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Abstract

Methods of equivariant bifurcation theory are applied to Boussinesq convection in a plane layer with stress-free horizontal boundaries and an
imposed square lattice periodicity in the horizontal directions. We consider the problem near the onset of instability of the uniform conducting
state where spatial roll patterns with two different wavelengths in the ratio 1:

√
2 become simultaneously unstable at a mode interaction. Center

manifold reduction yields a normal form on C4 with very rich dynamical behavior. For a fixed Prandtl number P the mode interaction occurs
at an isolated point in the parameter plane (R, L) (where R is the Rayleigh number and L the length of the horizontal periodicities) and acts as
an organizing center for many nearby bifurcations. The normal form predicts the appearance of many steady states and travelling waves, which
are classified by their symmetries. It also predicts the appearance of robust heteroclinic networks involving steady states with several different
symmetries, and robust attractors of generalized heteroclinic type that include connections from equilibria to subcycles. This is the first example
of a heteroclinic network in a fluid dynamical system that has ‘depth’ greater than one. The normal form dynamics is in good correspondence
(both quantitatively and qualitatively) with direct numerical simulations of the full convection equations.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Thermal convection, a common and important phenomenon in nature, has been a subject of intensive scientific investigation
for more than a century. It was investigated by a variety of analytical (asymptotic, perturbation, multiscale, etc.) and numerical
methods, as well as by experimental work. Convection is a source of new ideas, for example, on pattern formation and on transition
from order to chaos and from laminar to turbulent flows.

In this paper we consider fluid in a non-rotating plane horizontal layer heated from below, assuming the Boussinesq
approximation, whereby variation of density is neglected in the mass conservation equation and flows are regarded as
incompressible. For small Rayleigh number, R (proportional to the temperature difference between the horizontal boundaries),
fluid is at rest and heat is transferred by thermal diffusion only. When R exceeds the critical value, fluid motion in the form of
two-dimensional rolls sets in. We assume periodicity in horizontal directions with equal periods, such that instabilities with respect
to rolls aligned along edges and along diagonals of the periodicity cell occur simultaneously (for the same value of R). Spatial
periods of these critical modes are in the ratio 1:

√
2.
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For a square periodicity cell the symmetry group of the system is D4 n T2
× Z2 and the center eigenspace is C4. We derive

a general third-order ODE (a normal form) commuting with the action of the group on the center eigenspace, and study its
bifurcations. The system has a large variety of steady states and travelling waves, which are classified by their symmetries. It
can also possess heteroclinic connections forming complex networks. We derive sufficient conditions for existence of some of these
connections.

Steady states emerging in a D4 n T2
× Z2-symmetric system on C2 have been considered by a number of authors; notably

[22,19,20], and bifurcations in a D4 n T2-symmetric system (to which equations of non-Boussinesq convection are reduced)
involving 1:

√
2 mode interaction were studied in [18]. The Boussinesq case is richer; in particular, it gives rise to more steady

states than are found in [18]. We note that a number of other authors (e.g., [6,5,19,20]) have considered related bifurcations of
planforms for periodic boundary conditions on a square lattice.

We apply our results on bifurcations in the general normal form to the particular case of Boussinesq convection, considering the
normal form for the values of coefficients calculated by the center manifold reduction of the equations of convection. We obtain
bifurcation diagrams of the behavior near the mode interaction in terms of three parameters that generically unfold the problem,
which are the Rayleigh number R, the domain size L and the Prandtl number P . We study attractors of the reduced system when
the growth rates of roll modes (depending on R and L) are varied and P is fixed. This study was performed for several values of
Prandtl number, and we usually vary k = 2π/L and R rather than L directly.

In addition to steady states and periodic orbits, the system possesses several types of heteroclinic attractor, as well as robust
heteroclinic-type attractors incorporating connections between equilibria and subcycles. The latter are heteroclinic networks of
‘depth 2’ in the terminology of [1], because there are trajectories within the attractor that connect unstable equilibria and heteroclinic
cycles of the more conventional type. More precisely, there are connections that do not lie within the stable manifold of any relative
equilibrium. Although such attractors have been found in other systems (e.g., replicator systems [3]) this is the first example in a
dynamical system related to hydrodynamics.

Bifurcations of the normal form are compared with those observed in numerical simulations of equations of convection.
Attractors in the systems are similar, and the critical values of parameters agree well.

2. Thermal convection in a plane layer

Consider the nondimensional equations for Boussinesq convection of a unit density fluid in a plane layer (x, y, z) (where
0 < z < 1) uniformly heated from below. The flow velocity v and pressure p satisfy the Navier–Stokes equation

∂v
∂t

= v × (∇ × v)+ P∆v + P Rθez − ∇ p (1)

with incompressibility condition

∇ · v = 0. (2)

The heat transfer equation

∂θ

∂t
= −(v · ∇)θ + vz + ∆θ (3)

gives the evolution of θ , the difference between the temperature in the flow and the linear temperature profile. The parameters
R and P are the Rayleigh and Prandtl numbers, respectively. We assume stress-free boundary conditions for the flow and fixed
temperature on horizontal boundaries:

∂vx

∂z
=
∂vy

∂z
= vz = 0, θ = 0 at z = 0, 1. (4)

For the remainder of the paper we will consider only those flows that are periodic on a square lattice in the (x, y) plane, i.e. such
that there is an L > 0 such that

v(x, y, z) = v(x + pL , y + q L , z) and θ(x, y, z) = θ(x + pL , y + q L , z) (5)

for any (p, q) ∈ Z2.
The system (1)–(4) admits the trivial solution v = 0, θ = 0 describing pure thermal conduction. The steady state becomes

unstable to perturbations with wavenumber k at R = (k2
+ π2)3k−2 with an associated eigenvector

V(k) =


−πk−1 cosπ z sin kx

0
sinπ z cos kx

(k2
+ π2)−1 sinπ z cos kx

 . (6)
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Fig. 1. Critical Rayleigh number R as a function of k = 2π/L for a range of modes in a box with horizontal dimension L . The line (p, q) indicates where the trivial
steady state v = 0 θ = 0 becomes unstable to the mode with wavevector (pk, qk, π); there are additional lines for lower k and higher p2

+ q2 that accumulate on
k = 0. The point (km , Rm ) shows where the 1:

√
2 mode interaction occurs.

(Other eigenvectors can be obtained by application of symmetries of the system.) The critical Rayleigh number for the onset of
convection is R =

27
4 π

4
≈ 657, and the critical wavenumber is kc = π/

√
2. Fig. 1 shows the instability neutral curves for the first

few modes in the (k, R) plane.
Modes with wavenumbers k and

√
2k become unstable simultaneously at

Rm = 2−2/3(21/3
+ 1)−2(22/3

+ 21/3
+ 1)3π4

≈ 684 (7)

while the critical wavenumber for the mode interaction point satisfies

km = 2−1/6(21/3
+ 1)−1/2π ≈ 1.86 (8)

in agreement with the value reported in [18]. The periodicity L in Eq. (5) is chosen to be close to the critical value

Lm = 2π/km = 2 · 21/6(21/3
+ 1)1/2 (9)

so that the rolls V(km) are aligned along the edges of the periodicity cell. The rolls

W(km) =


−πk−1

m cosπ z sin(km x + km y)
−πk−1

m cosπ z sin(km x + km y)
sinπ z cos(km x + km y)

(2k2
m + π2)−1 sinπ z cos(km x + km y)

 (10)

with the wavenumber
√

2km are aligned along a diagonal.

2.1. The symmetry group

The symmetry group of the convective system (1)–(3) with the boundary conditions Eqs. (4) and (5) can be expressed as
D4 n T2

× Z2. The eight-element group of symmetries of the square lattice, D4, is comprised of the set of rotations

s1 : (x, y, z) 7→ (y,−x, z),

s2 : (x, y, z) 7→ (−x,−y, z),

s3 : (x, y, z) 7→ (−y, x, z),

reflections

s4 : (x, y, z) 7→ (x,−y, z),

s5 : (x, y, z) 7→ (−x, y, z),

s6 : (x, y, z) 7→ (y, x, z),

s7 : (x, y, z) 7→ (−y,−x, z)

and the identity s0 = e. The group T2
= Tx ×Ty where Tx and Ty are groups of translations in the x and y directions, respectively:

γ x
α : (x, y, z) 7→ (x + α, y, z)
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and

γ y
α : (x, y, z) 7→ (x, y + α, z)

where 0 ≤ α < L (so that γ x
L = γ

y
L = e). Denote by Txy the group of translations along the diagonal:

γ xy
α : (x, y, z) 7→ (x + α, y + α, z).

The group Z2 is generated by the so-called Boussinesq symmetry, which is reflection about the horizontal mid-plane:

r : (x, y, z) 7→ (x, y, 1 − z).

Consider a center eigenspace spanned by rolls (6) and (10) and their symmetric images

X1 = V, Y1 = γ x
L/4V, X2 = s6V, Y2 = γ

y
L/4s6V,

X3 = W, Y3 = γ x
L/4W, X4 = s4W and Y4 = γ x

L/4s4W.
(11)

The coordinates (z1, z2, z3, z4) ∈ C4 on the center manifold can be introduced as projections in the directions X j and Y j , j = 1,
2, 3, 4. The symmetries of the system transform the coordinates in the following way:

s1 : (z1, z2, z3, z4) 7→ (z2, z̄1, z̄4, z3),

s2 : (z1, z2, z3, z4) 7→ (z̄1, z̄2, z̄3, z̄4),

s3 : (z1, z2, z3, z4) 7→ (z̄2, z1, z4, z̄3),

s4 : (z1, z2, z3, z4) 7→ (z1, z̄2, z4, z3),

s5 : (z1, z2, z3, z4) 7→ (z̄1, z2, z̄4, z̄3),

s6 : (z1, z2, z3, z4) 7→ (z2, z1, z3, z̄4),

s7 : (z1, z2, z3, z4) 7→ (z̄2, z̄1, z̄3, z4),

γ x
α : (z1, z2, z3, z4) 7→ (e2π iα/L z1, z2, e2π iα/L z3, e2π iα/L z4),

γ y
α : (z1, z2, z3, z4) 7→ (z1, e2π iα/L z2, e2π iα/L z3, e−2π iα/L z4)

r : (z1, z2, z3, z4) 7→ (−z1,−z2,−z3,−z4).

2.2. Normal form

The normal form on center manifold C4 for the symmetry group D4 n T2 was considered by [18]. In the presence of the
Boussinesq symmetry, the even order terms vanish meaning that the normal form with D4 n T2

× Z2 symmetry truncated at cubic
order is

ż1 = λ1z1 + z1(A1|z1|
2
+ A2|z2|

2
+ A3(|z3|

2
+ |z4|

2))+ A4 z̄1z3z4,

ż2 = λ1z2 + z2(A1|z2|
2
+ A2|z1|

2
+ A3(|z3|

2
+ |z4|

2))+ A4 z̄2z3 z̄4,

ż3 = λ2z3 + z3(A5|z3|
2
+ A6|z4|

2
+ A7(|z1|

2
+ |z2|

2))+ A8(z2
2z4 + z2

1 z̄4),

ż4 = λ2z4 + z4(A5|z4|
2
+ A6|z3|

2
+ A7(|z1|

2
+ |z2|

2))+ A8(z̄2
2z3 + z2

1 z̄3),

(12)

where Ai are real numbers (the normal form coefficients). The linear growth rates λ1 and λ2 are close to zero for the truncation to be
valid; otherwise higher order terms become important. In Section 4 we relate λi and Ai to the Boussinesq problem for parameters
(k, R) close to (km, Rm) (implying that L is close to Lm).

In polar coordinates z j = r j eiθ j (with r j ≥ 0 and θ j ∈ [0, 2π)) the normal form becomes

ṙ1 = r1(λ1 + A1r2
1 + A2r2

2 + A3(r2
3 + r2

4 ))+ A4r1r3r4 cos(θ4 + θ3 − 2θ1)

ṙ2 = r2(λ1 + A1r2
2 + A2r2

1 + A3(r2
3 + r2

4 ))+ A4r2r3r4 cos(θ3 − 2θ2 − θ4)

ṙ3 = r3(λ2 + A5r2
3 + A6r2

4 + A7(r2
1 + r2

2 ))+ A8(r2
2r4 cos(2θ2 + θ4 − θ3)+ r2

1r4 cos(2θ1 − θ4 − θ3))

ṙ4 = r4(λ2 + A5r2
4 + A6r2

3 + A7(r2
1 + r2

2 ))+ A8(r2
2r3 cos(θ3 − 2θ2 − θ4)+ r2

1r3 cos(2θ1 − θ3 − θ4))

θ̇1 = A4r3r4 sin(θ3 + θ4 − 2θ1)

θ̇2 = A4r3r4 sin(θ3 − 2θ2 − θ4)

r3θ̇3 = A8(r2
2r4 sin(2θ2 + θ4 − θ3)+ r2

1r4 sin(2θ1 − θ4 − θ3))

r4θ̇4 = A8(r2
2r3 sin(θ3 − 2θ2 − θ4)+ r2

1r3 sin(2θ1 − θ3 − θ4)).

(13)
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Fig. 2. Lattice of symmetry types of relative equilibria emerging in the normal form (12). The dimensions of the group orbits of these states are shown on the left,
and the generic dimension of drift of the drifting states STW, TW1, TW2, TW3, TW4 and DNS (drifting, no symmetry) are shown.

The expressions in the r.h.s. of Eq. (13) involve angles only in the following combinations: φ = 2θ1 −θ3 −θ4 and ψ = 2θ2 −θ3 +θ4,
and a pattern with constant r j , j = 1, 2, 3, 4, can be described by the coordinates (r1, r2, r3, r4, φ, ψ). Note that relative equilibria
for Eq. (12) are solutions of Eq. (13) with ṙ j = 0 constant. These drift on the group orbit if either φ 6= 0(modπ) or ψ 6= 0(modπ).
Below we use the six-dimensional polar coordinates (r, φ, ψ) as well as the four-dimensional complex Cartesian coordinates z.

3. Bifurcations of the normal form (12) for a general set of coefficients

First we consider the solutions and bifurcation structure for generic choice of the real normal form coefficients Ai , i = 1, . . . , 8.
We define the primary bifurcations to be bifurcations of the trivial (non-convecting) state (0, 0, 0, 0); this creates primary branches
of solutions. A bifurcation from a primary branch is called a secondary bifurcation and creates secondary branches and similarly
a bifurcation from secondary branches is a tertiary bifurcation and creates tertiary branches. The case where a branch starts at a
primary branch and ends at a secondary branch is referred to as tertiary. We study bifurcations occurring when λi are varied and
A j are fixed: for convection (see Section 5) this corresponds to a fixed P and a varying R and L . Generic bifurcations of equilibria
of different symmetry types occurring in the normal form (12) are summarized in Fig. 2 and the structure of emerging steady states
and travelling waves is illustrated in Fig. 3.

For the action of D4 n T2
× Z2 on C4 that we consider, steady states with symmetry groups not listed in Fig. 2 can exist, for

example (x1, x2, 0, 0), (0, 0, x3, x4) and (x1, x2, x3, x3), although these are not isolated solutions for the normal form (12). In fact
the third-order normal form is degenerate and to resolve the degeneracy some of the fifth-order terms should be included. (See
e.g. the study of bifurcations in a D4-symmetric system on R2 in [8].) However, these solutions emerge only in the special cases
A1 − A2 = 0 or A5 − A6 = 0. For the convective system considered in fact these differences are always positive (see Section 4),
meaning that the third-order truncation is sufficient.

3.1. Primary bifurcations

Bifurcations from the trivial steady state S0, (z1, z2, z3, z4) = 0, take place when λ1 = 0 or λ2 = 0. In both subspaces the group
action is isomorphic to D4 n T2, and therefore branches of steady states listed in Table 1 can be obtained applying standard results.

3.2. Secondary bifurcations

In this subsection we study bifurcations from the primary steady states. To label the bifurcating branches we try to follow the
terminology used in [18] as much as possible; however, in our case there are more types of steady state because of the presence of
the Boussinesq symmetry.
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Fig. 3. Isolines (step 0.2) of the vertical component of the velocity in the horizontal mid-plane for convective steady states and travelling waves evaluated for the
respective solutions of Eq. (12). Four copies of the periodicity cell are shown for clarity. The relation between convective and solutions of Eq. (12) is given by Eqs.
(6), (10) and (11). The numbers below a pattern are coordinates of the pattern on the center manifold in the basis defined by Eq. (11).

Table 1
Steady state branches bifurcating from S0: the condition for occurrence of the bifurcation, label of the bifurcating steady state, the symmetry group of the state,
generators of the group, typical point and equation for the branch

Bifurcates at Name Group Generators Typical point Amplitude No

λ1 = 0 LR D2 n T × Z2 s2, s4, γ
y
α , γ x

L/2r (x, 0, 0, 0) x2
= −λ1/A1 1, 29

λ1 = 0 LS D4 × Z2 s1, s4, γ
xy
L/2r (x, x, 0, 0) x2

= −λ1/(A1 + A2) 1, 29

λ2 = 0 SR D2 n Tn Z4 s2, s6, γ
x,−y
α , γ

xy
L/4r (0, 0, x, 0) x2

= −λ2/A5 2, 33

λ2 = 0 SS D4 n Z2 s1, s4, γ
x
L/2r (0, 0, x, x) x2

= −λ2/(A5 + A6) 2, 33

The last column gives the bifurcation numbers in the order of reference in Sections 4–6.

Table 2 presents eigenspaces and associated eigenvalues of the mapping (12) linearized in the vicinity of the respective steady
states. The fifth column gives the action of the steady state symmetry groups on the eigenspaces, and the sixth column indicates
which elements of this group act trivially.
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Table 2
Invariant subspaces and associated eigenvalues that determine the stability of respective steady states

Steady state Typical point Invariant subspaces Eigenvalues Action Kernel

LR (x, 0, 0, 0) (q, 0, 0, 0) −2λ1 1 all
(iq, 0, 0, 0) 0 Z2 s4, γ

y
α , γ

x
L/2r

(0, w, 0, 0) λ1(A1 − A2)/A1 Z2 n T γ
xy
L/2r, s5

(0, 0, w, w̄) λ2 + (A7 + A8)x2 Z2 n T s5, γ
x
L/2r

(0, 0, w,−w̄) λ2 + (A7 − A8)x2 Z2 n T γ x
L/2r, γ y

L/2s5

LS (x, x, 0, 0) (q, q, 0, 0) −2λ1 1 all
(iq1, iq2, 0, 0) 0 D4 γ

xy
L/2r

(q,−q, 0, 0) 2λ1(A2 − A1)/(A1 + A2) Z2 s2, s4, γ
xy
L/2r

(0, 0, q, q) λ2 + 2(A7 + A8)x2 Z2 s1, s4
(0, 0, q,−q) λ2 + 2(A7 − A8)x2 Z2 s2, γ

xy
L/2rs1

(0, 0, iq1, iq2) λ2 + 2A7x2 D4 γ
xy
L/2rs2

SR (0, 0, x, 0) (0, 0, q, 0) −2λ2 1 all
(0, 0, iq, 0) 0 Z2 s6, γ

x,−y
α , γ

xy
L/4r

(0, 0, 0, w) λ2(A5 − A6)/A5 Z2 n T s7, γ
x
L/2r

(w1, w2, 0, 0) λ1 + A3x2 D2 n T × Z4

SS (0, 0, x, x) (0, 0, q, q) −2λ2 1 all
(0, 0, iq1, iq2) 0 D4 γ x

L/2r
(0, 0, q,−q) 2λ2(A6 − A5)/(A5 + A6) Z2 s2, s6, γ

x
L/2r

(q1, q2, 0, 0) λ1 + (2A3 + A4)x2 D4 s2, s4
(iq1, iq2, 0, 0) λ1 + (2A3 − A4)x2 D4 s4γ

x
L/2r, s5γ

y
L/2r

The fifth column gives the action of the steady state symmetry groups on the subspace and the sixth column gives the generators of the kernel of this action.

Table 3
Branches of steady states bifurcating from LR, LS, SR and SS

Bifurcates at Name Group Generators Typical point No

FROM LR = (x, 0, 0, 0)
λ2 + (A7 + A8)x2

= 0 RC D2 × Z2 s2, s5, γ
x
L/2r (x1, 0, x3, x3) 17

λ2 + (A7 − A8)x2
= 0 WR1 D2 × Z2 s2, γ

y
L/2s5, γ

x
L/2r (x1, 0, x3,−x3) 25

FROM LS = (x, x, 0, 0)
λ2 = −2(A7 + A8)x2 SQ D4 s1, s4 (x1, x1, x3, x3) 12
λ2 = −2(A7 − A8)x2 WS D4 γ

xy
L/2rs1, s6 (x1, x1, x3,−x3) 24

λ2 + 2A7x2
= 0 AR2 D2 s4, γ

xy
L/2rs2 (x1, x2, ix3, ix3) 18

λ2 + 2A7x2
= 0 WR2 D2 s6, γ

xy
L/2rs2 (x1, x1, ix3, 0) 18

FROM SR = (0, 0, x, 0)
λ1 + A3x2

= 0 WR2 D2 γ
y
L/2rs2, γ

x,−y
L/4 s6 (ix1, x1, x3, 0) 26

λ1 + A3x2
= 0 AR1 D2 s2, γ

y
L/2r (x1, 0, x3, x4) 26

λ1 + A3x2
= 0 AS D2 s2, s6 (x1, x1, x3, x4) 26

FROM SS = (0, 0, x, x)
λ1 + (2A3 + A4)x2

= 0 SQ D4 s1, s4 (x1, x1, x3, x3) 3
λ1 + (2A3 + A4)x2

= 0 RC D2 × Z2 s2, s5, γ
x
L/2r (x1, 0, x3, x3) 3

λ1 + (2A3 − A4)x2
= 0 WS D4 γ x

L/2rs1, s6 (ix1, ix1, x3, x3) 32

λ1 + (2A3 − A4)x2
= 0 WR1 D2 × Z2 s4, γ

xy
L/2s2, γ

x
L/2r (ix1, 0, x3, x3) 32

Columns are the same as in Table 1.

Bifurcation takes places if an eigenvalue crosses the imaginary axis. From the action of the symmetry group on the associated
eigenspace we determine branches of bifurcating solutions, using results [8] for the respective group. Bifurcations from primary
branches are listed in Table 3. Branching equations can be obtained by substitution of expressions for steady states into Eq. (12);
they are cumbersome and not listed here. We did not find in the literature any analysis of bifurcations with the symmetry group
D2 n T × Z4 (from SR); hence we include branching and the stability conditions for the branches for this group as Appendix A.

3.3. Tertiary bifurcations

In this subsection we consider stability and bifurcation of secondary steady states, i.e. those connecting branches of primary
steady states. They have symmetry groups isomorphic to D4, D2 × Z2 or to D2. Similarly to above, to determine stability we
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Table 4
Invariant subspaces and associated eigenvalues determining stability of secondary steady states

Steady state Typical point Invariant subspaces Eigenvalues Action Kernel

RC (x1, 0, x3, x3) (q1, 0, q3, q3) µ1 + µ2 = 2A1x2
1 + 2(A5 + A6)x2

3 1 all
µ1µ2 = 4x2

1 x2
3 (A1(A5 + A6)− (2A3 + A4)(A7 + A8))

(0, q, 0, 0) (A2 − A1)x2
1 Z2 s2, s5

(0, iq, 0, 0) (A2 − A1)x2
1 − 2A4x2

3 Z2 s5, γ
x
L/2rs2

(0, 0, q,−q) 2(A5 − A6)x2
3 − 2A8x2

1 Z2 s2, γ
x
L/2r

(0, 0, iq,−iq) 0 Z2 s5, γ
x
L/2r

(iq1, 0, iq3, iq3) 0,−2A8x2
1 − 2A4x2

3 Z2 s4, γ
x
L/2r

WR1 (x1, 0, x3,−x3) (q1, 0, q3,−q3) µ1 + µ2 = 2A1x2
1 + 2(A5 + A6)x2

3 1 all
µ1µ2 = 4x2

1 x2
3 (A1(A5 + A6)− (2A3 − A4)(A7 − A8))

(0, q, 0, 0) (A2 − A1)x2
1 Z2 s2, γ

xy
L/2rs5

(0, iq, 0, 0) (A2 − A1)x2
1 + 2A4x2

3 Z2 γ x
L/2rs2, γ

xy
L/2rs5

(0, 0, q, q) 2(A5 − A6)x2
3 + 2A8x2

1 Z2 s2, γ
x
L/2r

(0, 0, iq, iq) 0 Z2 γ x
L/2r, γ y

L/2s5

(iq1, 0, iq3,−iq3) 0, 2A8x2
1 + 2A4x2

3 Z2 γ x
L/2r, γ y

L/2s4

WR2 (x1, x1, ix3, 0) (q1, q1, iq3, 0) µ1 + µ2 = 2(A1 + A2)x2
1 + 2A5x2

3 1 all
µ1µ2 = 4x2

1 x2
3 ((A1 + A2)A5 − 2A3 A7)

(q1,−q1, 0, iq4) µ1 + µ2 = 2(A1 − A2)x2
1 + (A6 − A5)x2

3 Z2 γ
xy
L/2rs2

µ1µ2 = 4x2
1 x2

3 ((A1 − A2)(A6 − A5)− A3 A8)

(iq1,−iq1, 0, 0) 0 Z2 γ
xy
L/2rs7

(iq1, iq1, q3, q4) µ1 = 0 Z2 s6
µ2 + µ3 = (A6 − A5)x2

3
µ2µ3 = −4A8x2

1 (A8x2
1 + A4x2

3 )

SQ (x1, x1, x3, x3) (q1, q1, q3, q3) µ1 + µ2 = 2(A1 + A2)x2
1 + 2(A5 + A6)x2

3 1 all
µ1µ2 = 4x2

1 x2
3 ((A1 + A2)(A5 + A6)− 2(2A3 + A4)(A7 + A8))

(q,−q, 0, 0) 2(A1 − A2)x2
1 Z2 s2, s4

(0, 0, q,−q) 2(A5 − A6)x2
3 − 4A8x2

1 Z2 s2, s6
(iq1, iq2, iq3, iq4) µ1 = µ2 = 0 D4

µ3 = µ4 = −2A8x2
1 − 2A4x2

3

WS (x1, x1, x3,−x3) (q1, q1, q3,−q3) µ1 + µ2 = 2(A1 + A2)x2
1 + 2(A5 + A6)x2

3 1 all
µ1µ2 = 4x2

1 x2
3 ((A1 + A2)(A5 + A6)− 2(2A3 − A4)(A7 − A8))

(q,−q, 0, 0) 2(A1 − A2)x2
1 Z2 s2, γ

xy
L/2rs5

(0, 0, q, q) 2(A5 − A6)x2
3 + 4A8x2

1 Z2 s2, s6
(iq1, iq2, iq3, iq4) µ1 = µ2 = 0 D4

µ3 = µ4 = 2A8x2
1 + 2A4x2

3

Columns are the same as in Table 2.

decompose C4 into isotypic components for the action of the groups and calculate the eigenvalues of the linearization of Eq. (12)
near the steady state, restricted to the respective subspace. The results of calculations are presented in the Table 4.

Bifurcations from secondary branches (see Table 5) are investigated in the same way those from primary branches. Some of
these bifurcations give rise to branches of drifting patterns (we refer to as travelling waves). Examples of such bifurcations are
discussed in Appendix B.

3.4. Bifurcations from tertiary branches

Here we focus on bifurcations from AR1, AR2, AS and STW which all have symmetry groups isomorphic to D2. Methods and
presentation are the same as above for more symmetric steady states. We do not list expressions for eigenvalues in the cases where
isotypic components are three-dimensional because they are unwieldy and uninformative. In Appendix C we give an example how
bifurcations in a three-dimensional subspace can be studied without explicitly evaluating the eigenvalues. Tertiary branches and
eigenvalues determining their stability are listed in Table 6, and possible bifurcations in Table 7.

3.5. Robust heteroclinic connections between steady states

A heteroclinic connection from one steady state to another one is robust only if there exists such a fixed point subspace for a
subgroup of the system symmetry group such that the connection within that subspace is robust [12], for example if it is a saddle
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Table 5
Bifurcations from secondary steady states

Bifurcates at Name Group Generators Typical point No

FROM RC = (x1, 0, x3, x3)

2A1x2
1 + 2(A5 + A6)x2

3 = 0 P(RC) D2 × Z2 s2, s5, γ
x
L/2r (x1, 0, x3, x3) (periodic orbit)

(A2 − A1)x2
1 − 2A4x2

3 = 0 AR2 D2 s5, γ
x
L/2rs2 (x1, ix2, x3, x3) 13

(A5 − A6)x2
3 = A8x2

1 AR1 D2 s2, γ
x
L/2r (x1, 0, x3, x4) 5

A8x2
1 = −A4x2

3 STW D2 s4, γ
x
L/2r (z1, 0, z3, z3) = (r1, 0, r3, r3, φ, 0) 8

FROM WR1 = (x1, 0, x3,−x3)

2A1x2
1 + 2(A5 + A6)x2

3 = 0 P(WR1) D2 × Z2 s2, γ
y
L/2s5, γ

x
L/2r (x1, 0, x3,−x3) (periodic orbit)

(A2 − A1)x2
1 + 2A4x2

3 = 0 AR2 D2 γ
y
L/2s4, γ

x
L/2rs2 (x1, ix2, x3,−x3)

(A5 − A6)x2
3 + A8x2

1 = 0 AR1 D2 s2, γ
x
L/2r (x1, 0, x3, x4)

A8x2
1 + A4x2

3 = 0 STW D2 γ
y
L/2s4, γ

x
L/2r (z1, 0, z3,−z3) = (r1, 0, r3, r3, φ, π) 31

FROM WR2 = (x1, x1, i x3, 0)
(A1 + A2)x2

1 + 2A5x2
3 = 0 P(WR2) D2 s6, γ

xy
L/2rs2 (x1, x1, ix3, 0) (periodic orbit)

(A1 − A2)(A6 − A5)− A3 A8 = 0 NS Z2 γ
xy
L/2rs2 (x1, x2, ix3, ix4)

2(A1 − A2)x2
1 + (A6 − A5)x2

3 = 0 P(NS) Z2 γ
xy
L/2rs2 (x1, x2, ix3, ix4) (periodic orbit) 20

A8x2
1 + A4x2

3 = 0 TW4 Z2 s6 (z1, z1, z3, x4) = (r1, r1, r3, r4, φ,−φ) 19

FROM SQ = (x1, x1, x3, x3)

(A1 + A2)x2
1 + (A5 + A6)x2

3 = 0 P(SQ) D4 s1, s4 (x1, x1, x3, x3) (periodic orbit)

(A5 − A6)x2
3 − 2A8x2

1 = 0 AS D2 s2, s6 (x1, x1, x3, x4) 4
A8x2

1 + A4x2
3 = 0 TW2 Z2 s4 (z1, x2, z3, z3) = (r1, r2, r3, r3, φ, 0) 9

A8x2
1 + A4x2

3 = 0 TW4 Z2 s6 (z1, z1, z3, z4) = (r1, r1, r3, r4, φ, φ) 9

FROM WS = (x1, x1, x3,−x3)

(A1 + A2)x2
1 + (A5 + A6)x2

3 = 0 P(WS) D4 γ
xy
L/2rs1, s6 (x1, x1, x3,−x3) (periodic orbit)

(A5 − A6)x2
3 + 2A8x2

1 = 0 AS D2 s2, s6 (x1, x1, x3, x4)

A8x2
1 + A4x2

3 = 0 TW3 Z2 γ
xy
L/2rs4 (z1, x2, z3,−z3) = (r1, r2, r3, r3, φ, π) 27

A8x2
1 + A4x2

3 = 0 TW4 Z2 s6 (z1, z1, z3, z4) = (r1, r1, r3, r4, φ,−φ) 27

Columns are the same as in Table 1. P(M) indicates there is bifurcation to periodic orbits with instantaneous symmetry equal to that of M .

Table 6
Invariant subspaces and associated eigenvalues determining stability of tertiary branches of relative equilibria

Steady state Typical point Invariant subspaces Eigenvalues Action Kernel

AR1 (x1, 0, x3, x4) (q1, 0, q3, q4) µ1, µ2, µ3 1 All
(iq1, 0, iq3, iq4) 0, 0,−A8x2

1 (x4/x3 + x3/x4)− 2A4x3x4 Z2 γ x
L/2r

(0, q, 0, 0) (A2 − A1)x2
1 Z2 s2

(0, iq, 0, 0) (A2 − A1)x2
1 − 2A4x3x4 Z2 γ x

L/2rs2

AR2 (x1, ix2, x3, x3) (q1, iq2, q3, q3) µ1, µ2, µ3 1 All
(iq1, 0, iq3, iq3) 0,−2A8x2

1 − 2A4x2
3 Z2 γ x

L/2s4

(0, q2, iq3,−iq3) 0, 2A8x2
2 + 2A4x2

3 Z2 s5
(0, 0, q,−q) 2A8(−x2

1 + x2
2 )+ 2(A5 − A6)x2

3 Z2 γ x
L/2s2

AS (x1, x1, x3, x4) (q1, q1, q3, q4) µ1, µ2, µ3 1 All
(iq1, iq1, iq3, 0) 0,−2A8x2

1 x4/x3 − 2A4x3x4 Z2 s6

(iq1,−iq1, 0, iq4) 0,−2A8x2
1 x3/x4 − 2A4x3x4 Z2 s7

(q,−q, 0, 0) 2(A1 − A2)x2
1 Z2 s2

STW (z1, 0, z3, z3) = (q1, 0, q2, q2, ξ, 0) µ1, µ2, µ3 1 All
(r1, 0, r3, r3, φ, 0) (0, q, 0, 0) (A2 − A1)r2

1 + A4r2
3 (1 − cosφ) Z2 s4

(0, iq, 0, 0) (A2 − A1)r2
1 − A4r2

3 (1 + cosφ) Z2 γ x
L/2rs4

(0, 0, w,−w) 0, 2(A5 − A6)r2
3 − 2A8r2

1 cosφ Z2 γ x
L/2r

Note that AR1, AR2, AS are steady solutions whereas STW are drifting (travelling waves). Columns are the same as in Table 2.

to sink connection. Examination of Table 2 reveals the possibility of robust heteroclinic connections given in Table 8 where we list
pairs of steady states between which robust heteroclinic connections are possible.

The connections within subspaces listed in Table 8 can form homoclinic and heteroclinic cycles, e.g. the connection SS → SS
implies existence of the respective homoclinic cycle. There are three subspaces in which connections between LS and SS are
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Table 7
Bifurcations from tertiary branches

Bifurcates at Name Group Generators Typical point No

FROM AR1 = (x1, 0, x3, x4)
µ1 = iω,µ2 = −iω P(AR1) D2 s2, γ

x
L/2r (x1, 0, x3, x4) (periodic orbit) 7

A8x2
1 (x4/x3 + x3/x4)+ A4x3x4 = 0 TW1 Z2 γ x

L/2r (z1, 0, z3, z4) = (r1, 0, r3, r4, φ, ψ) 11

(A2 − A1)x2
1 − 2A4x3x4 = 0 NS Z2 γ x

L/2rs2 (x1, ix2, x3, x4)

FROM AR2 = (x1, i x2, x3, x3)

µ1 = iω,µ2 = −iω P(AR2) D2 s5, γ
y
L/2rs2 (x1, ix2, x3, x3) (periodic orbit)

A8x2
1 + A4x2

3 = 0 TW3 Z2 γ x
L/2rs4 (z1, ix2, z3, z3) = (r1, r2, r3, r3, φ, π)

A8x2
2 + A4x2

3 = 0 TW2 Z2 s5 (x1, z2, z3, z̄3) = (r1, r2, r3, r3, 0, φ) 14

A8(−x2
1 + x2

2 )+ (A5 − A6)x2
3 = 0 NS Z2 γ

y
L/2rs2 (x1, ix2, x3, x4)

FROM AS = (x1, x1, x3, x4)
µ1 = iω,µ2 = −iω P(AS) D2 s2, s6 (x1, x1, x3, x4) (periodic orbit) 6
A8x2

1 x4/x3 + A4x3x4 = 0 TW4 Z2 s6 (z1, z1, z3, x4) = (r1, r1, r3, r4, φ, φ)

A8x2
1 x3/x4 + A4x3x4 = 0 TW4 Z2 s7 (z1, z̄1, x3, z4) = (r1, r1, r3, r4, φ,−φ) 10

FROM STW = (r1, 0, r3, r3, φ, 0)
µ1 = iω,µ2 = −iω P(STW) D2 s4, γ

x
L/2r (z1, 0, z3, z3) (periodic orbit) 28

(A2 − A1)r2
1 + A4r2

3 (1 − cosφ) = 0 TW2 Z2 s4 (z1, x2, z3, z3) = (r1, r2, r3, r3, φ, 0)

(A2 − A1)r2
1 − A4r2

3 (1 + cosφ) = 0 TW3 Z2 γ x
L/2rs4 (z1, ix2, z3, z3) = (r1, r2, r3, r3, φ, π) 30

2(A5 − A6)r2
3 − 2A8r2

1 cosφ = 0 TW1 Z2 γ x
L/2r (z1, 0, z3, z4) = (r1, 0, r3, r4, φ, ψ) 21

Columns are the same as in Table 1.

possible. If there exists a connection LS → SS in one of them, and SS → LS in another one, a heteroclinic cycle LS → SS → LS
emerges. The system can possess other types of heteroclinic cycles, for example LR → SS → LR and LS → SS → SR → LS,
and much more intricate heteroclinic networks.

The two-dimensional subspaces listed in Table 8 are of special interest because for them it is possible to derive analytically a
sufficient condition for existence of a heteroclinic connection. Existence of the connection if one state of a pair is stable and another
one is unstable is implied by the following theorem that is a modification of Theorem 1 from [9].

Theorem 1. Consider the system

ẋ = λx + B1x3
+ B2xy2,

ẏ = µy + C1 y3
+ C2x2 y.

If λ > 0, µ > 0, B1 < 0, C1 < 0, λ − B2µ/C1 > 0, µ − C2λ/B1 < 0, then the only steady states of the system are (0, 0),
S1 =

(
±

√
−λ/B1, 0

)
, S2 =

(
0,±

√
−µ/C1

)
and there exists a robust heteroclinic connection from S1 to S2.

4. Analysis of bifurcations of the reduced system

Consider the original motivating hydrodynamic problem of Boussinesq convection in a layer, equations (1)–(4), for parameters
k and R close to the mode interaction point (km, Rm) shown in Fig. 1. We set

ε = R − Rm, δ = k − km, (14)

and assume ε and δ are small, so that a center manifold approximation performed in the vicinity of (km, Rm) is valid. Details of
calculation of the normal form Eq. (12) coefficients are given in Appendices D–F. The coefficients have dependence on P given by

λi = P(P + 1)−1(βi1δ + βi2ε)+ O(ε2
+ δ2) (15)

Ai = P(P + 1)−1(P−2αi1 + P−1αi2 + αi3)+ O(|ε| + |δ|). (16)

The values of αi j and βi j are listed in Table 9. The α’s agree with those in [18]: if the variables in Eq. (12) are rescaled zi → γi zi

with γ1 = γ2 =

√
AP M

1 /A1 and γ3 = γ4 =

√
AP M

5 /A5, where the superscript P M denotes the respective coefficients in the
paper [18], the values of the α’s differ only in the last shown digit.

4.1. A summary of bifurcations for the reduced system for fixed P

We investigate the dynamics of the Boussinesq problem near (km, Rm) shown in Fig. 1 for a range of Prandtl numbers P . We
use numerical path following [7] and the results from Section 3.
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Table 8
Fixed points subspaces for subgroups of D4 n T2

× Z2, in which robust heteroclinic connections are possible

Subspace Subgroup Generators Steady states Eigenspaces Eigenvalues

(q1, q2, iq3, iq3) D2 s4, γ
xy
L/2rs2 LR = (x, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, q, 0, 0) λ1(A1 − A2)/A1
(0, 0, iq, iq) λ2 + (A7 − A8)x2

1
LR = (0, x, 0, 0) (0, q, 0, 0) −2λ1

(q, 0, 0, 0) λ1(A1 − A2)/A1
(0, 0, iq, iq) λ2 + (A7 + A8)x2

1

(q1, q2, 0, 0) D2 × Z2 s2, s4, γ
xy
L/2r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, q, 0, 0) λ1(A1 − A2)/A1
LS = (x2, x2, 0, 0) (q, q, 0, 0) −2λ1

(q,−q, 0, 0) λ1(A2 − A1)/(A1 + A2)

(0, 0, q1, q2) D2 × Z2 s2, s6, γ
xy
L/2 SR = (0, 0, x1, 0) (0, 0, q, 0) −2λ2

(0, 0, 0, q) λ2(A5 − A6)/A5
SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2

(0, 0, q,−q) λ2(A6 − A5)/(A6 + A5)

(q1, 0, q2, q3) D2 s2, γ
x
L/2r SS = (0, 0, x, x) (0, 0, q, q) −2λ2

(0, 0, q,−q) λ2(A6 − A5)/(A6 + A5)

(q, 0, 0, 0) λ1 + (2A3 + A4)x2

SS = (0, 0,−x, x) (0, 0,−q, q) −2λ2
(0, 0, q, q) λ2(A6 − A5)/(A6 + A5)

(q, 0, 0, 0) λ1 + (2A3 − A4)x2

(q1, 0, q2, q3) D2 s2, γ
x
L/2r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q, q) λ2 + (A7 + A8)x2
1

(0, 0, q,−q) λ2 + (A7 − A8)x2
1

SR = (0, 0, x2, 0) (0, 0, q, 0) −2λ2
(0, 0, 0, q) λ2(A5 − A6)/A5
(q, 0, 0, 0) λ1 + A3x2

2

(q1, 0, q2, q2) D2 × Z2 s2, s4, γ
x
L/2r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q, q) λ2 + (A7 + A8)x2
1

SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2
(q, 0, 0, 0) λ1 + (2A3 + A4)x2

2

(q1, 0, q2,−q2) D2 × Z2 s2, γ
y
L/2s4, γ

x
L/2r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q,−q) λ2 + (A7 − A8)x2
1

SS = (0, 0, x2,−x2) (0, 0, q,−q) −2λ2
(q, 0, 0, 0) λ1 + (2A3 − A4)x2

2
(q1, q1, q2, q2) D4 s1, s4 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, q, q) λ2 + 2(A7 + A8)x2
1

SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2
(q, q, 0, 0) λ1 + (2A3 + A4)x2

2

(q1, q1, q2,−q2) D4 γ
xy
L/2rs1, s6 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, q,−q) λ2 + 2(A7 − A8)x2
1

SS = (0, 0, x2,−x2) (0, 0, q,−q) −2λ2
(q, q, 0, 0) λ1 + (2A3 − A4)x2

2

(q1, q2, iq3, iq3) D2 s4, γ
xy
L/2rs2 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(q,−q, 0, 0) λ1(A2 − A1)/(A2 + A1)

(0, 0, iq, iq) λ2 + 2A7x2
1

SS = (0, 0, ix2, ix2) (0, 0, iq, iq) −2λ2
(q, 0, 0, 0) λ1 + (2A3 − A4)x2

2

(0, q, 0, 0) λ1 + (2A3 + A4)x2
2

(q1, q1, iq2, 0) D2 s6, γ
xy
L/2rs2 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, iq, 0) λ2 + 2A7x2
1

SR = (0, 0, ix2, 0) (0, 0, iq, 0) −2λ2
(q, q, 0, 0) λ1 + A3x2

2

(continued on next page)
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Table 8 (continued)

Subspace Subgroup Generators Steady states Eigenspaces Eigenvalues

(q1, q1, q3, q4) D2 s2, s6 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1
(0, 0, q, q) λ2 + (A7 + A8)x2

1

(0, 0, q,−q) λ2 + (A7 − A8)x2
1

SR = (0, 0, x2, 0) (0, 0, q, 0) −2λ2
(0, 0, 0, q) λ2(A5 − A6)/A5
(q, q, 0, 0) λ1 + A3x2

2

Shown are: a typical point of a subspace (where qk are real quantities), symmetry group, its generators, the steady states, eigenspaces, and associated eigenvalues.

Table 9
The coefficients αi j and βi j in Eqs. (15) and (16) that determine the coefficients Ai and λi of the normal form Eq. (12)

βi j j = 1 j = 2 αi j j = 1 j = 2 j = 3

i = 1 3.1551 0.01949 i = 1 0 0 −0.125
i = 2 −4.2921 0.02456 i = 2 −0.03207 −0.01843 −0.18081

i = 3 0.02281 0.13589 −0.1744
i = 4 −0.08110 −0.3240 −0.1441
i = 5 0 0 −0.125
i = 6 −0.03108 −0.01958 −0.17434
i = 7 −0.1954 −0.2513 −0.2667
i = 8 0.1314 0.2237 −0.1096

We produce gyrant bifurcation diagrams that show the bifurcating branches on varying parameters around a small circle in the
(k, R) plane that encloses the mode interaction. These are found by taking parameters θ and r that determine the growth rates of
the primary modes

λ1 = r cos θ, λ2 = r sin θ (17)

and investigating the behavior of Eq. (12) with coefficients as in Eqs. (15) and (16) determined by center manifold reduction. The
cubic truncation the dynamics does not qualitatively depend on r as r can be scaled to be unity by a change in timescale.

Fig. 4 gives some bifurcation diagrams calculated in this way for a range of Prandtl numbers, where the locations of the labelled
bifurcations are listed in Table 10 and θ increases from −π/2 at 1 to π at 33. Solid single lines correspond to relative equilibria that
are stable if the lines are bold. Dashed lines correspond to periodic solutions that are similarly stable if the lines are bold. Wavy lines
denote chaotic attractors. Double lines indicate that there are robust heteroclinic networks that exist in this region; these correspond
to attractors if the lines are bold. The double lines start and end at steady bifurcations where robust cycles are created. However
they do not indicate all the steady branches and bifurcations involved in the network.

For P = 1 we observe the following sequence of attractors on increasing θ . Referring to the numbered bifurcations in Fig. 4(a)
up to point 1 the trivial solution is stable. At 1 (corresponding to λ1 = 0 and λ2 < 0) there is bifurcation to stable LR. These
persist up to 17 where there is a bifurcation to RC with no nearby stable states. In the interval 17–20 the only attractor is a robust
heteroclinic attractor that we describe in detail in Section 4.3. At 20 there is a subcritical Hopf bifurcation that stabilizes WR2 and
that apparently destroys the stable heteroclinic attractor. The branch of WR2 is stable to 26 where it branches from and stabilizes
the SR state. The latter finally disappears at point 33 (corresponding to λ2 = 0 and λ1 < 0).

For P = 0.5 Fig. 4(b) shows a similar sequence of bifurcations as for P = 1 except that the ordering and criticality of some of
the steady bifurcations has changed. In addition there is a limit point 34 on the branch of subcritically branching periodic solutions
from WR2 at 20. This gives rise to bistability of the WR2 solution with large amplitude periodic orbits in the interval from 20 to 34.
These large amplitude periodic orbits form the only attractors for 20 to 35. As we move from 35 down to 36 there is a complicated
sequence of bifurcations of periodic orbits and chaotic attractors that may be evidence of structural instability in this region. At the
end of this sequence of bifurcations there is an attracting heteroclinic network between 17 and 36.

For P = 0.3 and 0.1 (Fig. 4(c) and 4(d) respectively) the heteroclinic network is attracting up to 25 where the last cyclic
connections are destroyed by bifurcation from LR to WR1. In both cases there is bistability of periodic solutions and WR2 in the
region from 35 to 34 and a complicated sequence of bifurcations including period doubling and symmetry breaking of periodic
orbits between 25 and 34. The main difference between the cases P = 0.3 and P = 0.1 is that the bifurcations 17 and 24 change
order meaning that the region of existence of robust heteroclinic cycles splits into two intervals for P = 0.1. After destruction of
the heteroclinic cycle at 25 there are highly intermittent chaotic attractors between 25 and 37. An example of such an attractor is
shown in Fig. 5 for P = 0.1 and θ = 1.58.
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Fig. 4. Bifurcation diagrams for the reduced normal form equations for a range of Prandtl numbers; (a) P = 1, (b) P = 0.5, (c) P = 0.3, (d) P = 0.1, (e) P = 2.
The horizontal axis (not shown to uniform scale) shows θ varying from −π/2 (labelled 1) to π (labelled 33). Only one representative of each branch is illustrated,
and the vertical axis represents a solution norm that is also not to scale. All primary and secondary branches along with selected tertiary branches are shown. The
only periodic branches shown are those bifurcating from stable states.

Finally for P = 2 Fig. 4(e) shows the dynamical complexity is reduced for the attractors; there is simply bistability of LR and
SR of the whole region from 26 to 17 and apparently no other attractors. There are still robust heteroclinic cycles from 12 to 24 and
from 17 to 25 but they are not attracting.

4.2. Bifurcations for the reduced system on varying P

The main (primary and secondary) bifurcations of the normal form (12) with coefficients (15), (16) and (17) are shown in Fig. 6.
This illustrates the variation of the bifurcation points in Fig. 4 with P . Tertiary and Hopf bifurcations are not shown in this diagram.

To the left of the line 17 there are stable LR solutions while to the right of 26 up the line 33 there are stable SR solutions. The
attracting heteroclinic cycles exist within the region enclosed by 17, 26 and P = 0. Tables 1 and 3 imply that lines 17 and 26
intersect at Pc such that

A3(A7 + A8) = A1 A5.

Substituting in Eq. (16) with coefficient values listed in Table 9 and solving the equation for P numerically we obtain Pc ≈ 1.118.
For P > Pc there is an interval of θ where stable LR and SR coexist; for any θ at least one stable steady state is always present.
This implies that the heteroclinic network of the type considered in Section 4.3 (or its subcycle) cannot be an attractor or a part
of an attractor for P > Pc. To see this, suppose that a heteroclinic attractor of the type considered in 4.3 exists in the system. For
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Table 10
This table gives the locations of the bifurcations shown in Fig. 4 on increasing θ from left to right for a small circuit around the mode interaction at (km , Rm )

P = 1

1 2 3 4 5 6 7 8 9 10 11 12
θ −π/2 0 0.5425 0.6609 0.7078 0.8524 0.8845 1.019 1.057 1.127 1.136 1.2067

13 14 15 16 17 18 19 20 21 22 23 24
θ 1.2240 1.262 1.264 1.279 1.3095 1.3259 1.330 1.3444 1.352 1.353 1.372 1.3870

25 26 27 28 29 30 31 32 33
θ 1.4411 1.4458 1.511 1.522 π/2 1.571 1.666 2.547 π

P = 0.5

1 2 3 4 5 12 13 17 18 24
θ −π/2 0 0.559 0.670 0.687 1.240 1.306 1.390 1.420 1.473

36 35 25 20 29 34 26 32 33
θ 1.500 1.508 1.519 1.547 π/2 1.646 2.557 2.842 π

P = 0.3

1 2 3 4 5 12 13 18 17 24
θ −π/2 0 0.590 0.703 0.727 1.272 1.379 1.460 1.465 1.503

25 29 35 20 34 26 32 33
θ 1.548 π/2 1.602 1.625 1.76 2.911 2.923 π

P = 0.1

1 2 3 4 5 12 13 18 24 17
θ −π/2 0 0.668 0.803 0.842 1.313 1.464 1.484 1.522 1.553

25 29 37 20 35 34 32 26 33
θ 1.567 π/2 1.645 1.647 1.660 1.85 2.948 3.106 π

P = 2

1 2 3 26 4 5 20 13 12 18 24 17
θ −π/2 0 0.54 0.89 0.92 0.96 1.13 1.18 1.20 1.23 1.24 1.28

25 29 32 33
θ 1.32 π/2 1.95 π

The labels are sequential for P = 1 but change ordering for different values of P .

Fig. 5. Example of a chaotic attractor in the system for P = 0.1 and θ = 1.58. For t < 2000 the trajectory appears to be on a periodic orbit that is close to a
heteroclinic cycle, while for 2000 < t < 3000 there is a transition to WR2 after which (for 2900 < t < 3000) it returns to the orbit. For k = 1.84, employed in
numerical investigation of convective attractors, the Rayleigh number corresponding to θ = 1.58 is R = 687.0.

P > Pc at least one of SR or LR is stable. Let it be SR. Hence, SR does not belong to the heteroclinic attractor. Hence, SS belongs
to the attractor. (Any subcycle involves either SR or SS.) A connection from SS to SR exists for all P , and a trajectory close to the
assumed attractor finally will be attracted by the stable SR.
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Fig. 6. Two-parameter bifurcation diagram showing the location of the primary and secondary bifurcations for a range of θ and P . The numbering is the same as
on Fig. 4. Note that the bifurcation number 1 is not shown because it is to the left of this diagram at θ = −π/2.

The directions of branching and stability of bifurcating solutions in bifurcation of SR are different for different P . Appendix A
demonstrates that bifurcation from SR gives three bifurcating branches. Only one of branches can be stable, and that only if all three
bifurcate supercritically, the two remaining branches being unstable. Moreover the stable one has the largest amplitude. The steady
state WR2 bifurcates supercritically for P < Pr , where Pr is the value for which the lines marked 26 and 18 on Fig. 6 intersect. Pr
is a root of the equation

2A3 A7 = A5(A1 + A2).

Substituting here Eq. (16) with the coefficient values listed in Table 9 and solving the resultant equation numerically we obtain
Pr ≈ 1.110. We have checked that for P < Pr the steady state WR2 has the largest amplitude (amplitudes were calculated from
Tables 3 and 9) and two other steady states bifurcate supercritically. Therefore, for P < Pr stable WR2 bifurcate from SR, and for
P > Pr no stable branches bifurcate from it.

We remark that there are codimension 2 bifurcation points at all crossings of lines in the (θ, P) plane. These are typically
degenerate for the cubic truncation of the normal form; for example there is a vertical branch of WR2 on crossing of the lines 18
and 26 that can only be resolved by including fifth-order terms in Eq. (12).

4.3. Heteroclinic attractors for P = 1

We study the heteroclinic attractors in the case P = 1 in more detail, for parameters in the interval between 17 and 20 in
Fig. 4(a).

For the sub-interval between 19 and 20 the attractor is not a conventional type of heteroclinic cycle but also includes connections
from within the cycle to a subcycle; this means that the network has depth 2 in the terminology of [1]. As such this the first example
of a depth 2 cycle in a fluid dynamical system.

Fig. 7 schematically illustrates the structures of attractor for parameters in this range as far as we have been able to determine. On
increasing θ the first bifurcation at 17 creates the LR → SS → LR cycle at disappearance of the branch of RC. The full dynamics
of all connections in the interval between 17 and 18 is not clear but there are robust connections from AS and AR1 to the cycle
between LR and SS. Between 18 and 20 there is a connection from WR2 to the cycle that affects the dynamics also for nearby θ
as shown in Fig. 8. This figure shows the evolution of amplitudes of modes |zi | for a randomly chosen initial condition for P = 1
and θ = 1.325. After an initial slowing down oscillation between LR and SS states the trajectory takes an alternative route on the
unstable manifold at approximately t = 1000 that takes it close to SR, then AR1 and at approximately t = 3300 towards a state
near where WR2 is created. The process then repeats by approaching the LR–SS cycle.

5. Numerical simulations of convective attractors

In this section we present some results of numerical investigation of attractors of Boussinesq convection equations (1)–(4).
Computations have been performed using the standard pseudospectral methods and a fourth-order Runge–Kutta scheme for
integration in time (see details in [15]) for P = 0.1, 0.3, 0.5, 1 and 2, δ = ±0.01km (i.e. k = 1.84 and 1.88) and R increasing from
0. A small value of δ has been chosen so that the third-order truncated normal form can be expected to be valid.
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Fig. 7. Schematic illustration of connections between different symmetry types for P = 1 between parameters near 18 and 25 of Fig. 4(a). Open circles indicate
saddles, filled circles are sinks. The size of the unstable manifold (ignoring group orbit directions) is indicated as a number next to that state. Note that for
1.2067 < θ < 1.3095 from 12 to 17, LR is the only attractor. For 1.378 < θ < 1.4411 from 24 to 26, WR1 is the only attractor. For 1.3095 < θ < 1.344 from
17 to 20 the only attractor is a network involving all states and including a connection to the subcycle including LR and SS. The bifurcation at θ = 1.344, 20, is a
subcritical Hopf bifurcation that stabilizes the WR2 solution. For 1.344 < θ < 1.3870 from 20 to 25 there is still a heteroclinic cycle between LR and SS states but
typical orbits near this are transients to the WR2 state.

Fig. 8. Time series showing a typical trajectory approaching a depth 2 heteroclinic network for P = 1 and θ = 1.325. Note the approach to a cycle between LR and
SS states is interrupted by the trajectory choosing the unstable manifold towards an AR1 and then a WR2 state. For t > 3300 it heads towards LS before showing
oscillatory growth near where WR2 appears for θ > 1.3259.

Attractors found in numerical simulations are listed in Table 11, where intervals of existence of attractors are given in terms of
both R and θ , where θ is calculated from R using Eq. (14), (15) and (17):

tan θ =
λ2

λ1
=
β21 + β22(R − Rm)/δ

β11 + β12(R − Rm)/δ

and hence a straight line on the (k, R) plane corresponds to each value of θ . Therefore, θ → θ∞ = arctan(β22/β12) ≈ 0.900 as
R → ∞ and on the diagrams of Fig. 4 the part θ < θ∞ corresponds to δ > 0 and the part θ > θ∞ to δ < 0.
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Table 11
Attractors found in numerical simulations of convective flows

P δ Type of attractor Interval of existence (R) Interval of existence (θ)

2 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287
SR 681.3 ≤ R ≤ 736.1 0.9549 ≤ θ ≤ 3.1068
LR 690.1 ≤ R ≤ 2200 0.9018 ≤ θ ≤ 1.3104
T̃W R ≥ 2300 θ ≤ 0.9017

0.01km S0 R ≤ 681.0 θ ≤ −1.5695
LR 681.1 ≤ R ≤ 2300 −1.5575 ≤ θ ≤ 0.8979
T̃W R ≥ 2400 θ ≥ 0.8980

1 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287
SR 681.3 ≤ R ≤ 687.9 1.4762 ≤ θ ≤ 3.1068
WR2 688 ≤ R ≤ 689.8 1.3275 ≤ θ ≤ 1.4661
Periodic (heteroclinic) 688.9 ≤ R ≤ 690.2 1.3049 ≤ θ ≤ 1.3879
LR 690.3 ≤ R ≤ 1100 0.9069 ≤ θ ≤ 1.2996
T̃W R ≥ 1200 θ ≤ 0.9055

0.01km S0 R ≤ 681.0 θ ≤ −1.5695
LR 681.1 ≤ R ≤ 1100 −1.5575 ≤ θ ≤ 0.8920
T̃W R ≥ 1200 θ ≥ 0.8935

0.5 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287
SR 681.3 ≤ R ≤ 683.2 2.5534 ≤ θ ≤ 3.1068
WR2 683.3 ≤ R ≤ 687.1 1.5697 ≤ θ ≤ 2.5190
Periodic 686.6 ≤ R ≤ 687.6 1.5084 ≤ θ ≤ 1.6421
Chaotic (heteroclinic) 687.7 ≤ R ≤ 688.9 1.3879 ≤ θ ≤ 1.4973
LR 689 ≤ R ≤ 800 0.9248 ≤ θ ≤ 1.3804
T̃W R ≥ 810 θ ≤ 0.9228

0.01km S0 R ≤ 681.0 θ ≤ −1.5695
LR 681.1 ≤ R ≤ 780 −1.5575 ≤ θ ≤ 0.8653
T̃W R ≥ 790 θ ≥ 0.8686

0.3 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287
SR 681.3 ≤ R ≤ 682.1 2.9038 ≤ θ ≤ 3.1068
WR2 682.2 ≤ R ≤ 686.4 1.6748 ≤ θ ≤ 2.8750
Periodic 685.9 ≤ R ≤ 687.4 1.5317 ≤ θ ≤ 1.7669
Chaotic (heteroclinic) 687.5 ≤ R ≤ 688.1 1.4563 ≤ θ ≤ 1.5199
LR 688.2 ≤ R ≤ 720 0.9790 ≤ θ ≤ 1.4468
P̃O R ≥ 730 θ ≤ 0.9621

0.01km S0 R ≤ 681.0 θ ≤ −1.5695
LR 681.1 ≤ R ≤ 710 −1.5575 ≤ θ ≤ 0.7687
P̃O R ≥ 720 θ ≥ 0.8061

0.1 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287
SR R = 681.3 θ = 3.1068
WR2 681.4 ≤ R ≤ 686.2 1.7097 ≤ θ ≤ 3.0841
Periodic 685.7 ≤ R ≤ 686.7 1.6266 ≤ θ ≤ 1.8084
Chaotic (heteroclinic) 686.8 ≤ R ≤ 687.3 1.5440 ≤ θ ≤ 1.6117
LR 687.4 ≤ R ≤ 690 1.3159 ≤ θ ≤ 1.5317
P̃O R ≥ 691 θ ≤ 1.2660

0.01km S0 R ≤ 681.0 θ ≤ −1.5695
LR 681.1 ≤ R ≤ 684 −1.5575 ≤ θ ≤ −1.0009
P̃O R ≥ 685 −0.7087

For P = 2 for the range of R where the center manifold approximation is valid the attractors are either SR or LR, in agreement
with results of Section 4.1.

For P = 1 and δ = −0.01km for increasing R we observe transitions from S0 to SR and to WR2. Simultaneously with the
WR2, there exists another attractor, a periodic orbit of a very large period which is close to the heteroclinic cycle connecting LR
and SS. On Fig. 9(a) the plateaux with |z1| 6= 0, |z2| 6= 0 and |z3| = |z4| 6= 0 indicate time intervals when the shown trajectory is
close to large rolls parallel to the y axis, large rolls parallel to the x axis, and to small squares, respectively. The orbit has appeared
from the cycle either due to numerical inaccuracy, or perhaps for some other unknown reasons. For larger R the attractor is LR,
which then bifurcates to a T̃W, this bifurcation being outside the region of validity of the approximation. For δ = 0.01km , where
the approximation is valid, the attractor is LR.

For P = 0.5 and δ = −0.01km we also see bifurcations from S0 to SR and to WR2. In agreement with the bifurcation diagram
for the eight-dimensional system, the periodic orbit bifurcating from WR2 undergoes a saddle-node bifurcation and becomes stable
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Fig. 9. Temporal evolution of the quantities |z1|, |z2|, |z3| and |z4| of convective attractors for δ = −0.01km (k = 1.84) and (a) P = 1, R = 690 (θ = 1.3159);
(b) P = 0.5, R = 687.5 (θ = 1.5199); (c) P = 0.5, R = 688.5 (θ = 1.4219) and (d) P = 0.1, R = 688 (θ = 1.4661). (See the details in the text.) By |zi |, i = 1, 4,
we denote projections into the basic vectors in the center eigenspace. The horizontal axis shows time.

(Fig. 9(b)). Unlike in the eight-dimensional normal form, the branch of periodic orbits ends on the heteroclinic cycle, instead of
bifurcating to another orbit (note the similarity between Fig. 9(a) and (b); the trajectory visits unstable LR and SS flows on both
plots, but the period of the orbit in part (b) is smaller, and it increases as R gets closer to the point of bifurcation of the orbit into the
heteroclinic cycle involving LR and SS). The bifurcation value of R is the lower end of the interval of chaotic heteroclinic behavior,
where trajectories jump between LR and SS steady states. In each run the time spent near each of the steady state changes randomly,
unlike for P = 1 (Fig. 9(a)). We also observe occasional transitions SS → LS → SS (e.g. the trajectory shown on Fig. 9(c) at
t ≈ 8500 is close to the LS steady state, other plateaux correspond to the LR or SS steady states), i.e. another cycle predicted by
the theory persists in the temporal evolution.

For P = 0.3 and for P = 0.1 attractors are the same as for P = 0.5. For P = 0.1 the heteroclinic cycle connecting SS and LS
is always unstable, but it is visible as a transient in some runs for 687.8 ≤ R ≤ 688.1 (in Fig. 9(d) in the interval 1000 ≤ t ≤ 6500,
when |z1| and |z2| are small the trajectory is close to SS, and when |z3| and |z4| are small to LS).

In simulations with δ = ±0.05km and P = 1 the same sequence of bifurcations as for δ = ±0.01km has been observed. In [16]
numerical investigation of convective attractors was carried out with L = 4 (i.e. δ = −0.16km) and P = 6.8, 1 and 0.3. Some of
the observed bifurcations are the same as in the reduced system considered here, but several are different, e.g. for P = 1 and 0.3
the bifurcation from WR2 is supercritical.
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Fig. 9. (continued)

6. Comparison of bifurcations in the original and reduced systems

Critical values of θ for the reduced system and for the original convective system are compared in Table 12 for the bifurcations
which are identical in the two systems. Since for the convective system results are obtained numerically, information about
bifurcations of attractors only is available, and only brackets for critical θ ’s are known.

The critical values of θ (see Table 12) are similar for the original and reduced systems. Attractors (for R such that the center
manifold approximation is valid) are also similar, except where heteroclinic attractors are present. In such cases the numerics
may not shadow the true system dynamics. This is because numerical noise (including rounding errors) can cause the heteroclinic
attractor to appear as a long period orbit that moves very close to states with different symmetries.

In the convective simulations analogues of the following attractors of the reduced system were not found: for P = 0.5 periodic
orbits existing between bifurcations 36 and 35; for P = 0.3 periodic orbits existing between 25 and 35; for P = 0.1 the irregular
chaotic attractor illustrated in Fig. 5 between 25 and 37 is replaced by a more regular heteroclinic behavior, similar to the one shown
in Fig. 9(a) and (c).

Hence many of the more subtle effects due to heteroclinic connections within attractors are not well reproduced numerically.
Indeed numerical integration of the original system can be viewed as an ideal system perturbed by low amplitude noise of numerical
origin. It is known [21] that additive noise in a system with heteroclinic attractors typically produces approximately periodic
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Table 12
Comparison of critical values of θ ’s for bifurcation occurring in the original convection problem and the reduced system

P Number of bifurcation θc (reduced system) θc (convection)

2 1 −π/2 (−1.5695,−1.5575)
26 0.89 (0.9548, 0.9549)
17 1.28 (1.3104, 1.3159)
33 π (3.1068, 3.1287)

1 1 −π/2 (−1.5695, −1.5575)
17 1.3095 (1.2996, 1.3049)
20 1.330 (1.3216, 1.3275)
26 1.4458 (1.4661, 1.4762)
33 π (3.1068, 3.1287)

0.5 1 −π/2 (−1.5695, −1.5575)
17 1.390 (1.3804, 1.3879)
36 1.500 (1.4973, 1.5084)
20 1.547 (1.5566, 1.5697)
34 1.646 (1.6421, 1.6581)
26 2.557 (2.5190, 2.5534)
33 π (3.1068, 3.1287)

0.3 1 −π/2 (−1.5695, −1.5575)
17 1.465 (1.4468, 1.4563)
25 1.548 (1.5199, 1.5317)
20 1.625 (1.6521, 1.6748)
34 1.76 (1.7669, 1.7873)
26 2.911 (2.8750, 2.9038)
33 π (3.1068, 3.1287)

0.1 1 −π/2 (−1.5695, −1.5575)
17 1.553 (1.5337, 1.5440)
25 1.567 (1.6117, 1.6226)
20 1.647 (1.6920, 1.7097)
34 1.85 (1.8084, 1.8303)
26 3.106 (3.0841, 3.1068)
33 π (3.1068, 3.1287)

behavior and this is what we often observe. Similarly, an orbit of a very long period instead of a theoretically predicted heteroclinic
cycle related to the 1:2 mode interaction was observed in non-Boussinesq convection by Mercader et al. [13]. They suggested that
higher modes present in the PDE’s could possibly prevent formation of the structurally stable heteroclinic cycle with the result that
a long periodic orbit was present instead.

Center manifold approximation is not valid for the R’s for which bifurcations to T̃W and P̃O (see Table 11) take place (T̃W and
P̃O are periodic in time, and in the system (12) no bifurcations from rolls to time-periodic flows are possible; see Table 3). The
range of validity of the approximation decreases with P , for the considered |δ| = 0.01km it is (R − Rc) ∼ 3.5Rc for P = 2 and
(R − Rc) ∼ 0.005Rc for P = 0.01.

7. Conclusions

We have analyzed bifurcations of steady states and travelling waves emerging in the third-order normal form invariant under the
considered action of D4 n T2

× Z2 for arbitrary normal form coefficients. We have derived sufficient conditions for existence in
the system of up to seven types of distinct (unrelated by symmetries) heteroclinic connections, which can form a complex network.
The results have been applied to Boussinesq convection in a plane layer with stress-free boundaries and a square lattice periodicity
in horizontal directions. They can be applied to other planar systems, e.g. to Boussinesq convection with other boundary conditions
(as long as they are the same on upper and lower boundaries) or to systems in chemistry and biology.

For a complete study of bifurcations of steady states in the system with the symmetry group D4 n T2
× Z2 some of the fifth-

order terms should be included into the normal form. They become important if A1 = A2 or A5 = A6. However, in Boussinesq
convection with both stress-free or both rigid boundaries, these coefficients are unequal and thus the fifth-order terms are irrelevant.
In Boussinesq binary-fluid convection and magnetoconvection (with the same symmetry groups) with stress-free boundaries these
pairs of normal form coefficients are never equal [19,4] as well.

For several values of the Prandtl number, comparison has been carried out between attractors of the reduced system and
attractors found by numerical simulation of equations for convection. The attractors are similar in the two systems, except for some
heteroclinic attractors; this is apparently the effect of numerical noise which is introduced into the convection system [21]. Critical
parameter values also turn out to be close as demonstrated in Table 12. The interval where the center manifold approximation is
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valid varies from R − Rc < 3.5Rc at P = 2 to R − Rc < 0.005Rc at P = 0.1. For Prandtl number close to P = 1 and below, the
reduced system possesses complex heteroclinic networks. We observe some highly nontrivial intermittent spatio-temporal behavior
in the form of heteroclinic cycles of depth 2.

Natural questions arising from this study are what happens if symmetries of the system are slightly broken: a square periodicity
cell is changed to a rectangular or rhombic cell, weak rotation or weak non-Boussinesq effects are added. In the presence of weak
symmetry breaking, heteroclinic attractors are typically destroyed giving rise to temporally periodic intermittent oscillations. It
would be interesting to understand the influence of noise on the attracting heteroclinic dynamics, for example that observed in
Fig. 7. Preliminary investigations indicate that it appears to stabilize the cycle between SS and LR. Finally, the convective regimes
that we consider can be unstable to perturbations with other spatial periods. Nonetheless our results give a good indication of
minimum complexity of the spatio-temporal dynamics of planar convection.
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Appendix A. Steady state bifurcation with the D2 n T n Z4 symmetry group

We apply theory and methods of [8] to find branches of steady states emerging in a steady state bifurcation with this symmetry
group. Consider the action of D2 n T × Z4 on C2 generated by

h1(=s2) : (w1, w2) → (w̄1, w̄2),

h2(=s6) : (w1, w2) → (w2, w1),

ψα(=γ
x,−y
α ) : (w1, w2) → (e2π iα/Lw1, e−2π iα/Lw2),

h3(=γ
xy
L/4r) : (w1, w2) → (−iw1,−iw2).

The third-order dynamical system commuting with the group action (derived following the procedure described in [17]) is

ẇ1 = µw1 + w1(B1|w1|
2
+ B2|w2|

2)+ B3w̄1(w̄2)
2,

ẇ2 = µw2 + w2(B1|w2|
2
+ B2|w1|

2)+ B3w̄2(w̄1)
2.

(18)

One-dimensional fixed point subspaces are: (x, x) (the isotropy subgroup is D2 generated by h1 and h2), (x, ix) (the isotropy
subgroup is D2 generated by ψL/4h2 and h1h2h3), (x, 0) (the isotropy subgroup is D2 generated by h1 and h3ψL/4). Equations for
amplitudes of steady states bifurcating from (w1, w2) = 0 at µ = 0 in the respective subspaces are

(x, x) : µ+ (B1 + B2 + B3)x2
= 0,

(x, ix) : µ+ (B1 + B2 − B3)x2
= 0,

(x, 0) : µ+ B1x2
= 0.

(19)

Stability of a steady state is determined by eigenvalues of Eq. (18) linearized in the vicinity of the steady state, which are

steady state eigenspace eigenvalue

(x, x) (q, q) 2(B1 + B2 + B3)x2

(q,−q) 2(B1 − B2 − B3)x2

(iq, iq) −4B3x2

(iq,−iq) 0

(x, ix) (q, iq) 2(B1 + B2 − B3)x2

(q,−iq) 2(B1 − B2 + B3)x2

(iq,−q) 4B3x2

(iq, q) 0

(x, 0) (q, 0) 2B1x2

(0, q) (−B1 + B2 + B3)x2

(0, iq) (−B1 + B2 − B3)x2

(iq, 0) 0

(20)
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Comparison of Eq. (19) with Eq. (20) implies that just one branch is stable if all three bifurcate supercritically; the stable branch
is the one with the largest amplitude. If there is a branch bifurcating subcritically, all three are unstable.

Appendix B. Bifurcations to travelling waves

In this subsection we consider examples of a steady state bifurcation to travelling waves (which are also called relative equilibria
in [11]), a pattern which is steady in a comoving reference frame and periodic in a reference frame at rest. Such bifurcation happens
if the isotypic component containing the critical eigenmode also contains an eigenmode responsible for the shift along the group
orbit of the bifurcating steady state (the associated eigenvalue is zero).

Expressions in the r.h.s. of Eq. (13) involve angles only in combinations:

φ = 2θ1 − θ3 − θ4 and ψ = 2θ2 − θ3 + θ4.

Assuming r3 6= 0 and r4 6= 0, one can rewrite the system (13) as

ṙ1 = r1(λ1 + A1r2
1 + A2r2

2 + A3(r2
3 + r2

4 ))+ A4r1r3r4 cosφ

ṙ2 = r2(λ1 + A1r2
2 + A2r2

1 + A3(r2
3 + r2

4 ))+ A4r2r3r4 cosψ

ṙ3 = r3(λ2 + A5r2
3 + A6r2

4 + A7(r2
1 + r2

2 ))+ A8(r2
2r4 cosψ + r2

1r4 cosφ)

ṙ4 = r4(λ2 + A5r2
4 + A6r2

3 + A7(r2
1 + r2

2 ))+ A8(r2
2r3 cosψ + r2

1r3 cosφ)

φ̇ = sinφ(−2A4r3r4 − A8r2
1 (r4/r3 + r3/r4))− sinψ A8r2

2 (r4/r3 − r3/r4)

ψ̇ = sinψ(−2A4r3r4 − A8r2
2 (r4/r3 + r3/r4))− sinφA8r2

1 (r4/r3 − r3/r4).

(21)

The steady states of Eq. (21) with φ = ψ = 0 are true steady states of Eq. (13). Steady states with one of φ or ψ non-vanishing
are patterns drifting along the x or y direction, respectively. If φ = ±ψ 6= 0, the pattern is drifting along the diagonal. Finally, if
0 6= φ 6= ψ 6= 0, there is drift in both horizontal directions.

B.1. Bifurcation from RC

A steady state of Eq. (21) which belongs to the subspace (r1, 0, r3, r3, φ, 0) satisfies

λ1 + A1r2
1 + 2A3r2

3 + A4r2
3 cosφ = 0,

λ2 + (A5 + A6)r2
3 + A7r2

1 + A8 + r2
1 cosφ = 0,

A4r2
3 + A8r2

1 = 0.

For them, both φ = 0 and φ 6= 0 are possible. Assume that the λ’s depend on a parameter Q. The two types of steady states coincide
at a point where

λ1(Q)+ A1r2
1 + 2A3r2

3 + A4r2
3 = 0,

λ2(Q)+ (A5 + A6)r2
3 + A7r2

1 + A8 + r2
1 = 0,

A4r2
3 + A8r2

1 = 0.

This system of three equations in three variables (Q, r1, r3) is, in general, solvable. The steady state with φ = 0 exists for Q both
slightly larger and slightly smaller than the critical value; the steady state with φ 6= 0 exists only on one side of the critical Q,
because cosφ ≤ 1. The pattern moves along the x axis with the speed

θ̇1 = A4r3r4 sinφ,

small near the point of bifurcation.

B.2. Bifurcation from SQ

In polar coordinates the action of the symmetry group of SQ, D4, on the subspace (0, 0, 0, 0, φ, ψ) is generated by

s1 : (φ, ψ) 7→ (ψ,−φ) and
s4 : (φ, ψ) 7→ (φ,−ψ).

Therefore [8], there are two types of maximal isotropy bifurcating branches: with ψ = 0 (or φ = 0) and ψ = φ (or ψ = −φ).
They are TW2 = (r1, r2, r3, r3, φ, 0) and TW4 = (r1, r1, r3, r4, φ, φ). In the normal form Eq. (21) TW4 bifurcating from SQ will
have the form (r1, r1, r3, r3, φ, φ) (i.e. r3 = r4) because the terms breaking this relation are outside the third-order truncation we
are considering.
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Appendix C. Bifurcations from AS1

When calculating stability and bifurcations from tertiary branches we have determined three-dimensional isotypic components
for the actions of the steady state symmetry groups. For one- and two-dimensional subspaces the study is straightforward; the case
of three dimensions is more difficult. Here we demonstrate that some results on bifurcations and stability can be obtained without
explicit calculation of eigenvalues, considering as an example bifurcations from AS1 = (x1, ix2, x3, x3) with the critical mode
belonging to the subspace (q1, iq2, q3, q3).

The matrix of the restriction of the linearization of (8) onto the subspace is

B =

 2A1x2
1 2A2x1x2 (4A3 + 2A4)x1x3

2A2x1x2 2A1x2
1 (4A3 − 2A4)x2x3

2(A7 + A8)x1x3 2(A7 − A8)x1x3 2(A5 + A6)x2
3

 . (22)

Its eigenvalues satisfy

µ1µ2µ3 = detB, µ1 + µ2 + µ3 = trB, µ1µ2 + µ1µ3 + µ2µ3 = B̃,

where by B̃ we denote the sum of the three second-order minors of B.
The necessary and sufficient conditions for steady state bifurcations are detB = 0. Eq. (22) implies that detB = x2

1 x2
2 x2

3 F(A).
The values of x j , j = 1, 2, 3, for the steady state satisfy a linear system of equations on x2

j , stemming from (12). By Cramers’ rule,
the solution of the system is

x2
j =

g j (λ1, λ2,A)
f (A)

, j = 1, 2, 3,

where g j is linear in λ’s and quadratic in A’s, and f is cubic in A’s. It turns out that f (A) = F(A). Hence, the condition detB = 0
is never satisfied and the condition F(A) = 0 gives a boundary of the domain where AS1 exists.

A Hopf bifurcation takes place if

trBB̃ = detB, B̃ > 0;

and hence bifurcations from the steady state can be found by solving this equation simultaneously with equations for the steady
state.

Appendix D. Calculation of λ1 and λ2

We calculate here coefficients of the linear terms of (12) using the method that was employed in [2] and [14].
Denote by L the system (1)–(4) linearized near the trivial steady state. The subspace spanned by

S1 =


−πl−1 cosπ z sin lx

0
sinπ z cos lx

0

 , S2 =


0

cosπ z sin lx
0
0

 , S3 =


0
0
0

sinπ z cos lx

 (23)

is L-invariant:

LS1 = −PaS1 + S3,

LS2 = −PaS2,

LS3 = P Rl2a−1S1 − aS3,

(24)

where a = l2
+ π2. Therefore, there is an eigenvalue −P(l2

+ π2) with the associated eigenvector S2 and two eigenvalues

Λ±(l, R) =
1
2
(−(Pa + a)± D1/2) where D = (Pa + a)2 − 4(Pa2

− P Rl2a−1).

In the vicinity of l0 and R0, such that Λ+(l0, R0) = 0, Taylor expansion of Λ+ in δ = l − l0 and ε = R − R0 yields

Λ+(l, R) = P(P + 1)−1(2(π2
− 2l2

0)l
−1
0 δ + l2

0a−2ε)+ O(ε2
+ δ2). (25)

Substituting into Eq. (25) l0 = km and l0 =
√

2km , we find

λ1 = P(P + 1)−1(2(π2
− 2k2

m)k
−1
m δ + k2

m(π
2
+ k2

m)
−2ε)+ O(ε2

+ δ2)
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and

λ2 = P(P + 1)−1(2(π2
− 4k2

m)k
−1
m δ + 2k2

m(π
2
+ 2k2

m)
−2ε)+ O(ε2

+ δ2).

For km given by (8) these relations yield the coefficients βi j presented in Table 9.

Appendix E. Center manifold reduction

The center manifold is an invariant manifold tangent to Xc at (0, Rm); standard theory [10] means that near a bifurcation
the local solutions are determined by the dynamics on the center manifold. Locally it is represented as a graph of the mapping
ψ(v) : Xc → Xh defined in a neighborhood of (0, Rm).

The second-order Taylor’s expansion is

ψ(v) =

4∑
j,l=1

φ1
j,l x j xl +

4∑
j,l=1

φ2
j,l x j yl +

4∑
j,l=1

φ3
j,l y j yl , (26)

where x j and yl are components of (v) ∈ Xc in the basis {X j ,Yl} and φ ∈ Xh .
Define

f1(m1,m2,m3) =


kmm2 cos m3π z sin(m1km x + m2km y)

−kmm1 cos m3π z sin(m1km x + m2km y)
0
0

 , (27)

f2(m1,m2,m3) =


−πkmm1m3 cos m3π z sin(m1km x + m2km y)
−πkmm2m3 cos m3π z sin(m1km x + m2km y)
(m2

1 + m2
2)k

2
m sin m3π z cos(m1km x + m2km y)

0

 , (28)

f3(m1,m2,m3) =


0
0
0

sin m3π z cos(m1km x + m2km y)

 . (29)

The center manifold coefficients are

φ1
1,1 = (8a1π)

−1f3(0, 0, 2),

φ1
3,3 = (8a2π)

−1f3(0, 0, 2),

φ1
1,2 = g−1

1 ((P−1b1 + b2)(f2(1, 1, 2)+ f2(1,−1, 2))+ (P−1b3 + b4)(f3(1, 1, 2)+ f3(1,−1, 2))),

φ1
3,4 = g−1

2 ((P−1b5 + b6)(f2(2, 0, 2)+ f2(0, 2, 2))+ (P−1b7 + b8)(f3(2, 0, 2)+ f3(0, 2, 2))),

φ1
1,3 = P−1(c1f1(0, 1, 0)+ c2f1(2, 1, 0)+ c3f1(0, 1, 2)+ c4f1(2, 1, 2)

+ g−1
3 ((d1 + Pd2)f2(0, 1, 2)+ (d3 + Pd4)f3(0, 1, 2))+ g−1

4 ((d5 + Pd6)f2(2, 1, 2)+ (d7 + Pd8)f3(2, 1, 2))),

where

a1 = π2
+ k2

m, a2 = π2
+ 2k2

m, a3 = 2π2
+ k2

m, a4 = 4π2
+ k2

m, a5 = 4π2
+ 5k2

m,

b1 = −πa1(2k2
m)

−1, b2 = −Rπ(4a1a3)
−1, b3 = −πa1(2a3)

−1, b4 = −πa3a−1
1 , b5 = −πa2(4k2

m)
−1,

b6 = −Rπ(8a1a2)
−1, b7 = −πa2(4a1)

−1, b8 = −π2a1a−1
2

g1 = 4a2
3 − k2

m Ra−1
3 , g2 = 16a2

1 − k2
m Ra−1

1 , g3 = a2
4 − Rk2

ma−1
4 , g4 = a2

5 − 5Rk2
ma−1

5 ,

c1 = π2(8k4
m)

−1, c2 = −π2(200k4
m)

−1, c3 = −π2(8k2
ma4)

−1, c4 = π2(40k2
ma5)

−1,

d1 = −π(7k2
m + 4π2)(8k2

m)
−1, d2 = −πR((2a2)

−1
+ 3(8a1)

−1)a−1
4 ,

d3 = −π(7k2
m + 4π2)(8a4)

−1, d4 = −πa4((2a2)
−1

+ 3(8a1)
−1),

d5 = −πa5(40k2
m)

−1, d6 = −πR(8a1a5)
−1, d7 = −π/8, d8 = −πa5(8a1)

−1.

All other coefficients of Eq. (26) can be obtained from these applying symmetries of the system.
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Appendix F. Exact expressions for the normal form coefficients

A1 = −
1
8

P(P + 1)−1,

A2 = A1 − g−1
1 (P + 1)−1

(
P−1 1

2
π2a1 + Rπ2k2

m(a1(2k2
m + 4π2))−1

+
1
4

Pπ2(2k2
m + 4π2)

)
,

A3 = −P(P + 1)−1a1(8a2)
−1

+ (P + 1)−1k2
m(8a1)

−1(4c1k2
m + 2(2π2

− k2
m)(2c2 + c3)+ 2c4k2

m + g−1
3 (P−1d1 + d2)π(5k2

m − π2)

+ g−1
4 (P−1d5 + d6)π(7k2

m + 5π2))+ P(P + 1)−1a1(8a2)
−1(2k2

m(2c1 − 2c2 − c3 + c4)+ 2πk2
m g−1

3 (P−1d1 + d2)

+ 3πa2g−1
3 (P−1d3 + d4)+ 2πk2

m g−1
4 (P−1d5 + d6)+ πa2g−1

4 (P−1d7 + d8)),

A4 = (P + 1)−1k2
m(4a1)

−1(−4c1k2
m − 2(2π2

− k2
m)c3 + g−1

3 (P−1d1 + d2)π(5k2
m − π2))

+ P(P + 1)−1a1(4a2)
−1(2k2

m(−2c1 + c3)+ 2πk2
m g−1

3 (P−1d1 + d2)+ 3πa2g−1
3 (P−1d3 + d4)),

A5 = A1,

A6 = A5 − g−1
2 (P + 1)−1

(
P−1 1

2
π2a2 + Rπ2k2

m(a2(2k2
m + 2π2))−1

+ Pπ2(k2
m + π2)

)
,

A7 = −P(P + 1)−1a2(8a1)
−1

+
k2

m(−2c1a2 + (2k2
m − 3π2)(2c2 + c3)− c4a2 + g−1

3 (P−1d1 + d2)π(2k2
m + 5π2)− g−1

4 (P−1d5 + d6)πa2)

(P + 1)4a2

+
a2(k2

m(−2c1 + 2c2 + c3 − c4)− πk2
m g−1

3 (P−1d1 + d2)+ 2πa1g−1
3 (P−1d3 + d4)− πk2

m g−1
4 (P−1d5 + d6))

P(P + 1)4a1
,

A8 = (P + 1)−1k2
m(4a2)

−1(2a2c1 + (3π2
− 2k2

m)c3 + g−1
3 (P−1d1 + d2)π(2k2

m + 5π2))

+ P(P + 1)−1a2(4a1)
−1(k2

m(2c1 − c3)− πk2
m g−1

3 (P−1d1 + d2)+ 2πa1g−1
3 (P−1d3 + d4)).

Appendix G. Reduction of the group action

The original system of ODEs (Eq. (12)) on C4 has a continuous group symmetry T2 that means that conventional path following
programs fail to work. However, the system can be reduced by the two-dimensional group action as follows, so that the remaining
system is nondegenerate and on C3. We write Eq. (12) as

ż1 = f1

ż2 = f2

ż3 = f3

ż4 = f3

(30)

and then define

a1 = −
=( f1z1)

|z1|2
, a2 = −

=( f2z2)

|z2|2
.

The modified system of equations

ż1 = f1 + ia1z1

ż2 = f2 + ia2z2

ż3 = f3 + i(a1 + a2)z3

ż4 = f3 + i(a1 − a2)z4

(31)

has solutions that are in one-to-one correspondence with those of Eq. (30). This is because the infinitesimal action of
(eiαz1, z2, eiαz3, eiαz4) is (iα̇z1, 0, iα̇z3, iα̇z4) and the infinitesimal action of (z1, eiβ z2, eiβ z3, e−iβ z4) is (0, iβ̇z2, iβ̇z3,−iβ̇z4).
Hence, for our choice of a1 and a2, solutions to Eq. (31) satisfy

=(ż1z1) = 0, =(ż2z2) = 0

meaning that effectively we have removed the group orbit drift from the trivial stratum of the orbit space. This means that we can
set =(z1) = =(z2) = 0 and compute all solutions within this six-dimensional section of the orbit space. Note that the equations
transformed this way become a system on R6 on parameterizing by (x1, x2, x3 + iy3, x4 + iy4). Care needs to be taken near solutions
where z1 and/or z2 are zero, as the system is singular on x1 = x2 = 0.
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