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a b s t r a c t

This work focuses on topics related to Hamiltonian stochastic differential equations with Lévy noise.
We first show that the phase flow of the stochastic system preserves symplectic structure, and
propose a stochastic version of Hamilton’s principle by the corresponding formulation of the stochastic
action integral and the Euler–Lagrange equation. Based on these properties, we further investigate the
effective behavior of a small transversal perturbation to a completely integrable stochastic Hamiltonian
system with Lévy noise. We establish an averaging principle in the sense that the action component of
solution converges to the solution of a stochastic differential equation when the scale parameter goes
to zero. Furthermore, we obtain the estimation for the rate of this convergence. Finally, we present an
example to illustrate these results.

© 2019 Published by Elsevier B.V.

1. Introduction

Certain nonlinear systems have ‘‘geometric’’ structures, such
as the Hamiltonian structure [1–3]. Hamiltonian systems of ordi-
nary differential equations (ODEs) widely appear in celestial me-
chanics, statistical mechanics, geophysics, and chemical physics.
They are models for the dynamics of planets, motion of particles
in a fluid, and evolution of other microscopic systems [4]. Hamil-
tonian systems have many well-known properties. For example,
it was known to Liouville that the flows of Hamiltonian systems
possess the property of phase-volume preservation; Poincaré ob-
served that the Hamiltonian flows are symplectic and geomet-
rically preserve certain symplectic area along phase flow [5];
based on Hamilton’s principle, Hamiltonian equations of motion
are closely related to Euler–Lagrange differential equations [2,6].
As a matter of fact, these dynamical systems are often subject to
perturbations. In the deterministic case, the perturbation theory
of Hamiltonian systems have appeared long ago; see Arnold [1]
and Freidlin–Wentzell [7] for details. Particularly, an averaging
principle for an integrable Hamiltonian system has been studied
in e.g. Arnold [1].

It is important to take randomness into account when build-
ing mathematical models for complex phenomena under uncer-
tainty [8]. Stochastic differential equations (SDEs) with
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‘‘Hamiltonian structures’’ are appropriate models for randomly
influenced Hamiltonian systems as studied in Bismut [9], and
have also drawn much attention; see, for example, Brin–Freidlin
[10], MacKay [11], Misawa [12], Wu [13], Zhu–Huang [14]. In
particular, Milstein et al. [15,16] proved the symplecticity for
stochastic Hamiltonian systems with Brownian noise, and Wang
et al. [17] proposed a version of Hamilton’s principle for the
same systems to construct variational integrators; Pavon [18]
established variational principles in stochastic mechanics; Li [19]
developed an averaging principle for a perturbed completely in-
tegrable stochastic Hamiltonian system with Brownian noise. For
some specific physical Hamiltonian models, we refer to
Cresson–Darses [20] and Givon et al. [21].

In view of the development on SDEs with Hamiltonian struc-
tures, the noise processes considered to date are mainly Gaussian
noise in terms of Brownian motion. However, non-Gaussian ran-
dom fluctuations should be introduced to capture some large
moves and unpredictable events in various areas such as not
only aforementioned celestial mechanics and statistical physics,
but also mathematics finance and life science [8,22–24]. Lévy
motions are an important and useful class of non-Gaussian pro-
cesses whose sample paths are càdlàg (right-continuous with
left limit at each time instant). The study on stochastic sys-
tems driven by such processes has received increasing attentions
recently, especially on developing proper averaging principles
for these systems. For example, Albeverio et al. [25,26] estab-
lished ergodicity of Lévy-type operators and SDEs driven by jump
noise with non-Lipschitz coefficients; Högele–Ruffino [27] and
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Gargate–Ruffino [28] focused on averaging along foliated Brow-
nian and Lévy diffusions, respectively, which generalized the
approach by Li [19], and Högele–da Costa [29] further studied
strong averaging along foliated Lévy diffusions with heavy tails
on compact leaves. For more information on averaging princi-
ple for stochastic systems driven by Lévy noise, we refer to Xu
et al. [30] and Bao et al. [31]. ODEs and SDEs with ‘‘Hamiltonian
structures’’ usually exhibit some extraordinary properties. Never-
theless, averaging principles for SDEs driven by Lévy noise with
‘‘Hamiltonian structures’’, and even some basic dynamics such
as symplecticity (invariance under a transformation) and Lévy-
type stochastic Hamilton’s principle of these systems, have not
yet been considered to date to the best of our knowledge.

In this present paper, we consider stochastic Hamiltonian sys-
tems with Lévy noise on symplectic manifolds. They are defined
as Marcus SDEs whose drift vector fields and diffusion vector
fields are Hamiltonian vector fields. Note that the Marcus inte-
gral [32–34] in Lévy case has the advantage of leading to ordinary
chain rule of the Newton–Leibniz type under a transformation.
This property makes the Marcus integral natural to use especially
in connection with SDEs on manifolds [35].

We first demonstrate that the phase flow of a stochastic
Hamiltonian system with Lévy noise preserves symplectic struc-
ture, and then propose the formulation of Lévy-type stochastic
action integral and Euler–Lagrange equation of motions, as well
as the stochastic Hamilton’s principle. These properties are de-
rived by using the calculus of variations, and the demand of
the systems being in Marcus sense will simplify the stochastic
differential calculations in the proofs. It is important to note that
the stochastic Hamiltonian systems with Lévy noise should be
understood as special nonconservative systems, for which the
Lévy noise is a nonconservative ‘force’. The symplecticity here is
presented for the whole stochastic system instead of the original
deterministic Hamiltonian system without the nonconservative
force. The stochastic Hamilton’s principle is also proposed on the
basis of nonconservative mechanical systems.

Based on these foundational work, we further investigate
the effective behavior of a small transversal perturbation to a
(completely) integrable stochastic Hamiltonian system with Lévy
noise. As this integrable stochastic system is perturbed by a
transversal smooth vector field of order ε (ε is a small parameter),
the solution to the perturbed equation will not preserve the
properties mentioned above. The main idea we will use is to
consider the solution along the rescaled time t/ε. The motion
splits into two parts with fast rotation along the unperturbed
trajectories and slow motion across them. Indeed, by an action–
angle coordinate, the fast rotation is a diffusion on the invariant
torus and the slow motion is governed by the transversal compo-
nent. When averaged by ergodic invariant measure on torus, the
evolution of action component of the motion does not depend on
the angular variable when ε tends to zero. The essential transver-
sal behavior is captured by a system of ODEs for the transversal
component and this result is referred as an averaging principle.
The estimation for rate of convergence for this averaging principle
is also established. Some inspiration for this part came from
Li [19], as well as Högele–de Costa [29]. The main novelty of our
work is that the model we consider here combines features of a
Hamiltonian structure with stochastic non-Gaussian Lévy noise.

The rest of this paper is organized as follows. In Section 2, we
recall basic concepts about Hamiltonian vector fields and Lévy
motions, and then present the definition of stochastic Hamilto-
nian system with Lévy noise, together with the existence and
uniqueness of the solution. In Section 3, we show that the phase
flow of this stochastic system preserves the symplectic structure.
By considering a stochastic Hamiltonian system with Lévy noise
as a special nonconservative system, we propose a stochastic

version of Hamilton’s principle. The goal of this section is to
better understand such a system and to establish foundation for
the following sections of this paper. In Section 4, we investigate
an integrable stochastic Hamiltonian system, with Lévy noise,
perturbed by a transversal smooth vector field. After discussing
the ergodic behavior and some technical issues, we establish an
averaging principle, together with a specific illustrative example.

2. Preliminaries

2.1. Stochastic Hamiltonian systems with Lévy noise

Let (Ω, F , {Ft}t⩾0, P) be a filtered probability space endowed
with a Poisson random measure N on (Rd

\ {0}) × R+ with
jump intensity measure ν = EN(1, ·). Denote by Ñ the associ-
ated compensated Poisson random measure, that is, Ñ(dt, dz) =

N(dt, dz)−ν(dz)dt . We assume that the filtration {Ft}t⩾0 satisfies
the usual conditions [36]. Let Lt = L(t) be a d-dimensional
Lévy process with the generating triplet (γ , A, ν). By Lévy–Itô
decomposition [22,23,32],

Lt = γ t + BA(t) +

∫
|z|<1

zÑ(t, dz) +

∫
|z|≥1

zN(t, dz),

where γ ∈ Rd is a drift vector, BA(t) is an independent
d-dimensional Brownian motion with covariance matrix A, and
the last two terms describe the ‘small jumps’ and ‘big jumps’ of
Lévy process, respectively. In the following, we denote Lc(t) =

γ t + BA(t) as the continuous part of Lt and Ld(t) = Lt − Lc(t) as
the discontinuous part.

Given a smooth Hamiltonian H0 and a family of n smooth
Hamiltonians {Hk}

n
k=1 on a smooth 2n-dimensional manifold M

[1,37]. We denote by V0 and Vk (k = 1, 2, . . . , d) the correspond-
ing Hamiltonian vector fields, that is,

dH0(·) = ω2(·, V0), dHk(·) = ω2(·, Vk),

where ω2 is the symplectic form. Note that we use the symbol
with superscript 2 for the symplectic form to avoid confusion
with the customary symbol for chance variable on sample space
Ω .

We shall consider stochastic Hamiltonian systems driven by
non-Gaussian Lévy noise, which are described by the following
SDEs in the Marcus form on M:

dX = V0(X)dt +

d∑
k=1

Vk(X) ⋄ dLk(t), X0 := X(t0) = x ∈ M, (2.1)

or equivalently,

Xt = x +

∫ t

0
V0(Xs)ds +

d∑
k=1

∫ t

0
Vk(Xs−) ⋄ dLk(s), (2.2)

where ‘‘⋄’’ stands for Marcus integral [32–34] defined by∫ t

0
Vk(Xs−) ⋄ dLk(s) =

∫ t

0
Vk(Xs−) ◦ dLkc(s) +

∫ t

0
Vk(Xs−)dLkd(s)

+

∑
0⩽s⩽t

[
φ(∆Lk(s), Vk(Xs−), Xs−) − Xs− − Vk(Xs−)∆Lk(s)

]
(2.3)

with
∫

◦dLkc(s) denoting the Stratonovich integral,
∫
dLkd(s) denot-

ing the Itô integral and φ(l, v(x), x) being the value at t = 1 of
the solution of the following ODE:
d
dt

ξ (t) = v(ξ (t))l, ξ (0) = x. (2.4)

Note that Marcus SDEs (2.1) satisfy chain rule under a transfor-
mation (change of variable) and P(X0 ∈ M) = 1 implies that
P(Xt ∈ M, t ⩾ 0) = 1, for details see Kurtz et al. [33].
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We remark that, by Lévy–Itô decomposition, the systems (2.1)
with Lévy triplet being (0, I, 0) are stochastic Hamiltonian sys-
tems with Brownian noise [15–17], and the systems (2.1) without
Lévy term are deterministic Hamiltonian systems.

2.2. Existence and uniqueness

In order to ensure the existence and uniqueness for the
stochastic dynamical systems with Hamiltonian structure, we will
need to make some assumptions. First we rewrite the Marcus
equations (2.1) and (2.2) in the Itô form [22,32]. This can be
carried out by employing the Lévy–Itô decomposition. Note that
it is convenient to write the d-dimensional Brownian term in
the form: BA(t) = σB(t) [8,22], where B(t) is a d′-dimensional
standard Brownian motion and σ is a d × d′ nonzero matrix for
which A = σσ T . For simplicity, we consider the Brownian term
as a standard Brownian motion here, i.e., we set A = I . Then we
obtain, for 1 ⩽ i ⩽ 2n, t ⩾ 0,

dX i
t = V i

0(Xt )dt +

d∑
k=1

γ kV i
k(Xt )dt +

d∑
k=1

V i
k(Xt )dBk(t)

+
1
2

d∑
k=1

Vk · ∇V i
k(Xt )dt

+

∫
|z|<1

[φi(z)(Xt−) − X i
t−]Ñ(dt, dz)

+

∫
|z|⩾1

[φi(z)(Xt−) − X i
t−]N(dt, dz)

+

∫
|z|<1

[φi(z)(Xt−) − X i
t −

d∑
k=1

zkV i
k(Xt−)]ν(dz)dt. (2.5)

Denote by D̂V (x) the vector in M whose ith component is
max1⩽k⩽d |Vk · ∇V i

k(x)| for 1 ⩽ i ⩽ 2n, x ∈ M . We make the
following assumptions.

A1. The vector field V0 is locally Lipschitz and the vector fields
Vk (k = 1, 2, . . . , d) and D̂V (x) are globally Lipschitz in the
following sense:
(i) For any x ∈ M, there exists a neighborhood M0 of x such that
V0|M0 is Lipschitz continuous, i.e. there is a constant N1(M0) >

0 such that,

|V0(x1) − V0(x2)| ⩽ N1|x1 − x2|, x1, x2 ∈ M0.

(ii) There is a constant N2 > 0 such that,

max
1⩽k⩽d

|Vk(x1) − Vk(x2)|2 + |D̂V (x1) − D̂V (x2)|
2

≤ N1|x1 − x2|2,

x1, x2 ∈ M.

A2. One sided linear growth condition: There exists a constant
N3 > 0 such that
d∑

k=1

V 2
k (x) + 2x · V0(x) ≤ N3(1 + |x|2), x ∈ M.

Theorem 2.1. Under assumptions A1 and A2, there exists a unique
global solution to (2.5), and the solution process is adapted and
càdlàg.

Proof. This follows immediately from [25, Theorem 3.1] and
[22, Lemma 6.10.3]; see also [38]. □

3. Symplecticity and stochastic Hamilton’s principle

In this section we present several facts about the stochastic
Hamiltonian system with Lévy noise, such as the property of pre-
serving symplectic structure and stochastic Hamilton’s principle,
which will help us to better understand such systems from the
viewpoint of geometry and physics and further allow us in the
next sections to confine our studies to its special structure.

3.1. Preservation of symplectic structure

Phase flows of both deterministic Hamiltonian systems and
stochastic Hamiltonian systems with Brownian noise are known
to preserve symplectic structure [1,5,9]. We next show that
stochastic Hamiltonian systems with Lévy noise in the Marcus
sense also have this intrinsic property.

Keeping in mind that Marcus integral satisfies the change of
variable formula [33, Section 4], for simplicity, we rewrite sys-
tems (2.1) in their canonical coordinates. That is, with X = (Q , P),
X0 = (q, p), V = ( ∂H

∂P , − ∂H
∂Q ) and Vk = ( ∂Hk

∂P , −
∂Hk
∂Q ), k = 1, . . . , d,

canonical stochastic Hamiltonian systems with Lévy noise are

dQ =
∂H
∂P

(Q , P)dt +

d∑
k=1

∂Hk

∂P
(Q , P) ⋄ dLk(t), Q (t0) = q, (3.1)

dP = −
∂H
∂Q

(Q , P)dt −

d∑
k=1

∂Hk

∂Q
(Q , P) ⋄ dLk(t), P(t0) = p. (3.2)

Note that dp ∧ dq =
∑n

i=1 dpi ∧ dqi determines a differential
two-form. We are interested in systems (3.1)–(3.2) such that the
transformation (p, q) → (P,Q ) preserves symplectic structure as
follows:

dP ∧ dQ = dp ∧ dq,

i.e.,
n∑

i=1

dPi ∧ dQi =

n∑
i=1

dpi ∧ dqi. (3.3)

To avoid confusion, we should note that the differentials in
(3.1)–(3.2) and (3.3) have different meanings: In (3.1)–(3.2), P,Q
are treated as functions of time and p, q are fixed parameters,
while, in (3.3), the differentiation is made with respect to the
initial data p, q.

Geometrically, (3.3) means that the sum of the oriented areas
of projections is an integral invariant [1,16]. Consequently, for
such systems, all exterior powers of the two-form are also invari-
ant, and the case of nth exterior power gives the preservation of
phase volume.

Theorem 3.1 (Symplecticity). The stochastic Hamiltonian system
(3.1)–(3.2) preserves symplectic structure.

The proof of this theorem is based on the differential transfor-
mation in the sense of Marcus. It is given in the Appendix.

3.2. Stochastic Hamilton’s principle with Lévy noise

For conservative mechanical systems, the classical Hamilton’s
principle asserts that the dynamics of systems are determined by
a variational problem for Lagrangian, and it gives a relationship
between the Euler–Lagrange equation and the action integral of
the motion [1]. For the situation of nonconservative mechan-
ical systems, the form of the action integral and that of the
Euler–Lagrange equation must be changed [6,17]. In this subsec-
tion, we would like to propose a stochastic version of Hamilton’s
principle for a stochastic Hamiltonian system with Lévy noise by
viewing it as a special nonconservative system.
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We recall some results of nonconservative mechanical systems
at first. Let F be a nonconservative generalized force. The work
done by this nonconservative generalized force is defined as

W = −F · r, (3.4)

where r = r(q, t) being a position vector. As a nonconservative
generalized force is independent of generalized configuration q,
the variation of W satisfies

δW = F · δr = F ·
∂r
∂q

δq.

Let L(q, q̇, t) be a Lagrangian with respect to original conser-
vative Hamiltonian system, and it is connected with Hamiltonian
H through the equation

L = p · q̇ − H, (3.5)

where p =
∂L
∂ q̇ is the Legendre transform. Consider γ = {q(t) : t0 ⩽

t ⩽ t1} as a temporally parameterized curve in the configuration
space. Under the influence of F, the action integral of this curve
is defined by

S[γ ] =

∫ t1

t0

(L(γ (t), γ̇ (t), t) − W (γ (t)))dt. (3.6)

Hamilton’s principle of nonconservative mechanical systems as-
serts that δS = 0 is equal to the following Euler–Lagrange
equation holds:
d
dt

∂L
∂ q̇

−
∂L
∂q

= F ·
∂r
∂q

. (3.7)

Here the Lagrangian L is considered as a function with indepen-
dent variables q, q̇ and t .

It is known to [6] that the Euler–Lagrange equations of motion
have the property of redundancy. As the value of Lagrangian is
invariant to variable transformations, Lagrangian L can be trans-
formed from the variable set {q} to a redundant variable set
{Q ∗, P∗

} by

L(q, q̇, t) = L(q(Q ∗, P∗, t), q̇(Q ∗, P∗, Q̇ ∗, Ṗ∗, t), t)

= L(Q ∗, P∗, Q̇ ∗, Ṗ∗, t).

With generalized independent variables Q ∗, P∗, Q̇ ∗, Ṗ∗ and t , the
generalized Euler–Lagrange equations of motion can be repre-
sented as,
d
dt

∂L
∂ Ṗ∗

−
∂L
∂P∗

= F ·
∂r
∂P∗

, (3.8)

d
dt

∂L
∂Q̇ ∗

−
∂L

∂Q ∗
= F ·

∂r
∂Q ∗

(3.9)

with the position vector r = r(Q ∗, P∗, t). Based on (3.8)–(3.9), for
a nonconservative system with nonconservative force F, the cor-
responding generalized Hamiltonian equations take the following
form [6]

Q̇ ∗ =
∂H
∂P∗

−
∂r
∂P∗

· F, (3.10)

Ṗ∗ = −
∂H
∂Q ∗

+
∂r

∂Q ∗
· F. (3.11)

Lévy noise as a kind of random fluctuating force, can be treated
as a special nonconservative force [14,22]. We rewrite a stochastic
Hamiltonian system with Lévy noise (3.1)–(3.2) in the following
form

Q̇ =
∂H
∂P

+
∂H̄
∂P

⋄ L̇(t), (3.12)

Ṗ = −
∂H
∂Q

−
∂H̄
∂Q

⋄ L̇(t). (3.13)

where H̄ = (H1,H2, . . . ,Hd). It is natural to compare (3.10)–(3.11)
with (3.12)–(3.13). Formally, the associations between F and L̇(t),
as well as r and −H̄ are reasonable. Under this consideration, we
can thus view stochastic Hamiltonian systems with Lévy noise
as a special class of nonconservative system. In other words,
stochastic Hamiltonian systems with Lévy noise are Hamiltonian
systems in certain generalized sense, which are disturbed by
certain nonconservative force (i.e., Lévy noise).

It should be noted that the random fluctuating force here,
i.e. Lévy noise, is different from usual nonconservative forces
which dissipate energy of the system. Lévy noise may also ‘add’
energy to the system. To illustrate this point, we consider the
following linear stochastic oscillator.

Example 3.1 (Linear Stochastic Oscillator with Lévy Noise).

dx = ydt, x(t0) = x0, (3.14)
dy = −xdt − σdLt , y(t0) = y0. (3.15)

which is a stochastic Hamiltonian system with H(x, y) =
1
2 (x

2
+

y2) and H1(x, y) = σy (σ > 0 is a constant). Rewrite it in
2-dimensional vector form and multiply both sides with the
integrating factor etJ , where J =

[
0 1

−1 0

]
. It is not hard to show that

this equation has the unique solution

x(t) = x(0) cos t + y(0) sin t +

∫ t

0
σ sin(t − s)dLs, (3.16)

y(t) = −x(0) sin t + y(0) cos t +

∫ t

0
σ cos(t − s)dLs. (3.17)

For simplicity, we take the initial conditions x0 = 1, y0 = 0
and the drift of Lévy motion γ = 0. In the sense of Lévy–
Itô decomposition, solution (3.16)–(3.17) involves a ‘large jumps’
term. By using interlacing [22, Page 365], it makes sense to
begin by omitting this term and concentrate on the study of the
corresponding interlacing solution

x(t) = cos t +

∫ t

0
σ sin(t − s)dBs

+

∫
|z|<1

σ z sin(t − s)Ñ(ds, dy), (3.18)

y(t) = − sin t +

∫ t

0
σ cos(t − s)dBs

+

∫
|z|<1

σ z cos(t − s)Ñ(ds, dy). (3.19)

By Itô isometry and the properties of compensated Poisson
integral [22], we can find that the second moment of this solution
satisfies

E(x(t)2 + y(t)2) = 1 + σ 2t + σ 2t
∫

|z|<c
|z|2ν(dz), (3.20)

where
∫

|z|<c |z|2ν(dz) < ∞ by the definition of Lévy motion.
It means that the Hamiltonian here grows linearly with respect

to time t . This is quite different from the case of deterministic
Hamiltonian systems, for which the Hamiltonian is preserved for
all t .

Remark 3.1. An alternative view of stochastic Hamilton sys-
tem is that we can regard it as an open Hamiltonian system
within the external world: the stochastic part in (2.1) charac-
terizes the complicated interaction between the ‘‘deterministic’’
Hamiltonian system with the Hamiltonian H0 and the chaotic
environment [12].
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For stochastic Hamiltonian system with Lévy noise
(3.12)–(3.13), according to (3.4), the work done by Lévy noise is
formally

Wstoch = −

d∑
k=1

Hk ⋄ L̇k(t). (3.21)

Based on (3.6), we infer the action integral of motion as follows

Sstoch[γ ] =

∫ t1

t0

(L − Wstoch)dt =

∫ t1

t0

L(γ (t), γ̇ (t), t)dt

−

d∑
k=1

∫ t1

t0

Hk(γ (t), t) ⋄ dLk(t), (3.22)

where γ = {(Q (t), P(t)) : t0 ⩽ t ⩽ t1}.
Moreover, by (3.8)–(3.9), the Euler–Lagrange equations of mo-

tion for the stochastic Hamiltonian system with Lévy noise
(3.12)–(3.13) have the form

d
dt

∂L
∂ Ṗ

−
∂L
∂P

=

d∑
k=1

∂Hk

∂P
⋄ L̇k(t), (3.23)

d
dt

∂L
∂Q̇

−
∂L
∂Q

=

d∑
k=1

∂Hk

∂Q
⋄ L̇k(t). (3.24)

We call Sstoch the stochastic action integral and call
(3.23)–(3.24) the stochastic Euler–Lagrange equations.

Theorem 3.2 (Hamilton’s Principle). The paths that are realized by
the stochastic dynamical system represented by stochastic
Euler–Lagrange equations (3.23)–(3.24) are those for which the
stochastic action integral (3.22) is stationary for fixed endpoints
γ (t0) = (Q0, P0) and γ (t1) = (Q1, P1).

Proof. The action Sstoch[γ ] is stationary if it does not vary when
the curve is slightly changed, γ (t) → γ (t)+ δγ (t). The change in
the action upon doing this can be formally expanded in δγ ,

Sstoch[γ + δγ ] − Sstoch[γ ] =

∫ t1

t0

δSstoch

δγ
δγ (t)dt + o(δγ ), (3.25)

where δSstoch/δγ is called the Fréchet or functional derivative of
Sstoch.

Applying the chain rule for the Marcus integral, we calculate
the derivative,

δSstoch =

∫ t1

t0

(
∂L
∂Q

δQ +
∂L
∂P

δP +
∂L
∂Q̇

δQ̇ +
∂L
∂ Ṗ

δṖ)dt

−

d∑
k=1

∫ t1

t0

(
∂Hk

∂Q
δQ +

∂Hk

∂P
δP) ⋄ L̇k(t)dt

=

[
∂L
∂Q̇

δQ
]t1

t0

+

[
∂L
∂ Ṗ

δP
]t1

t0

+

∫ t1

t0

(
∂L
∂Q

−
d
dt

∂L
∂Q̇

−

d∑
k=1

∂Hk

∂Q
⋄ L̇k(t))δQdt

+

∫ t1

t0

(
∂L
∂P

−
d
dt

∂L
∂ Ṗ

−

d∑
k=1

∂Hk

∂P
⋄ L̇k(t))δPdt.

The boundary terms vanish because the endpoints of γ (t) are
fixed: δQ (t0) = δQ (t1) = δP(t0) = δP(t1) = 0. As discussed in
Wang et al. [17], the desired result follows. □

Example 3.2. Consider the linear stochastic oscillators with
Lévy noise (3.14)–(3.15). We show that Eqs. (3.14)–(3.15) are

equivalent to the stochastic Euler–Lagrange equations of motion
with Lévy noise (3.23)–(3.24). Indeed, by the relation between
Lagrangian and Hamiltonian, we have

L(x, y, ẋ, ẏ) = x · ẏ − H(x, y) = x · ẏ −
1
2
(y2 + x2).

According to (3.23)–(3.24), the Euler–Lagrange equations of mo-
tion of the linear stochastic oscillators have the form⎧⎪⎪⎨⎪⎪⎩

d
dt

∂L
∂y

−
∂L
∂x

= −σ L̇t ,

d
dt

∂L
∂ ẏ

−
∂L
∂y

= 0.
(3.26)

since H1 = σx. With initial conditions x(0) = x0, y(0) = y0,
(3.26) are equivalent to the Hamiltonian equations of motion
(3.14)–(3.15).

Consider the stochastic action integral S in (3.22) as a function
of the two endpoints (Q (t0), Q̇ (t0)) = (Q0, Q̇0) and (Q (t1), Q̇ (t1))
= (Q1, Q̇1). We have the following theorem which plays an
important role in constructing some numerical methods
[15–17,39].

Theorem 3.3 (Characterization of Stochastic Action Integral). The
stochastic action integral Sstoch satisfies

dSstoch = −PT
0 dQ0 + PT

1 dQ1. (3.27)

Furthermore, if the Lagrangian L and the functions Hk (k = 1, . . . , d)
are sufficiently smooth with respect to P and Q , then the mapping

(P0,Q0) ↦→ (P1,Q1)

defined by Eq. (3.27) is symplectic.

The proof is given in the Appendix.

4. An averaging principle for integrable stochastic Hamilto-
nian systems

We now return to the stochastic Hamiltonian systems with
Lévy noise (2.1) on a 2n-dimensional smooth manifold M (for
simplicity, set n = d in the rest of this discussion). As mentioned
earlier, such systems are themselves nonconservative systems
with the perturbation of Lévy noise. Then an interesting question
to raise is: if there is even a small external perturbation in this
stochastic system, just as the deterministic Hamiltonian case and
the stochastic Hamiltonian case with Brownian noise referring to
the study of Freidlin–Wentzell [7], Li [19] and so on, what the
effective dynamic behavior would be? To answer this question,
we consider the (completely) integrable stochastic Hamiltonian
systems with Lévy noise.

Recall that on a 2d-dimensional smooth manifold, a family of
d smooth Hamiltonians {Hk}

d
k=1 is said to form a (completely)

integrable system if they are pointwise Poisson commuting and
if the corresponding Hamiltonian vector fields Vk are linearly
independent at almost all points.

We call systems (2.1) (completely) integrable stochastic Hamil-
tonian systems with Lévy noise, if they satisfy the following condi-
tion:

A3 Completely integrability: {Hk}
d
k=1 is an integrable family, and

Hamiltonian vector field V0 with Hamiltonian H0 is commut-
ing with the family of vector fields Vk. That is, dHj(Vi) =

ω2(Vi, Vj) = 0 for i, j = 0, 1, 2, . . . , d.

For the sake of convenience and readability, in the sense of
Lévy–Itô decomposition and Marcus integral (2.3), we consider
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the following integrable stochastic Hamiltonian system with Lévy
noise, which satisfies assumptions A1–A3,

dXt = V0(Xt )dt +

d∑
k=1

Vk(Xt ) ◦ dBk(t) +

d∑
k=1

Vk(Xt ) ⋄ dLk(t),

X(t0) = x ∈ M. (4.1)

Where B(t) is a d-dimensional independent standard Brownian
motion, L(t) is a d-dimensional independent Lévy motion with the
generating triplet (0, 0, ν) which is a pure jump process.

4.1. Invariant manifolds and invariant measure for integrable
stochastic Hamiltonian systems

Due to the system has d first integrals H1, . . . ,Hd in involution,
we consider the joint integral level

Mh = {x ∈ M : Hi(x) = hi = const, i = 1, 2, ..d}. (4.2)

The Liouville–Arnold theorem [1] indicates that if the functions Hi
on Mh are independent, then each compact connected component
of Mh is diffeomorphic to a d-dimensional torus Td. It remains to
use the geometric fact: in this integrable system there are conve-
nient, so-called, action–angle coordinates (I, θ ) (I are the actions
and θ are the angles) such that ω2

= dI ∧ dθ (symplecticity),
H = H(I) (i.e., I are first integrals).

We next show that a solution to these SDEs preserves the en-
ergies Hi and there are corresponding invariant manifolds (level
sets). Let Ψt := (Ψ (t, ω, x), t ⩾ 0) be the solution flow of the
SDE (4.1) with starting point x and (Tt , t ⩾ 0) be the semigroup
associated with Ψt . Applying the chain rule for the Stratonovich
integral and Marcus integral, and using the assumption A3 of
completely integrability, we have

Lemma 4.1. The solution flow Ψt := (Ψ (t), t ⩾ 0) of SDE (4.1)
preserves the invariant manifolds Mh, i.e. for 1 ⩽ i ⩽ d,

dHi(Xt ) =dHi(V0(Xt ))dt +

d∑
k=1

dHi(Vk(Xt )) ◦ dBk(t)

+

d∑
k=1

dHi(Vk(Xt )) ⋄ dLk(t) = 0.

Indeed, for each x in M , we have h = (H1(x), . . . ,Hn(x)), thus it
determines an invariant manifold, which we write also as MH(x).
Note that the d vector fields {Vk}

d
k=1 are tangent to MH(x) and

the symplectic form ω2 vanishes on the invariant manifolds Mh.
The Markovian solution to SDEs (4.1) restricts to each invariant
manifold and the generator A of restriction is the sum of a
second-order elliptic differential operator and a (compensated)
integral of difference operator, i.e.,

(Af )(x) =(L0f )(x) +
1
2

d∑
k=1

(LkLkf )(x)

+

∫
Rd\{0}

[f (φ(z)x) − f (x)

−

d∑
k=1

zk(Lkf )(x)1{|z|<1}(z)]ν(dz) (4.3)

for every function f ∈ C2
b (M). Here we denote as L0, Lk the Lie

differentiation in the direction of V0, Vk, respectively, and C2
b (M)

the collection of all bounded Borel measurable C2 functions on
M . More precisely, we have Lf = df (V0) = ω2(vf , V0) and
Lkf = df (Vk) = ω2(vf , Vk).

We remark that an invariant probability measure for (4.1) is
by definition a Borel probability measure on M such that∫
M
(Ttg)(x)µ(dx) =

∫
M
g(x)µ(dx)

for all t > 0, g ∈ C1(M). Based on the celebrated Krylov–
Bogoliubov method, we have the following lemma.

Lemma 4.2 ([25, Theorem 4.5]). If M is locally compact in the
relative topology and assumptions A1 and A2 hold, then the system
(4.1) has at least one invariant measure.

For simplicity, throughout this paper, we assume that:

A4 The invariant manifolds are compact, the map H : x ∈ M →

(H1(x), . . . ,Hd(x)) ∈ Rd is proper, and its set of critical points
has measure zero.

Under our assumption, for almost every point h0 in Rd, there
is a neighborhood N of h0 such that H−1(h) is a smooth sub-
manifold for all h ∈ N and that there is a diffeomorphism from
H−1(N) to N × H−1(h0). We call such h0 a regular value of H ,
and call the point y in M a critical point if H(y) is not regular. By
Morse–Sard theorem [40], the set of critical values of the function
H has measure zero.

Recall that in a neighborhood of a regular point h0 of H ,
every component of the level set Mh0 is diffeomorphic to a
âĂĺd-dimensional torus Td, and a small neighborhood U0 of Mh0 is
diffeomorphic to the product space Td

×D, where D is a relatively
compact open set in Rd. Take an action–angle chart around Mh.
The measure (

∑
i dI

i
∧ dθ i)d on the product space naturally splits

to give us a probability measure, the Haar measure [40] θ1 ∧· · ·∧

θd on Td. We take the corresponding one on Mh and denote it
by µh, just like the case of Brownian in [19]. With the help of
action–angle transformation and the above assumptions, we thus
have the following lemma.

Lemma 4.3. Assume that assumptions A1–A4 are in force. Let
E = span{V1, . . . , Vd} be a sub-bundle of the tangent bundle of rank
d. Let U be a section of E commuting with all Vi (1 ⩽ i ⩽ d). The
invariant measure for stochastic Hamiltonian system (4.1) restricted
to the invariant manifold Mh is µh, which varies smoothly with h in
sufficiently small neighborhoods of a regular value.

Proof. Recall that Mh have the form in (4.2), we rewrite U =∑d
i=1 hiVi(x). For any smooth function f on Mh, we have∫

Mh

df (Vi)(x)µh(dx) =

∫
Td

d(f ◦ ϕ)
(
−

d∑
k=1

∂(Hk ◦ ϕ)
∂ Ik

∂

∂θk

)
dθ

= −

d∑
k=1

ωi
k(I)

∫
Td

( ∂

∂θk
(f ◦ ϕ)

)
dθ = 0,

where ϕ−1 is the action–angle coordinate map (see the next
subsection for details), (I, θ ) are the corresponding action–angle
coordinates. Thus U is divergence free, i.e. divEU = 0, in the sense
of∫
Mh

df (U)(x)µh(dx) = −

∫
Mh

divEU(x)µh(dx) = 0. (4.4)

Therefore, restricted to the torus, the invariant measure of SDE
(4.1) is the same as that of the corresponding SDE without a drift.
From the action–angle transformation we find that the measure
µh is the desired object. □
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4.2. The perturbed system and statement of an averaging principle

We next study the situation where an integrable stochastic
Hamiltonian system is perturbed by a transversal smooth vector
field and the stochastic differentials. Let y0 be a regular point of
H in M with a neighborhood U0 the domain of an action–angle
coordinate map:

ϕ−1
: U0 → Td

× D

where Td is a d-dimensional torus and D is a relatively compact
open set of Rn. Note that the action coordinate of a point x ∈ U0
can be denoted with the help of the projection π : U0 → D by
ϕ−1(x) = (θ∗, π (x)) for some θ∗

∈ Td. We consider the perturbed
system corresponding to (4.1):

dY ε
t =V0(Y ε

t )dt +

d∑
k=1

Vk(Y ε
t ) ◦ dBk

t +

d∑
k=1

Vk(Y ε
t ) ⋄ dLk(t)

+ ε

(
K (Y ε

t )dt +

d∑
k=1

Fk(π (Y ε
t )) ◦ dB̃k

t +

d∑
k=1

Gk(π (Y ε
t )) ⋄ dL̃kt

)
(4.5)

with initial condition Y ε
0 = y0. Where K is a smooth and global

Lipschitz continuous vector field, transversal in the sense that
ω2(Vk, K ), k = 0, 1, . . . , d, are not all identically zero; B̃(t) is
a d-dimensional independent standard Brownian motion; L̃(t) is
a d-dimensional independent pure jump Lévy motion with the
generating triplet (0, 0, ν ′). Moreover, F , G are smooth vector
fields such that F , D̂F , G and D̂G are globally Lipschitz continuous.

We denote by Y ε
t the solution to (4.5) and by Xt = Y 0

t
the solution to (4.1) with initial value y0. In the action–angle
coordinate, Xt = ϕ(θt , It ), θ ∈ Td, I ∈ D and Y ε

t = ϕ(θ ε
t , I

ε
t ),

θ ε
∈ Td, Iε ∈ D. Let H̃k = Hk(ϕ(θt , It )) be the induced Hamiltonian

on Td
× D, then, for i = 1, . . . , d,

θ̇ i
k =

∂H̃k

∂ Ii
=: ωi

k(I),

İ ik = −
∂H̃k

∂θi
= 0,

with ωi
k smooth functions. Indeed, the corresponding induced

Hamiltonian vector field Ṽk := VH̃k
= −

∑d
i=1(∂(Hk ◦ ϕ)/∂Ii)

(∂/∂θi).
For the perturbed SDE (4.5), we write the induced perturbation

vector field of K as (Kθ , KI ) on Td
×D with Kθ = (K 1

θ , . . . , K d
θ ) and

KI = (K 1
I , . . . , K d

I ) the angle and action component, respectively,
and we do the same thing for F and G. By the chain rule for
Stratonovitch integral as well as that for Marcus integral, we have
the following form of the SDE on Td

× D:

dθ ε
t =ω0(Iεt )dt +

d∑
k=1

ωk(Iεt ) ◦ dBk
t +

d∑
k=1

ωk(Iεt ) ⋄ dLk(t)

+ ε

(
Kθ (θ ε

t , I
ε
t )dt +

d∑
k=1

Fθ,k(Iεt ) ◦ dB̃k
t +

d∑
k=1

Gθ,k(Iεt ) ⋄ dL̃kt
)
,

(4.6)

dIεt =ε

(
KI (θ ε

t , I
ε
t )dt +

d∑
k=1

FI,k(Iεt ) ◦ dB̃k
t +

d∑
k=1

GI,k(Iεt ) ⋄ dL̃kt
)
.

(4.7)

Note that subjected to a small perturbation, the system splits
into two parts with fast rotation along the nonperturbed trajec-
tories and slow motion across them, so it is a situation where the
averaging principle is to be expected to hold.

For this purpose, we further adopt the following assumptions:

A5 There is a constant p ⩾ 2 such that the Lévy measures ν (of Lt )
and ν̃ (of L̃t ) satisfy∫
Rd

|z|pν(dz) < ∞, and
∫
Rd

|z|2pν̃(dz) < ∞.

A6 For any continuous function f on the compact manifold con-
verging to infinity when t converges to infinity, 1

t

∫ s+t
s f (Xr )dr

→
∫
Mh

f (z)µh(z) when t → ∞, in Lp (p ⩾ 2), and the rate of
convergence, denoted by η(t), is a positive, bounded, decreasing
function from [0, ∞) to [0, ∞) with η(t) ↘ 0 as t → ∞.

Some comments on these two assumptions have to be made:
Note that the invariant manifold here is actually d-dimensional
torus, which is compact and bounded. It is necessary and rea-
sonable to put forward assumption A5 referring to [29]. This
assumption indicates the polynomial moments of L(t) and L̃(t)
exist, and will play an important role in estimating some terms
of the Marcus equation in the next subsection. Note that the
motion on the torus, which would be quasi-periodic if there are
no diffusion terms, is ergodic. Indeed, there is no standard rate
of convergence for general Markovian systems in the ergodic
theorem; see e.g. Krengel [41], Kakutani and Petersen [42]. It is
natural to deal with an averaging principle in the terms of the
function η following the approach in Freidlin–Wentzell [7]. We
thus have the ergodicity assumption A6. More information on
rates of convergence for Lévy noise driven systems can be found
in Kulik [43] and Högele–de Costa [29], and a detailed example
will be shown in subsection 4.4.

To study slow motion governed by the transversal part of the
vector field K and the stochastic differentials F ◦

˙̃Bt , G ⋄
˙̃Lt , it is

convenient to rescale the time, see Lemma 4.4 for detail. Denote
Y ε
t/ε the process scaled in time by 1/ε which coincides, in the

sense of probability distributions [7], with Y ε
t . Then, the evolution

of Y ε
t/ε is the skew product of the fast diffusion of order 1

ε
along

the invariant manifold and the slow diffusion of order 1 across
the invariant manifold. We finally obtain a new dynamical system
in the limit as ε goes to zero: Compared with the motion in the
transversal direction, the motion along the torus is significantly
faster, thus as the randomness in the fast component is averaged
out by the induced invariant measure, the evolution of the action
component of Y ε

t/ε will have a limit.
The main theorem on averaging principle for (completely)

integrable stochastic Hamiltonian system is formulated below,
and the detailed proof is shown in next subsection.

Theorem 4.1 (Averaging Principle). Consider the perturbed SDE
(4.5) with initial value Y ε

0 = y0 and satisfying assumptions A1–A6
for some p ⩾ 2. Set Hε

i (t) = Hi(Y ε
t/ε), for i = 1, 2, . . . , d. Define exit

time τ ε
:= inf{t ⩾ 0 : Y ε

t/ε /∈ U0} as the first time that the solution
Y ε
t/ε exits from U0.
Let H̄(t) = (H̄1(t), . . . , H̄d(t)) be the solution to the following

system of d deterministic differential equations

dH̄i(t) =

∫
MH̄(t)

ω2(Vi, K )(H̄(t), z)µH̄t (dz)dt +

d∑
k=1

Fk(H̄(t)) ◦ dB̃k
t

+

d∑
k=1

Gk(H̄(t)) ⋄ dL̃k(t) (4.8)

with initial value H̄(0) = H(y0). Define exit time τ 0
:= inf{t ⩾ 0 :

H̄(t) /∈ U0} as the first time that H̄(t) exits from U0.
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Then we have that:

(1) For any sufficiently small ε > 0 and t < τ0, there exist
constants k1, k2, k3 > 0 such that(
E
[
sup
s⩽t

|Hε(s ∧ τ ε) − H̄(s ∧ τ ε)|
p]) 1

p

⩽ k1t
(
ε1−k2t + η(t|ln ε|)

)
exp(k3t). (4.9)

(2) If there exists a r > 0 such that Ur := {x ∈ M :

|H(x) − H(y0)| ⩽ r} ⊂ U0. Define exit time τδ := inf{t ⩾
0 : |H̄t − H(Y0)| ⩾ r − δ} for δ > 0. Then for any δ > 0,
constant k2 > 0 given above, and constants k4, k5 depending
on τδ ,

P(τ ε < τδ) ⩽ k4δ−pτδ
p(ε1−k2τδ + η(τδ|ln ε|)

)p exp(k5τδ).

(4.10)

Remark 4.1. This result includes the case of pure Gaussian noise
and case of pure jump noise, where the former situation has been
considered, cf. Li [19, Theorem 3.3.]. Indeed, Hamiltonian vector
V0 in (4.1) can be weakened to be a locally Hamiltonian vector
which is not given by a Hamiltonian function as in [19]. The
main difference between Gaussian situation and the situation we
considered here comes from the estimation for Lévy noise term.
However, if deterministic part of the perturbation is a (local)
Hamiltonian vector field with ω2(Vi, K ) = 0, or the multiplicative
coefficients of the stochastic differentials are not only depend on
the slow component, the situation will become more complex.
To deal with these problems on multiplicative Lévy noise is still
remain to solve.

4.3. Proof of the averaging principle

In this subsection we always assume that assumptions A1–A6
are in force for some p ⩾ 2. We first get the information on the
order of which the first integrals for the perturbed system change
over a time interval by next lemma.

Lemma 4.4. Let τ ε
= inf{t ⩾ 0 : Y ε

t /∈ U0}. For any Lipschitz test
function f : M → R and p ⩾ 2, we have[
E( sup

s⩽t∧τ ε
|f (Y ε

s ) − f (Xs)|p)
] 1

p

⩽ C1εeC2t , (4.11)

where C1, C2 are constants depending on the Lipschitz coefficient of
f , on the upper bounds of the norms of vector fields K , F , G, Vk,
k = 0, . . . , d and their derivatives with respect to the action–angle
coordinate on T d

× D.

Proof. In action–angle coordinates, we rewrite the flows as Xt =

ϕ(θt , It ) and Y ε
t = ϕ(θ ε

t , I
ε
t ). And the corresponding SDEs on T d

×D
under the action–angle coordinate map are shown in (4.6)–(4.7).
Since D is relatively compact, ∂(f ◦ ϕ)/∂θ and ∂(f ◦ ϕ)/∂ I are
bounded on T d

× D. We thus obtain

|f (Y ε
t ) − f (Xt )| = |f ◦ ϕ(θ ε

t , I
ε
t ) − f ◦ ϕ(θt , It )|

⩽ c0|(θ ε
t − θt , Iεt − It )| ⩽ c0|θ ε

t − θt |

+c0|Iεt − It |, (4.12)

for some constant c0 > 0.

Estimate of the action component |Iεt − It |. Note that the facts
that Eq. (4.6) satisfies the chain rule in the sense of Stratonovitch
and Marcus, and ⟨Dh(x), u⟩ = p|x|p−2

⟨x, u⟩ for the function h(x) =

|x|p, we obtain, for s < τ ε ,

|Iεs − Is|p =εp
( ∫ s

0
|Iεr − Ir |p−2 ⟨

Iεr − Ir , KI (θ ε
t , Iεr )

⟩
dr

+

∫ s

0
|Iεr − Ir |p−2

d∑
k=1

⟨
Iεr − Ir , FI,k(Iεr ) ◦ dBk

r

⟩
+

∫ s

0
|Iεr− − Ir−|

p−2
d∑

k=1

⟨
Iεr− − Ir−,GI,k(Iεr−) ⋄ dL̃kr

⟩ )
⩽εp

∫ s

0
|Iεr − Ir |p−2

⏐⏐⏐ ⟨Iεr − Ir , KI (θ ε
t , Iεr ) +

d
2
D̂IFI (Iεr )

⟩ ⏐⏐⏐dr (Σ1)

+ εp
d∑

k=1

∫ s

0
|Iεr − Ir |p−2⏐⏐ ⟨Iεr − Ir , FI,k(Iεr )dB

k
r

⟩ ⏐⏐ (Σ2)

+ εp
d∑

k=1

∫ s

0
|Iεr− − Ir−|

p−2
(⏐⏐ ⟨Iεr− − Ir−,GI,k(Iεr−)dL̃

k
r

⟩ ⏐⏐) (Σ3)

+ εp
d∑

k=1

∑
0⩽r⩽s

∫ s

0
|Iεr− − Ir−|

p−1dt
⏐⏐φ(∆Lk(r),

GI,k(Iεr−), I
ε
r−)

− Iεr− − GI,k(Iεr−)∆Lk(r)
⏐⏐ (Σ4)

= Σ1 + Σ2 + Σ3 + Σ4, (4.13)

where (D̂IFI )i = max1⩽k⩽d |FI,k · ∇IF i
I,k| comes from the Stratono-

vitch correction. By assumption the induced vector fields and
their derivatives are bounded on T d

× D. A direct computation
gives

Σ1 ⩽ εp
(
sup
Td×D

|KI | +
d
2

sup
Td×D

|D̂IFI |
) ∫ s

0
|Iεr − Ir |p−1dr. (4.14)

Note that the term Σ3 has the representation with respect to
the compensated Poisson random measure Ñ ′ associated to L̃(t)
[22,32], we have

Σ3 =εp
d∑

k=1

∫ s

0

∫
Rd\{0}

|Iεr− − Ir−|
p−2⏐⏐ ⟨Iεr− − Ir−,GI,k(Iεr−)z

⟩
× Ñ(dr, dz)

⏐⏐
+ εp

d∑
k=1

∫ s

0

∫
|z|>1

|Iεr− − Ir−|
p−2⏐⏐ ⟨Iεr− − Ir−,GI,k(Iεr−)z

⟩
× ν ′(dz)dr

⏐⏐
⩽εp

d∑
k=1

∫ s

0

∫
Rd\{0}

|Iεr− − Ir−|
p−2⏐⏐ ⟨Iεr− − Ir−,GI,k(Iεr−)z

⟩ ⏐⏐
× Ñ(dr, dz)

+ εpd sup
Td×D

|GI |

∫
|z|>1

|z|ν ′(dz)
∫ s

0
|Iεr− − Ir−|

p−1dr. (4.15)

As smooth vector fields GI and D̂GI are globally Lipschitz contin-
uous. For the last term, by exploiting that

∫
|z|>1 |z|4ν ′(dz) < ∞,

we have the following estimation referring to [29, Lemma 3.1]:

Σ4 ⩽ε2c1(p,GI , D̂GI )
d∑

k=1

∑
0⩽r⩽s

|Iεr− − Ir−|
p−1

|△L̃k(r)|
4

⩽ε2c1
( ∫ s

0

∫
Rd\{0}

|Iεr− − Ir−|
p−1

|z|4Ñ ′(dr, dz)

+

∫ s

0
|Iεr− − Ir−|

p−1dr
)

. (4.16)
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Combining the estimates (4.14)–(4.16), we can find that

|Iεs − Is|p ⩽c2ε
∫ s

0
|Iεr− − Ir−|

p−1dr + εp
d∑

k=1

∫ s

0
|Iεr − Ir |p−2

×
⏐⏐ ⟨Iεr − Ir , FI,k(Iεr )

⟩ ⏐⏐dBk
r

+ εp
d∑

k=1

∫ s

0

∫
Rd\{0}

|Iεr− − Ir−|
p−2

×
⏐⏐ ⟨Iεr− − Ir−,GI,k(Iεr−)z

⟩ ⏐⏐Ñ(dr, dz)

+ ε2c3

∫ s

0

∫
Rd\{0}

|Iεr− − Ir−|
p−1

|z|4Ñ ′(dr, dz). (4.17)

In order to calculate estimate of the expectation of the supremum
for the equation above, it is natural to use Itô isometry for the
Brownian term and use Kunita’s first inequality ([22, Page 265])
or other maximal inequality for the compensated Poisson terms.
We refer to Högele–da Costa [29] for a standard argument on
such a estimate. One difference with [29] is that there is an extra
Brownian term here. Indeed, with the help of Itô isometry, we
obtain

E
[
sup

s⩽t∧τ ε
|Σ2|

2] ⩽ εc4(p, d)
(
sup
Td×D

|FI |
)2 ∫ t

0
E
[
|Iεs − Is|2(p−1)]ds.

(4.18)

Therefore, the estimate for (4.17) is quite similar to estimate (44)
in [29] and yields a constant c5 such that

E
[
sup

s⩽t∧τ ε
|Iεs − Is|p

]
⩽c5εp(1 + t2p+1). (4.19)

Estimate of the angle component |θ ε
t − θt |. For s < τ ε , applying

the chain rule again, we have

|θ ε
s − θs|

p ⩽ p
∫ s

0
|θ ε

r − θr |
p−2 ⟨

θ ε
r − θr , ω

i
0(I

ε
r ) − ωi

0(Ir )
⟩
dr (Λ1)

+ p
d∑

k=1

∫ s

0
|θ ε

r − θr |
p−2

×
⟨
θ ε
r − θr , (ωi

k(I
ε
r ) − ωi

k(Ir ))dB
k(r)

⟩
(Λ2)

+ p
d∑

k=1

∫ s

0
|θ ε

r − θr |
p−2

×
⟨
θ ε
r − θr , (ωi

k(I
ε
r ) − ωi

k(Ir ))dL
k(r)

⟩
(Λ3)

+ p
d∑

k=1

∑
0⩽r⩽s

∫ s

0
|θ ε

r − θr |
p−1⏐⏐φ(∆Lk(r), ωi

k(I
ϵ
r−), I

ϵ
r−)

− φ(∆Lk(r), ωi
k(Ir−), Ir−)

−
(
Iϵ,ir− − I ir−

)
−

(
ωi

k(I
ϵ
r−) − ωi

k(Ir−)
)
∆Lk(r)

⏐⏐ (Λ4)

+ εp
∫ s

0
|θ ε

r − θr |
p−2

⏐⏐⏐ ⟨θ ε
r − θr , Kθ (θ ε

t , I
ε
r )

⟩ ⏐⏐⏐dr (Λ5)

+ εp
d∑

k=1

∫ s

0
|θ ε

r − θr |
p−2⏐⏐ ⟨θ ε

r − θr , Fθ,k(Iεr )dB
k
r

⟩ ⏐⏐ (Λ6)

+ εp
d∑

k=1

∫ s

0
|θ ε

r− − θr−|
p−2⏐⏐ ⟨θ ε

r− − θr−,Gθ,k(Iεr−)dL̃
k
r

⟩ ⏐⏐
(Λ7)

+ εp
d∑

k=1

∑
0⩽r⩽s

∫ s

0
|Iεr− − Ir−|

p−1dt
⏐⏐φ(∆Lk(r),

Gθ,k(Iεr−), I
ε
r−)

− Iεr− − Gθ,k(Iεr−)∆Lk(r)
⏐⏐ (Λ8)

=Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6 + Λ7 + Λ8. (4.20)

Here we can replace the Stratonovitch integrations by Itô inte-
grations, as both ωk(I) and Fθ (I) do not depend on θ and the
Stratonovitch correction terms vanish. We next estimate each
summand on the right hand side of equation above. Note that,
for k = 0, 1, 2, . . . , d,

|ωk(Iεr ) − ωk(Ir )| ⩽ sup
Td×D

|dωk| · |Iεr − Ir |. (4.21)

The first term Λ1 can be dealt with by Lipschitz estimate. Indeed,
by Young’s inequality and (4.19), clearly we have

E
[
sup

s⩽t∧τ ε
Λ1

]
⩽ c6(p, dω0)E

[∫ t∧τ ε

0
|θ ε

s − θs|
p−1

|Iεs − Is|ds
]

⩽ c6

∫ t∧τ ε

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds + c13εptp+1.

(4.22)

For the stochastic Itô terms, we use the different kinds of maximal
inequalities and the embedding L2 ⊂ L1. Itô isometry yields

E
[
sup

s⩽t∧τ ε
Λ2

]
⩽ c7(p, d, dωk)E

[∫ t∧τ ε

0
|θ ε

s − θs|
2p

|Iεs − Is|2ds
] 1

2

⩽ c7
(∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

) 1
2

+ c15εptp+1.

(4.23)

Kunita’s first inequality ([22, Page 265]) with the exponent 2
yields

E
[
sup

s⩽t∧τ ε
Λ3

]
⩽c8(p, d, dωk)

(
E

[ ∫ t∧τ ε

0

∫
Rd\{0}

|θ ε
s − θs|

2p

× |Iεs − Is|2|z|2ν(dz)ds
]

1
2

+

∫
|z|>1

|z|ν(dz)E
[∫ t∧τ ε

0
|θ ε

s − θs|
p−1

|Iεs − Is|ds
] )

⩽c9

( (∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

) 1
2

+

∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds + εptp+1

)
(4.24)

For canonical Marcus terms, we adapt the methods developed
in [29, Section 3]. In fact, the term Λ4 can be estimated in terms
of the quadratic variation of Lt as shown in [29]. We rewrite the
result in terms of the compensated Poisson random measure Ñ
and then obtain

E
[
sup

s⩽t∧τ ε
Λ4

]
⩽c10E

[
sup

s⩽t∧τ ε

d∑
k=1

∑
0<s⩽t

|θ ε
s − θs|

p−1
|Iεs − Is||△Lk(s)|

2
]

⩽c11
(∫

Rd\{0}
|z|4ν(dz)

∫ t∧τ ε

0
E

[
sup

r⩽s∧τ ε
|θ ε

r − θr |
2(p−1)

× |Iεr − Ir |2
]
ds

) 1
2

+

∫ t∧τ ε

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p−1

|
]
ds
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⩽c12

( (∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

) 1
2

+

∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds + εptp+1

)
(4.25)

Observe that the terms Λ5–Λ8 are structurally identical to Σ1–Σ4
and they can be estimated analogously by replacing KI +

d
2 D̂IFI ,

K̃I and G̃I by Kθ , K̃θ and G̃θ , respectively. Hence

E
[
sup

s⩽t∧τ ε
Λ5

]
⩽ c13εE

[∫ t∧τ ε

0
|θ ε

s − θs|
p−1

|ds
]

⩽ c14ε
∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds + c14εpt, (4.26)

E
[
sup

s⩽t∧τ ε
Λ6

]
⩽ c15εE

[∫ t∧τ ε

0
|θ ε

s − θs|
2(p−1)ds

] 1
2

⩽ c16ε
(∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

) 1
2

+ c16εpt,

(4.27)

and

E
[
sup

s⩽t∧τ ε
(Λ7 + Λ8)

]
⩽c17ε

(
E
[∫ t∧τ ε

0
|θ ε

s − θs|
2(p−1)ds

] 1
2

+ E
[∫ t∧τ ε

0
|θ ε

s − θs|
p−1

|ds
] )

⩽c18

( (∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

s − θs|
p
|
]
ds

) 1
2

+

∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds + εpt

)
.

(4.28)

Taking the supremum and expectation in inequality (4.20) and
combining the estimates (4.22)–(4.28), we obtain

E
[
sup

s⩽t∧τ ε
|θ ε

s − θs|
p] ⩽c19

( (∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

) 1
2

+

∫ t

0
E
[
sup

r⩽s∧τ ε
|θ ε

r − θr |
p
|
]
ds

+ tεp(1 + tp)
)

. (4.29)

That is, for u(t) := E
[
sups∧τ ε⩽t |θ

ε
s − θs|

p], p(t) = tεp(1 + tp) and
the concave invertible function f (x) =

√
x + x we have

u(t) ⩽ c19f
(∫ t

0
u(s)ds

)
+ c19p(t). (4.30)

By the nonlinear extension of the Gronwall–Bihari inequality
(see [44]), or a nonlinear comparison principle in [29], we finally
have

E
[
sup

s⩽t∧τ ε
|θ ε

s − θs|
p] ⩽ c20ε2p exp(c31t). (4.31)

Eventually, the desired result follows from Minkowski’s in-
equality and the estimates (4.19) and (4.31),[
E( sup

s⩽t∧τ ε
|f (Y ε

s ) − f (Xs)|p)
] 1

p

⩽ C1ε exp(C2t). □ (4.32)

This lemma shows that, over a time interval t , the first inte-
grals of the perturbed system change by an order ε exp(C2t), and
the slow component thus accumulate over a time interval of the
size t/ε. Next, we would like to show that the randomness in the
fast component could be averaged out by the induced invariant

measure, and we can obtain a new dynamical system as ε goes
to zero.

For convenience, we adopt the following notation. Let g :

M → R be a continuous function, and g̃ : Td
× D → R be its

representation in action–angle coordinate. We define the average
of g over the torus as Q g

: D ⊂ Rd
→ R, i.e.,

Q g (h) =

∫
Td

g̃(h, z)µ(dz) (4.33)

We remark that this average can be also understood in the sense
of µh by taking the canonical transformation map π ′

: Mh → Td.
Indeed, the induced measure π ′(µh) is the Lebesgue measure
µ on the torus and the average can be written as Q g (h) =∫
Mh

g(h, z)µh(dz) formally.

Lemma 4.5 (Estimation of the Averaging Error). Suppose that g is
continuous on U0. Set Hε

i (s) = Hi(Y ε
t/ε) and Hε(s) = (Hε

1 (s), . . .
,Hε

d (s)). For τ ε
= inf{t ⩾ 0 : Y ε

t/ε /∈ U0}, we denote by

δg (ε, t) =

∫ (s+t)∧τ ε

s∧τ ε

g(Y ε
r/ε)dr −

∫ (s+t)∧(τ ε/ε)

s∧(τ ε/ε)
Q g (Hε(r))dr (4.34)

the averaging error. Then, for any given t > 0 and sufficiently small
ε > 0, there are constants k1, k2 > 0 such that(
E[sup

s⩽t
|δg (ε, s)|p]

) 1
p ⩽ k1t

(
ε1−k2t + η(t|ln ε|)

)
. (4.35)

where η(t) is the rate of convergence for ergodicity assumption A6.

Proof. The main idea is to use the approximate result in Lemma
4.4 on sufficiently small intervals and to apply the ergodic-
ity assumption to replace time average by space average. We
refer to Li [19] for a nice proof in the Brownian case and
Högele–Ruffino [27], Gargate–Ruffino [28] and Högele–da Costa
[29] for the extensions of this proof method. For sufficiently small
ε > 0 and t ⩾ 0 we define the partition

t0 = 0 < t1 < · · · < tNε ⩽
t
ε

∧ τ ε

with the following assignment of increments:

△ϵt = t|ln ε|.

The grid points of the partition are given by tεn = n△εt for
0 ⩽ n ⩽ Nε with Nε = ⌊(ε|ln ε|)−1

⌋ where the bracket function
⌊·⌋ denotes the integer part of the value.

Initially we represent the left hand side as the sum:∫ t∧ετ ε

0
g(Y ε

t/ε)dr = ε

∫ t
ε ∧τ ε

0
g(Y ε

r )dr

= ε

Nε−1∑
n=0

∫ tn+1

tn
g(Y ε

r )dr + ε

∫ t
ε ∧τ ε

tn
g(Y ε

r )dr.

(4.36)

Suppose that Ψ := Ψt = (Ψ (t, ω, x), t ∈ R+) the solution
flow of the unperturbed stochastic differential equation (4.1)
with initial point x and Θt the shift operator on the canonical
probability space, i.e., Θt (ω)(−) = ω(− + t) − ω(t). Then,

|δg (ε, t)| ⩽ε|

Nε−1∑
n=0

∫ tn+1

tn
g(Y ε

r )dr − g(Ψr−tn (Θtn (ω), Y ε
r ))dr|

+ ε|

Nε−1∑
n=0

∫ tn+1

tn
g(Ψr−tn (Θtn (ω), Y ε

r ))

− △εtQ g (Hε(εtn))dr|
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+ ε|

Nε−1∑
n=0

△εtQ g (Hε(εtn)) −

∫ t∧ετ ε

0
Q g (Hε(r))dr|

+ ε|

∫ t
ε ∧τ ε

tn
g(Y ε

r )dr|

=Π1 + Π2 + Π3 + Π4. (4.37)

We proceed showing that the preceding four terms tend
to zero uniformly on compact intervals. In the proof below c
stands for an unspecified constant. Using the Markov property,
Lemma 4.4 and Hölder’s inequality,(
E sup

s⩽t
|Σ1|

p) 1
p

⩽ε

Nε−1∑
n=0

(
E
[∫ tn+1

tn
sup
tn⩽s⩽r

|g(Y ε
r )dr − g(Ψr−tn (Θtn (ω), Y ε

r ))|dr
]p) 1

p

⩽ε

Nε−1∑
n=0

(△εt)
p−1
p

(
E

[ ∫ tn+1

tn
sup
tn⩽s⩽r

|g(Y ε
r )dr

− g(Ψr−tn (Θtn (ω), Y ε
r ))|

pdr
]) 1

p

⩽εNε(△εt)C1εeC2△ε t = ε⌊(ε|ln ε|)−1
⌋ · t|ln ε| · C1εe−C2t ln ε

⩽ctε1−C2t (4.38)

We denote µHε (εtn) by the invariant measure on the invariant
manifold MHε (εtn) ≡ MY ε

tn
. Ergodicity assumption A6 and the

Markov property of the flow yield,(
E sup

s⩽t
|Σ2|

p) 1
p

⩽ε

Nε−1∑
n=0

(
E sup

s⩽t
|

∫ tn+1

tn
g(Ψr−tn (Θtn (ω), Y ε

r ))dr

−△εtQ g (Hε(εtn))|p
) 1

p

⩽ε△εt
Nε−1∑
n=0

(
E sup

s⩽t
|

1
△εt

∫ tn+△ε t

tn
g(Ψr−tn (Θtn (ω), Y ε

r ))dr

−Q g (Hε(εtn))|p
) 1

p

⩽εNε△εt sup
n

(
E sup

s⩽t
|

1
△εt

∫ tn+△ε t

tn
g(Ψr−tn (Θtn (ω), Y ε

r ))dr

−

∫
MHε (εtn)

g(Hε(εtn), z)dµHε (εtn)(z)|
p
) 1

p

⩽cεNε△εtη(△εt) = ε⌊(ε|ln ε|)−1
⌋ · t|ln ε| · η(t|ln ε|)

⩽ctη(t|ln ε|). (4.39)

Note that g is C1 on U0, both supU0
|g| and supU0

|dg| are finite.
We have the following estimates:(
E sup

s⩽t
|Σ3|

p) 1
p ⩽ε

Nε−1∑
n=0

△εt(E sup
εtn⩽r⩽εtn+1

|Q g (Hε(εtn))

− Q g (Hε(εr))|p)
1
p

⩽cεNε△εt · cε exp(c△εt)

⩽ctε1−ct , (4.40)

and(
E sup

s⩽t
|Σ4|

p) 1
p ⩽ cεt|ln ε|. (4.41)

Consequently, the desired result follows from inequality
(4.37), estimates (4.38)–(4.41), and Minkowski’s inequality. □

At last, we present the proof of Theorem 4.1 based on the
results of Lemmas 4.4 and 4.5.

Proof of Theorem 4.1. Applying the change of variable for-
mula [33] for Marcus SDE (4.5) and using the completely inte-
grability assumption A3, we have for t < τ0 ∧ τ ε , 1 ⩽ i ⩽
d,

Hε
i (t) =Hi(Y0) +

∫ t

0
ω2(Vi, K )(Y ε

s/ε)ds

+

∫ t

0

d∑
k=1

ω2(Vi, Fk ◦ π )(Y ε
s/ε) ◦ dB̃k

t

+

∫ t

0

d∑
k=1

ω2(Vi,Gk ◦ π )(Y ε
s/ε) ⋄ dL̃kt . (4.42)

For i fixed, we write

gi = ω2(Vi, K ) (4.43)

which is C1 on U0. Applying (4.34) to the functions gi, we obtain
for any t < τ ε ,∫ t∧τ ε

0
gi(Y ε

s/ε)ds =

∫ t∧(τ ε/ε)

0
Q gi (Hε(s))ds + δgi (ε, t). (4.44)

On the other hand, using the notations of the previous two
lemmas, Eq. (4.8) can be written as

dH̄i(t) = Q gi (H̄i(t))dt +

d∑
k=1

FI,k(H̄i(t)) ◦ dB̃k
t

+

d∑
k=1

GI,k(H̄i(t)) ⋄ dL̃kt ,

H̄0(t) = H(Y0).

Therefore, for any t < τ ε , we have

|Hε
i (t ∧ τ ε) − H̄i(t ∧ τ ε)| ⩽

∫ t∧τ ε

0
|Q gi (Hε

i (s)) − Q gi (H̄i(s))|ds

+δ(gi, ε, t)

+

∫ t∧τ ε

0
|FI,k(Hε

i (s)) − FI,k(H̄i(s))| ◦ dB̃k
t

+

∫ t∧τ ε

0
|GI,k(Hε

i (s)) − GI,k(H̄i(s))| ⋄ dL̃kt

(4.45)

Note that the estimate of the first term is straight forward
Lipschitz estimate,∫ t∧τ ε

0
|Q gi (Hε

i (s)) − Q gi (H̄i(s))|ds

⩽ C(g, ϕ)
∫ t∧τ ε

0
|(Hε

i (s)) − H̄i(s)|ds. (4.46)

The estimates of the Brownian term and the Lévy term can be
dealt with by Kunita’s second inequality [22, Page 268] or other
maximal inequalities. The computation for these two terms are
very similar to that in the proof of Lemma 4.4, and we refer to
[29, Section 5] for a detailed procedure. Finally,

E
[
sup

s⩽t∧τ ε
|Hε

i (s) − H̄i(s)|
p]

⩽ C1

∫ t

0
E
[
sup

r⩽s∧τ ε
|Hε

i (r) − H̄i(r)|
p]
ds

+E
[
sup
s⩽t

|δ(gi, ε, t)|p
]

(4.47)
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By Lemma 4.5 and Gronwall’s inequality, there is a constant
k3 > 0 such that(
E
[
sup

s⩽t∧τ ε
|Hε

i (s) − H̄i(s)|
p]) 1

p

⩽E
[
sup
s⩽t

|δ(gi, ε, t)|p
] 1

p
exp(k3t)

⩽k1t
(
ε1−k2t + η(t|ln ε|)

)
exp(k3t).

(4.48)

For the second part of the theorem, we have the following
estimate by the definition of τ ε , τδ and Chebyshev’s inequality,

P(τ ε < τδ) ⩽ P( sup
s⩽τ ε∧τδ

|H̄(s) − Hε(s)| > δ)

⩽ δ−pE
[

sup
s⩽τ ε∧τδ

|H̄(s) − Hε(s)|
p]

⩽ k4δ−ptp
(
ε1−k2t + η(t|ln ε|)

)p exp(k5t). □ (4.49)

4.4. An example: Perturbed stochastic harmonic oscillator with Lévy
noise

In this subsection, let us present a simple illustrative example
for the above averaging principle of integrable stochastic Hamil-
tonian system with Lévy noise. We write (q, p) = (q1, . . . , qd,
p1, . . . , pd) as canonical coordinates, and there is an important
class of Hamiltonian functions on R2n of the form H(q, p) =
1
2 |p|

2
+ V (q), i.e. Hamiltonian H is the sum of kinetic, T =

1
2 |p|

2
=

1
2

∑d
i=1 p

2
i and potential, V (q), energies. Furthermore, if

V is quadratic, e.g. V (q) =
1
2ϖ |q|2 with ϖ a frequency, then we

have the linear harmonic oscillator. Given Hamiltonian functions
as follow,

H1 =
1
2

d∑
i=1

p2i +
1
2

d∑
i=1

ϖ 2
i p

2
i ,

Hk =
1
2

p2k
ϖk

+
1
2
ϖkp2k, k = 2, . . . , d,

and a smooth function H0 commuting with all Hk, k = 1, . . . , d,
i.e.

{H0,Hk} =

d∑
i=1

(∂H0

∂pi

∂Hk

∂qi
−

∂H0

∂qi

∂Hk

∂pi

)
= 0,

we have

dqi(t) =
∂H0

∂pi
dt +

d∑
i=1

∂Hk

∂pi
◦ dBk

t +

d∑
i=1

∂Hk

∂pi
⋄ dLkt , (4.50)

dpi(t) = −
∂H0

∂qi
dt −

d∑
i=1

∂Hk

∂qi
◦ dBk

t −

d∑
i=1

∂Hk

∂qi
⋄ dLkt , (4.51)

which is an integrable stochastic Hamiltonian system with
α-stable Lévy noise. Let J =

[
0 I
−I 0

]
be a 2d × 2d antisymmetric

matrix, which is called Poisson matrix, this system is equivalent
to

dXt = J∇H0(Xt )dt+
d∑

i=1

J∇Hk(Xt )◦dBk
t +

d∑
i=1

J∇Hk(Xt )⋄dLkt . (4.52)

ForMh = {x ∈ M : Hk(x) = hk, k = 1, 2, ..d}, if we take an action–
angle coordinates change ϕ−1

: U0 → Td
× D, (q, p) ↦→ (θ, I),

qi =

√
2Ii
ϖi

cos θi, pi =

√
2ϖiIi sin θi, (4.53)

then the induced Hamiltonians H ′

k = Hk(ϕ(θ, I)) ={∑d
i=1 ϖiIi, k = 1

Ik, k = 2, . . . , d
on Td

× D satisfy,

θ̇ i
k =

∂H ′

k

∂ Ii
=: ωi

k(I) =

{
ϖi, k = 1;
1, k = 2, . . . , d & i = k;
0, otherwise.

İ ik = −
∂H ′

k

∂θi
= 0.

Next, we investigate the effective behavior of a small transversal
perturbation of order ε to this system. For simplicity, we consider
the case on R4 with ϖ = 1 and Lt having second moments,

d

⎛⎜⎝q1
q2
p1
p2

⎞⎟⎠ =

⎛⎜⎝ p1 0
p2 p2

−q1 0
−q2 −q2

⎞⎟⎠ ◦ d
(
B1
t

B2
t

)
+

⎛⎜⎝ p1 0
p2 p2

−q1 0
−q2 −q2

⎞⎟⎠ ⋄ d
(
L1t
L2t

)
.

(4.54)

Take the perturbation vectors to be εK =
(
0, εq2/(q22+p22), 0, 0

)T ,
ε(E,O)T ˙̃Bt and ε(E,O)T ˙̃Lt , where E is the identity matrix, O is the
zero matrix and L̃t is a pure jump Lévy motion with four-order
moments. By action–angle coordinates change (4.53), we have,
with Λ =

[
1 1
1 0

]
,

d

⎛⎜⎝θ1
θ2
I1
I2

⎞⎟⎠ =

(
Λ

O

)
d
(
B1
t

B2
t

)
+

(
Λ

O

)
d
(
L1t
L2t

)
+ ε

⎛⎜⎜⎜⎝
0

1
2I2

sin θ2 cos θ2

0
− cos2 θ2

⎞⎟⎟⎟⎠
× dt + ε

(
E
O

)
d
(
B̃1
t

B̃2
t

)
+ ε

(
E
O

)
d
(
L̃1t
L̃2t

)
.

For unperturbed system, it is easy to get fundamental solution
with initial condition (q0, p0) = ϕ(θ0, I0): qt =

√
2I0 cos(Λ(Bt +

Lt )), pt =
√
2I0 sin(Λ(Bt + Lt )) with Λ =

[
1 1
1 0

]
. Note that

gi := ω2(Vi, K ) = V T
i JK =

q22
q22 + p22

H⇒ g̃i = cos2 θ2, i = 1, 2.

We obtain

Q g (hi) =
1

(2π )2

∫ 2π

0

∫ 2π

0
cos2 θ2dθ1dθ2 =

1
2
.

We verify that 1
t

∫ t
0 gi(qs, ps)ds → Q g (hi) in L2, as t → ∞, with a

rate of convergence η(t) =
1

√
t
in the Appendix. Therefore, the

transversal system stated in Theorem 4.1 is H̄i(t) =
t
2 . The result

guarantees that, on the accelerated time scale t
ε
, Hε

i (t) has a local
behavior close to t

2 in the sense that(
E
[
sup

s⩽t∧τ ε

⏐⏐Hε
i (s)−

t
2

⏐⏐2]) 1
2

⩽ k1t
(
ε1−k2t +

t
2
|ln ε|

)
exp(k3t) (4.55)

tends to 0 when ε → 0, for any fixed t and the constant
k1, k2, k3 > 0.
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Appendix. Proofs of Theorems 3.1–3.2 and calculations of ex-
ample 4.4

We now prove Theorems 3.1 and 3.2 which are based on the
formula of change of variables in differential forms.
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Proof of Theorem 3.1. Noticing that

dP ∧ dQ =

n∑
i=1

dP i
∧ dQ i

=

n∑
i=1

n∑
l=r+1

n∑
r=1

[
(
∂P i

∂pr
∂Q i

∂pl
−

∂P i

∂pl
∂Q i

∂pr
)dpr ∧ dpl

+(
∂P i

∂qr
∂Q i

∂ql
−

∂P i

∂ql
∂Q i

∂qr
)dqr ∧ dql

]
+

n∑
i=1

n∑
l=1

n∑
r=1

(
∂P i

∂pr
∂Q i

∂ql
−

∂P i

∂ql
∂Q i

∂pr
)dpr ∧ dql,

we infer that the phase flow of (3.1)–(3.2) preserves symplectic
structure if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

D(P i,Q i)
D(pr , pl)

= 0, r ̸= l,

n∑
i=1

D(P i,Q i)
D(qr , ql)

= 0, r ̸= l,

n∑
i=1

D(P i,Q i)
D(pr , ql)

= δrl, r, l = 1, . . . , n.

(A.56)

Clearly,

D(P i(t0),Q i(t0))
D(pr , pl)

=
D(pi, qi)
D(pr , pl)

= 0,

D(P i(t0),Q i(t0))
D(qr , ql)

=
D(pi, qi)
D(qr , ql)

= 0,

D(P i(t0),Q i(t0))
D(pr , ql)

=
D(pi, qi)
D(pr , ql)

= δrl.

Therefore, (A.56) is fulfilled if and only if
n∑

i=1

d
D(P i(t),Q i(t))

D(pr , pl)
=

n∑
i=1

d
D(P i(t),Q i(t))

D(qr , ql)

=

n∑
i=1

d
D(P i(t),Q i(t))

D(pr , ql)
= 0. (A.57)

Introduce the notation

P ir
p =

∂P i

∂pr
, P ir

q =
∂P i

∂qr
, Q ir

p =
∂Q i

∂pr
, Q ir

q =
∂P i

∂qr
.

For a fixed r , by calculating at (P,Q ) with P = P(t) = (P1(t; t0,
p, q), . . . , Pn(t; t0, p, q)) and Q = Q (t) = (Q 1(t; t0, p, q),
. . . ,Q n(t; t0, p, q)) which is a solution to systems (3.1)–(3.2), we
obtain P ir

p ,Q ir
p , i = 1, . . . , n, satisfy the following system of SDEs:

dP ir
p =

n∑
j=1

(
∂ f i

∂pj
P jr
p +

∂ f i

∂qj
Q jr
p )dt

+

d∑
k=1

n∑
j=1

(
∂σ i

k

∂pj
P jr
p +

∂σ i
k

∂qj
Q jr
p ) ⋄ dLk, P ir

p (t0) = δir ,

dQ ir
p =

n∑
j=1

(
∂g i

∂pj
P jr
p +

∂g i

∂qj
Q jr
p )dt

+

d∑
k=1

n∑
j=1

(
∂γ i

k

∂pj
P jr
p +

∂γ i
k

∂qj
Q jr
p ) ⋄ dLk, Q ir

p (t0) = 0, (A.58)

where

f (Q , P) =
∂H
∂P

(Q , P), σk(Q , P) =
∂Hk

∂P
(Q , P), (A.59)

g(Q , P) = −
∂H
∂Q

(Q , P), γk(Q , P) = −
∂Hk

∂Q
(Q , P), (A.60)

for k = 1, . . . ,m.
Then, we get

dP ir
p (t)Q

il
p (t)

=

n∑
j=1

[
(
∂ f i

∂pj
P jr
p +

∂ f i

∂qj
Q jr
p )Q il

p + (
∂g i

∂pj
P jr
p +

∂g i

∂qj
Q jr
p )P ir

p

]
dt

+

m∑
k=1

n∑
j=1

[
(
∂σ i

k

∂pj
P jr
p +

∂σ i
k

∂qj
Q jr
p )Q il

p

+(
∂γ i

k

∂pj
P jl
p +

∂γ i
k

∂qj
Q jl
p )P

ir
p

]
⋄ dLk.

Similarly, we can also calculate dP il
p (t)Q

ir
p (t), then

n∑
i=1

d
D(P i(t),Q i(t))

D(pr , pl)
=

n∑
i=1

⎡⎣ n∑
j=1

Ξ1dt +

m∑
k=1

n∑
j=1

Ξ2 ⋄ dLk

⎤⎦ ,

(A.61)

where

Ξ1 =
∂ f i

∂pj
P jr
p Q

il
p +

∂ f i

∂qj
Q jr
p Q il

p +
∂g i

∂pj
P jl
pP

ir
p +

∂g i

∂qj
Q jl
p P

ir
p

−
∂ f i

∂pj
P jl
pQ

ir
p −

∂ f i

∂qj
Q jl
p Q

ir
p −

∂g i

∂pj
P jr
p P

il
p −

∂g i

∂qj
Q jr
p P il

p ,

Ξ2 =
∂σ i

k

∂pj
P jr
p Q

il
p +

∂σ i
k

∂qj
Q jr
p Q il

p +
∂γ i

k

∂pj
P jl
pP

ir
p +

∂γ i
k

∂qj
Q jl
p P

ir
p

−
∂σ i

k

∂pj
P jl
pQ

ir
p −

∂σ i
k

∂qj
Q jl
p Q

ir
p −

∂γ i
k

∂pj
P jr
p P

il
p −

∂γ i
k

∂qj
Q jr
p P il

p .

It is not difficult to find out that, a sufficient condition of Ξ1 = 0
is
∂ f i

∂pj
= −

∂g j

∂qi
,

∂ f i

∂qj
=

∂ f j

∂qi
,

∂g i

∂pj
=

∂g j

∂pi
, (A.62)

and a sufficient condition of Ξ2 = 0 is

∂σ i
k

∂pj
= −

∂γ
j
k

∂qi
,

∂σ i
k

∂qj
=

∂σ
j
k

∂qi
,

∂γ i
k

∂pj
=

∂γ
j
k

∂pi
. (A.63)

Noticing that relations (A.59)–(A.60) imply (A.62)–(A.63), we ob-
tain

∑n
i=1 d

D(P i(t),Q i(t))
D(pr ,pl)

= 0. Similarly, we prove that the conditions
(A.59)–(A.60) ensure the other two terms of (A.57) as well. This
completes the proof. □

Proof of Theorem 3.3. We calculate the derivatives of S with
respect to Q0 and Q1:

∂S
∂Q0

=

∫ t1

t0

( ∂L
∂Q

∂Q
∂Q0

+
∂L
∂Q̇

∂Q̇
∂Q0

+
∂L
∂P

∂P
∂Q0

+
∂L
∂ Ṗ

∂ Ṗ
∂Q0

)
dt

−

d∑
k=1

∫ t1

t0

(∂Hk

∂Q
∂q
∂Q0

+
∂Hk

∂P
∂P
∂Q0

)
⋄ dLk(t)

=

[
∂L
∂Q̇

∂Q
∂Q0

]t1

t0

+

∫ t1

t0

( ∂L
∂Q

−
d
dt

∂L
∂Q̇

−

d∑
k=1

∂Hk

∂Q
⋄ L̇k(t)

)
×

∂Q
∂Q0

dt

+

[
∂L
∂ Ṗ

∂P
∂Q0

]t1

t0

+

∫ t1

t0

( ∂L
∂P

−
d
dt

∂L
∂ Ṗ

−

d∑
k=1

∂Hk

∂P
⋄ L̇k(t)

)
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×
∂p
∂Q0

dt

= −PT
0 , (A.64)

where the last equality follows from the stochastic Lagrange
equations (3.23)–(3.24) and the Legendre transform P =

∂L
∂Q̇

.
Similarly, we have

∂S
∂Q1

= −PT
1 . (A.65)

Therefore,

dS = −PT
0 dQ0 + PT

1 dQ1. (A.66)

Moreover,

dp1 ∧ dQ1 = d(
∂S
∂Q1

) ∧ dQ1 =
∂2S

∂Q1∂Q0
dQ0 ∧ dQ1, (A.67)

dp0 ∧ dQ0 = d(−
∂S
∂Q0

) ∧ dQ0 =
∂2S

∂Q0∂Q1
dQ0 ∧ dQ1. (A.68)

Smoothness of L and the Hk(k = 1, . . . , d) in S ensures that
∂2S

∂Q1∂Q0
=

∂2S
∂Q0∂Q1

, which implies

dP1 ∧ dQ1 = dP0 ∧ dQ0. (A.69)

The proof is thus complete. □

Detailed Calculations of Example 4.4. Recall that, by
Lévy–Khintchine formula [8,22] the characteristic function for
Lévy motion in Rd is

Eei⟨u,Lt ⟩ = etη0(u), u ∈ Rd,

where η0(u) =
∫
Rd\{0}

[
eiu·z −1− i1{|z|<1}u ·z

]
ν(dz) whose real part

ℜη0 ⩽ 0. And the characteristic function for standard Brownian
motion in Rd is

Eei⟨u,Bt ⟩ = e−
1
2 t⟨u,Iu⟩ = e−

1
2 t|u|

2
, u ∈ Rd.

Therefore,

E
[1
t

∫ t

0
gi(qs, ps)ds

]
= E

[1
t

∫ t

0
g̃i(θs, Is)ds

]
= E

[1
t

∫ t

0
cos2(⟨u, Bs + Ls⟩)

]
ds

=
1
2t

∫ t

0
E cos 2(⟨u, Bs + Ls⟩)ds +

1
2

=
1
2t

∫ t

0
ℜEei⟨2u,Bs⟩ℜEei⟨2u,Ls⟩ds +

1
2

=
1
2t

∫ t

0
e−s( 12 |2u|2−ℜη0(2u))ds +

1
2

=
1
2t

1
A
(1 − e−At ) +

1
2
. (A.70)

Here u = (1, 1)T ∈ R2 and A =
1
2 |2u|

2
− ℜη0(2u) > 0. Hence, as

t goes to ∞, the expectation is equal to 1
2 eventually. Next, we

calculate the secondary moment as follows,

E
[⏐⏐1

t

∫ t

0
gi(qs, ps)ds

⏐⏐2] = E
[ 1
t2

⏐⏐ ∫ t

0
cos2(⟨u, Bs + Ls⟩)ds

⏐⏐2]
=

2
t2

∫ t

0

∫ r

0
E
[
cos2(⟨u, Bs + Ls⟩) cos2(⟨u, Br + Lr⟩)

]
dsdr

=
1
4t2

∫ t

0

∫ r

0
E

[
ℜei⟨2u,(Bs+Ls)+(Br+Lr )⟩ + ℜei⟨2u,(Bs+Ls)−(Br+Lr )⟩

+ 2ℜei⟨2u,(Bs+Ls)⟩ + 2ℜei⟨2u,(Br+Lr )⟩ + 2
]
dsdr

=
1
4t2

∫ t

0

∫ r

0

[
Eei⟨4u,Bs⟩Eei⟨2u,Br−Bs⟩Eei⟨4u,Ls⟩Eei⟨2u,Lr−Ls⟩

+ Eei⟨2u,Br−Bs⟩Eei⟨2u,Lr−Ls⟩

+ 2Eei⟨2u,Bs⟩Eei⟨2u,Ls⟩ + 2Eei⟨2u,Br ⟩Eei⟨2u,Lr ⟩ + 2
]
dsdr

=
1
4t2

∫ t

0

∫ r

0

[
e−( 12 |2u|2−ℜη0(2u))r−( 12 |4u|2−

1
2 |2u|2−ℜη0(4u)+ℜη0(2u))s

+ e−( 12 |2u|2+ℜη0(2u))(r−s)

+ 2e−( 12 |2u|2−ℜη0(2u))s + 2e−( 12 |2u|2−ℜη0(2u))r + 2
]
dsdr

=
1
4t2

∫ t

0

∫ r

0

[
e−Ar−Bs

+ e−C(r−s)
+ 2e−As

+ 2e−Ar
+ 2

]
dsdr

=
1
4t2

[ 1
A(A + B)

−
1
C2 + (

1
C

+
2
A
)t + t2 +

e−(A+B)t

B(A + B)
−

e−At

AB

+
e−Ct

C2 −
2te−At

A

]
. (A.71)

Here we used the stationary independent increments property
of the Brownian motion and Lévy motion. By Taylor expansion
[23, Page 40] with u = (1, 1)T , we can find that B =

1
2 |4u|

2
−

1
2 |2u|

2
− ℜη0(4u) + ℜη0(2u) > 0, C =

1
2 |2u|

2
+ ℜη0(2u) > 0, so

we have E
[⏐⏐ 1

t

∫ t
0 gi(qs, ps)ds

⏐⏐2] →
1
4 as t → ∞. Thus,

E
[⏐⏐1

t

∫ t

0
gi(qs, ps)ds − Q g (hi)

⏐⏐2]
= E

[ 1
t2

⏐⏐ ∫ t

0
cos2(⟨u, Bs⟩ + ⟨u, Ls⟩)ds −

1
2

⏐⏐2]
= E

[ 1
t2

(∫ t

0
cos2(⟨u, Bs⟩ + ⟨u, Ls⟩)ds

)2]
−E

[1
t

∫ t

0
cos2(⟨u, Bs⟩ + ⟨u, Ls⟩)ds

]
+

1
4

→ 0, as t → ∞.

Moreover, combining (A.70)–(A.71) and taking the square root,
the rate of convergence is of the order η(t) =

c
√
t
as t → ∞ (c is

a constant). □
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