectively using (28) for the
problem shown in Fig. 6 which has wave speed c ≈ 1.72. There is
good agreement with the results in Fig. 6.
Similar results are obtained for a range of values of the

parameters m (which governs the junction angle θ ) and thickness
H which is varied by orders of magnitude. With the PDAE
formulation, the stability analysis can be applied to the case when
one or more of the three curves are not single-valued ones. We
consider m = 1.995 when the top right curve is not a single-
valued one. The profile of the three curves near the junction is
shown in Fig. 7. Again, there is strong evidence that there are no
unstable point spectra and thus the mixed-order travelling waves
are spectrally stable against 2D perturbations.
Fig. 8 plots the leading eigenvalue (the eigenvalue with largest

real part excluding the zero eigenvalue) as a function of the angle
θ between the grain boundary and the free surface.

5. Stability against 3D perturbations

In this section, we consider the spectral stability of travelling
waves against 3D perturbations. We focus only on the more
complicatedmixed-order problem. The general approach is similar
to that in 2D described above, in which linear perturbations in the
direction z orthogonal to the 2D plane can be described using a
Fourier termwithwavenumberω. However, representing surfaces
with two parameters and computing surface diffusion evolution is
somewhat complicated. Some of the details are given below.
Let X = (x(α, β), y(α, β), z(α, β)) represent a surface in 3D.

One has the following formula for mean curvature:

H =
G11B22 − 2G12B12 + G22B11

2(G11G22 − G212)

where

G11 = ∂αX · ∂αX, G22 = ∂βX · ∂βX, G12 = ∂αX · ∂βX,

B11 = ∂2αX · N, B22 = ∂2βX · N, B12 = ∂2αβX · N,

and N denotes the unit normal given by

N =
∂αX × ∂βX
‖∂αX × ∂βX‖

.
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Recall that motion by surface diffusion has normal velocity
equal to the surface Laplacian ofmean curvaturewhere the surface
Laplacian operator is defined by

∆surf = ∇surf · ∇surf, ∇surf = ∇ − N∂n
where ∂n = N · ∇ . Applying the tangential gradient ∇surf to a
function H defined on a surface X = (x(α, β), y(α, β), z(α, β))
gives

∇surfH = g11Hα · ∂αX + g12Hβ · ∂αX + g21Hα · ∂βX + g22Hβ · ∂βX

where g ij indicate the components of the inverse matrix of

(gij) =
(
∂αX · ∂αX ∂αX · ∂βX
∂αX · ∂βX ∂βX · ∂βX

)
.

Applying the operator ∇surf one more time gives the surface
Laplacian of mean curvature H:

∆surfH =
1
√
g

(
∂

∂α
(g11
√
gHα + g12

√
gHβ)

+
∂

∂β
(g21
√
gHα + g22

√
gHβ)

)
(32)

where g = det(gij).
With the expressions above, coupled surface and grain bound-

ary motion in 3D can be described by

∂tX1 · N1 = H1,
∂tX2 · N2 = −∆surfH2,
∂tX3 · N3 = −∆surfH3, (33)
∂αXi · ∂2αXi = 0 i = 1, 2, 3,

where Hi represents the mean curvature of curve i. The last
equation fixes the parametrization α but movement in the other
(β) tangential direction is not yet fixed.We proceed by considering
the surface parametrized as X = (x(α, β), y(α, β), β) where β
becomes the z coordinate. Since the third component is now fixed,
we have

∂tX · N = xt · Nx + yt · Ny
where Nx,Ny represent the first two components of the unit
normal.
The 2D junction (10) and far field boundary conditions (11) can

be extended in a straightforward way to the 3D case. We point out
only one of the junction conditions which is associated with the
balance of mass flux, the last equation in (10), which becomes

∇surfH2 · (∂βX2 × N2) = ∇surfH3 · (∂βX3 × N3) (34)

where the subscripts represent curve indices as before.
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Let X̄ = (x̄(α, t), ȳ(α, t)) represent the travellingwave solution
in 2D. A travelling wave solution for the 3D problem can be
expressed in the form of X̄ = (x̄, ȳ, z) = (x̄(α, t), ȳ(α, t), β) by
extending along the z direction (see Fig. 9).
We now repeat the procedure that we carried out for the 2D

spectral stability analysis. We consider a small perturbation to the
steady state solution in the moving frame:
X = X̄ + εeλteiωβ(x̂(α), ŷ(α), 0).
Although the expressions above are complicated, they can be
linearized and approximated by finite differences in the same way
as the model problem was handled in Section 4.1 and lead to a
generalized eigenvalue problem. However, due to the complexity
of the process, the linearized system was not derived analytically.
Instead, the equations were linearized around the travelling wave
solution using MATLAB’s symbolic toolbox. Example eigenvalue
results for ω = 1 are shown in Fig. 10. A single, leading order
point eigenvalue is found. The other discrete eigenvalues fill in an
absolute spectrum as L→∞.
One can see from Fig. 10 that all eigenvalues are contained in

the left half-plane for wavenumber ω = 1. As the wavenumber is
increased, the leading eigenvalue is pushed further to the left. We
tested different wavenumbers varying from ω = 0.1 to ω = 5 and
the plot of the associated leading eigenvalues is shown in Fig. 11.
Fig. 12 plots the leading eigenvalue (the eigenvalue with largest
real part) as a function of the angle θ with wavenumber ω = 1.
The conclusion on the spectral stability is similar to the 2D case.

There is only one point eigenvalue for each ω 6= 0 and it is in
the left half-plane. There is strong evidence that the mixed-order
travelling waves are stable against 3D perturbations.
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6. Conclusions

Using a combination of theoretical and numerical methods,
strong evidence is given of the stability of a well-studied, 2D
mixed-order travelling wave against both 2D and 3D perturba-
tions. Thewave is of interest inmaterials science and describes free
surface interactions of crystal grains competing during an anneal-
ing process. It should be said that this stability is an expected result
fromphysical considerations, but the evidence thatwe provide fills
a long-standing gap in the study of this process. The novel approach
developed in this paper can be used to investigate phenomena in
other free surface problems with junctions.
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