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Abstract

The growth of an elastic film adhered to a confining substrate might lead to
the formation of delimitation blisters. Many results have been derived when
the substrate is flat. The equilibrium shapes, beyond small deformations,
are determined by the interplay between the sheet elastic energy and the
adhesion potential due to capillarity. Here, we study a non-trivial general-
ization to this problem and consider the adhesion of a growing elastic loop
to a confining circular substrate. The fundamental equations, i.e., the Euler
Elastica equation, the boundary conditions and the transversality condition,
are derived from a variational procedure. In contrast to the planar case, the
curvature of the delimiting wall appears in the transversality condition, thus
acting as a further source of adhesion. We provide the analytic solution to the
problem under study in terms of elliptic integrals and perform the numerical
and the asymptotic analysis of the characteristic lengths of the blister. Fi-
nally, and in contrast to previous studies, we also discuss the mechanics and
the internal stresses in the case of vanishing adhesion. Specifically, we give
a theoretical explanation to the observed divergence of the mean pressure
exerted by the strip on the container in the limit of small excess-length.
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1. Introduction

The classical theory of bending, due to Bernoulli and Euler more than four
centuries ago, is still considered a key simplified model for understanding the
mechanics of many hard and soft systems. Within this theory, the mechanical
properties and the shape of rods and sheets can be determined by solving an
ordinary differential equation: the fundamental equation of Euler’s Elastica.
Several problems may be tackled by this method, albeit with some variations,
as for instance the occurrence of delamination blisters [1, 2, 3], the adhesion
of lipid tubules [4] and vesicles [5], the growth mechanisms in climbing plants
[6], the mechanics of the insertion of a guidewire into the artery of a patient
[7], the equilibria of the uplifted heavy elastic strip [8], the pattern formation
of flexible structures induced by tight packing [9] and the design of flexible
electronic devices [10].

In this paper, we analyze the growth of a closed planar Euler-Bernoulli
strip confined by a rigid circular domain. We employ a very simple growth
mechanism and posit that the total length of the strip may be changed arbi-
trarily by a suitable external action. Thus, mathematically, we consider the
total length of the strip as an adjustable parameter, whose governing equa-
tion has no need to be specified. Furthermore, we assume the strip to be
inextensible and always at equilibrium. A simple rudimentary experimental
setup can help to describe the physical phenomenon we wish to analyze. Let
us imagine a flexible cylinder made out of a piece of paper, simply by gluing
together the edges of a rectangular sheet. Next, we insert this flexible cylin-
der into a rigid circular tube of smaller radius. The shape of the confined
sheet, unavoidably, exhibits blisters, i.e., regions of the sheet which are not
in contact with the substrate but form inward protuberances. Even in the
presence of an ideal frictionless substrate, part of the strip adheres to the
confining wall as the circular geometry acts as an adhesion mechanism.

An increase of adhesion may be further promoted by capillarity. Gener-
ally, adhesion by capillarity may occur in an elastic structure when its restor-
ing ability is unable fully to overcome the interfacial attraction induced by
liquid surface tensions. Various capillary adhesion phenomena can be ob-
served at small scale in both natural phenomena and industrial processes.
For a more exhaustive overview of these topics, we refer the reader to the
recent review article [11] and references therein.

The packing of a flexible cylinder inside a rigid circular tube of smaller
radius has been studied analytically by Cerda and Mahadevan in [2], under
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the simplifying assumption of small deformations and in the absence of cap-
illary adhesion between the elastic strip and the rigid circular substrate. The
same problem, allowing for large deformations, has been studied numerically
in [9] and has been subsequently extended to the growth of an Helfrich’s
membrane confined within a spherical domain [12]. In addition to the elastic
problem, both of these papers consider the complicated conditions arising
from the contact with the container and from the self-contact. Other studies
exploit the theory of elliptic integrals to characterize the adhesion of lipid
tubules on curved substrates [4], the stability of clamped elastic arches [13]
or the Euler buckling of constrained strait beams [14]. More recently [3],
the Elastica theory has been used to study the deformation of thin elastic
sheets that adhere to a stiff flat substrate by means of a surface potential.
The authors use a combination of numerical and asymptotic techniques to
predict the equilibrium shapes of this sticky Elastica.

Our paper extends the results of both [2] and [3]. On the one hand, we
study the equilibrium solutions of a flexible elastic sheet confined inside a
circular cylinder beyond the first approximation and in presence of capillary
effects. On the other hand, we generalize the theoretical results relative to
the formation of delamination blisters on a sticky flat surface, as reported by
Wagner and Vella [3], to the case of a circular substrate. In §2, we obtain the
equilibrium equations as extremal points of the energy functional subject to
suitable constraints. The variational procedure is here slightly complicated
by the fact that the end-points of the energy functional are not fixed, but
are part of the unknowns. This entails that, besides the equilibrium equa-
tion and its boundary conditions, a further boundary condition is needed
to determine the location of the detachment points. In contrast to the case
of a flat substrate, the morphology of the strip is affected not only by the
elastocapillarity length, but also by the container radius. In §3, the sym-
metrical equilibrium configurations of the strip are investigated using both
an integral formulation and an asymptotic approach. Relevant measurable
quantities (the blister height, the length of the adherent part and the inter-
nal forces) are provided as functions of the total length and the adherence
strength. Furthermore, we provide an asymptotic expansion of the solution
in terms of a dimensionless parameter measuring the excess length of the
beam with respect to the container length. Finally, in §4, we analyze the
case of adherence due to the sole curvature when the delimiting wall is a
frictionless unilateral contact. In this case, the tensional state of the entire
strip and the forces exerted on the wall can be easily computed. As we shall
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see, and in agreement with [2], these forces show a singular behaviour and
thus lead to non-trivial conclusions.

2. Variational problem

In this section we derive the equilibrium equation and the boundary con-
ditions that have to be fulfilled by the free part of the Euler-Bernoulli beam.
Let us describe the geometry of the beam with a planar curve γ. In the plane
of the curve, we introduce a Cartesian frame of reference (O; ex, ey), where O
is the origin and ex, ey are the unit vectors along, respectively, the x and the
y axes. Let s be the arc-length along the curve and θ(s) the inflection angle.
More precisely, θ(s) measures the anti-clockwise angle between ex and the
tangent to the curve t(s). Therefore, the Frenet curvature is θs(s), where the
subscript denotes differentiation with respect to its argument. Each point
p on γ can be parametrized by the Cartesian coordinates x(s) and y(s), so
that its position vector is (p − O) = x(s)ex + y(s)ey. On the other hand,
since t = d(p−O)/ds, it follows that

xs = cos θ, ys = sin θ. (1)

Furthermore, we posit the following classical bending energy

Wb[θs] =
κ

2

∫ `
2

− `
2

(θs − c0)2ds, (2)

where the constant c0 accounts for a possible spontaneous curvature of the
beam, κ is the bending rigidity and ` is the total length. It is worth noticing
that the parametrization of γ by means of the inflection angle θ automatically
ensures the arc-length preservation, thus no Lagrange multiplier associated
to the inextensibility constraint is needed.

With reference to the schematic representation in Figure 1, we assume
that the beam forms a unique blister. Thus, the beam at equilibrium consists
of two parts: a free –non-adherent– curve, described by s ∈ (−s̄, s̄), and an
adherent one, with s in the range s ∈ [−`/2,−s̄] ∪ [s̄, `/2]. Hereinafter, we
assume θ(s) odd, so that the problem can be studied in the interval [0, `/2]
only.

In our simplified treatment there are only two detachment points, which
correspond to the arc-lengths −s̄ and s̄, respectively and, of course, are
constrained to lie along a circumference of radius r. A glance at Figure 1



5

−2r sin θ̄

r
co

s
θ̄

r

s = s̄s = −s̄

s = 0

s = s0s = −s0

s = `
2

s = − `
2

O ex

ey

Figure 1: Schematic representation of the elastic strip, confined by a cylindrical
wall of radius r. We assume that its shape has a mirror symmetry with respect
to the y-axis, allowing the study only for the branch s ≥ 0. The free part of the
curve is parametrized by values of the arc length in the range s ∈ [0, s̄), where s̄ is
the detachment point. At s = s0 the curvature vanishes. The adopted conventions
imply that the curvature is positive in s ∈ [0, s0) and negative in s ∈ (s0, `/2]. In
particular, θs ≡ −1/r throughout the adherent part.

shows that their distance is −2r sin θ̄, where θ̄ is the value of the inflection
angle at s̄ (note that θ̄ ≤ 0, by our conventions). Elementary geometric
arguments yield also the following identity

θ̄ := θ(s̄) = − s̄
r

+
`− 2πr

2r
. (3)

On the other hand, the distance between the detachment points can be ob-
tained by integrating (1)1 in [−s̄, s̄]. As a consequence, the equilibrium so-
lution should obey the global constraint

∫ s̄

0

cos θds = −r sin θ̄. (4)
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Thus, in the free region, the effective potential to minimize becomes

Wf [θ, θs; s̄] =

∫ s̄

0

κ(θs − c0)2ds− 2Tx

(
r sin θ̄ +

∫ s̄

0

cos θ ds

)
, (5)

where Tx is a Lagrange multiplier and s̄ is to be determined in the minimiza-
tion process.

In the adherent region, the beam is in contact with the circular container
and the bending energy is constant since θs = −1/r. However, in order to ac-
count for elasto-capillarity effects, we further consider an adhesion potential
describing the strip-substrate adhesion. We assume this in its simplest form
taking it proportional to the length of the sticking region through a positive
constant w, which is called the adherence strength. The energy associated to
the adherent part is therefore

Wa[s̄] =

∫ `
2

s̄

κ

(
1

r
+ c0

)2

ds− 2

∫ `
2

s̄

w ds. (6)

Since the shape of the adherent part is fixed, this energy is a function of s̄
only.

2.1. Euler-Lagrange equations and boundary conditions

The equilibrium configurations are stationary points of the total free en-
ergy W = Wf + Wa. By adopting the notation as in [15], we consider two
neighboring curves θ(s) and θh(s) such that

θh(s) = θ(s) + h(s). (7)

The variational procedure must explicitly include the fact that the end points
s = 0 and s = `/2 are fixed, while the detachment point s = s̄ is not.
Consequently, standard arguments [15] show that the possible variations have
to satisfy the following equations at the end-points and to first order

θh(0) = θ(0), θh(`/2) = θ(`/2), (8a)

h(s̄) = δθ̄ − θs(s̄)δs̄, (8b)

where δθ̄ := θh(s̄+ δs̄)− θ(s̄). Thus, by setting

gf (θs) = κ(θs − c0)2, gc(θ) = −2Tx cos θ, ga = κ

(
1

r
+ c0

)2

− 2w, (9)
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the first variation of W is

δW =

∫ s̄

0

[
∂gc
∂θ
− d

ds

∂gf
∂θs

]
h(s)ds+

(
∂gf
∂θs
− 2Txr cos θ

)∣∣∣∣
s=s̄

δθ̄

+

(
gf −

∂gf
∂θs

θs + gc − ga
)∣∣∣∣

s=s̄

δs̄. (10)

Since s̄ lies on a circumference of radius r it follows that the variations δθ̄
and δs̄ are not independent:

δθ̄ = −δs̄
r
. (11)

The substitution of equation (11) into (10), after some manipulations, yields

δW =

∫ s̄

0

[
∂gc
∂θ
− d

ds

∂gf
∂θs

]
h(s)ds+

[
−
(

1

r
+ θs

)
∂gf
∂θs

+ gf − ga
]

s=s̄

δs̄ . (12)

The equilibrium condition, δW = 0, for any arbitrary choice of h(s) and
δs̄, leads to the requirement that each term enclosed in square brackets in
(12) must vanish. Therefore, once the explicit expressions of ga, gc and gf as
given in (9) are taken into account, the following Euler-Lagrange equation is
derived

κθss − Tx sin θ = 0, s ∈ (0, s̄), (13)

with the boundary conditions

θ(0) = 0, θ(s̄) = θ̄. (14)

As expected, the angle θ(s) has to satisfy the non-linear pendulum equa-
tion. Nevertheless, contrary to the classic pendulum dynamics, the equation
(13) has to be solved with boundary conditions rather than initial condi-
tions. Moreover, both the Lagrangian multiplier −Tx (which plays the role
of gravity in the pendulum analogy) and the boundary point s̄ are unknowns.
However, the vanishing of the coefficient of δs̄ in (12) gives a further condition
at the detachment point:

κ

(
θ̄s +

1

r

)2

− 2w = 0, (15)

which we refer to as the transversality condition. This equation, along with
Eqs.(4), (13) and (14), allows us to solve the problem and thus determine
the unknowns Tx and s̄.
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The condition (15) is a special case of a more general adhesive condition
obtained in [4]. It reflects the fact that there are two different sources of ad-
hesion: (i) the adherence by curvature, which is proportional to the bending
stiffness and is a decreasing function of the radius r; and (ii) the adhesion
potential whose strength is provided by w. In the limit case where w = 0,
equation (15) guarantees the continuity of the curvature θs at s = s̄. On the
other hand, whenever the substrate is flat (r →∞), we correctly recover the
adherence condition used in [3].

By defining the elasto-capillarity as `ec =
√
κ/w, (15) reduces to

θ̄s = −1

r
−
√

2

`ec
(16)

where the minus sign in front of
√

2/`ec is due to the fact that the curvature
radius at the detachment point cannot exceed that of the delimiting wall.

Finally, we remark that the spontaneous curvature c0 plays no role in
the equilibrium equations. Indeed, the energetic terms involving c0 are null
Lagrangians and, hence, they could possibly affect only the boundary condi-
tions. However, since γ is a closed curve, c0 cannot have any effect on the
equilibrium shape.

3. Equilibrium shapes

We now examine a special class of equilibrium solutions, schematically
shown in Figure 1. The expected equilibrium solution θ(s) is an increasing
function for s ∈ (0, s0), while it decreases for s ∈ (s0, s̄). Let θ0 = θ(s0) ∈
[0, π] be the maximum value of θ(s) in (0, s̄). Standard arguments in the
calculus of variations show that a first integral of (13) is

1

2
θ2
s = τ(cos θ − cos θ0), (17)

where we have set τ = −Tx/κ. To simplify the notation, we introduce

η :=
1

r
+

√
2

`ec
, (18)

and rewrite the transversality condition (16) as θs(s̄) = −η. Therefore,
Eq.(17) yields

1

τ
=

2

η2
(cos θ̄ − cos θ0), (19)
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with |θ̄| 6= θ0. By replacing (19) into (17), we finally deduce that

θs = ±η
√

cos θ − cos θ0

cos θ̄ − cos θ0

, (20)

where the sign + (respectively, −) is to be used in the interval s ∈ (0, s0)
(respectively, s ∈ (s0, s̄)). By symmetry θ(0) = 0 and Eq.(20) evaluated at
s = 0 shows that cos θ̄ − cos θ0 > 0. This gives a restriction on the possible
values of θ̄: |θ̄| < θ0. Furthermore, (20) is an ordinary differential equation
which can be solved by separation of variables in (0, s̄). To this end, we
change the variable of integration from s to θ

ds = ±1

η

√
cos θ̄ − cos θ0

cos θ − cos θ0

dθ (21)

and divide the integral into the two sub-regions where the function θ(s) is
monotonic

∫ θ0

0

dθ√
cos θ − cos θ0

−
∫ θ̄

θ0

dθ√
cos θ − cos θ0

=
ηs̄√

cos θ̄ − cos θ0

, (22)

where, on the right hand side, the boundary conditions (14) have been used.
Finally, equation (22) can be recast in the following form

4F(q0)− 2F(q̄) = ηs̄

√
1− cos θ0

cos θ̄ − cos θ0

, (23)

where F denotes the incomplete elliptic integral of first kind [16] and, for ease
of notation, we set

q0 :=

{
θ0

2
, csc2 θ0

2

}
, q̄ :=

{
θ̄

2
, csc2 θ0

2

}
. (24)

Similarly, we reduce equation (4) as follows

∫ θ0

0

cos θ√
cos θ − cos θ0

dθ −
∫ θ̄

θ0

cos θ√
cos θ − cos θ0

dθ = − ηr sin θ̄√
cos θ̄ − cos θ0

, (25)
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and rewrite the left hand side of (25) in terms of elliptic integrals. With the
aid of (23), we finally obtain

2 (1− cos θ0) [2E(q0)− E(q̄)] = −η(s̄ cos θ0 + r sin θ̄)

√
1− cos θ0

cos θ̄ − cos θ0

, (26)

where E represents the incomplete elliptic integral of second kind [16].
By using equation (3), we can eliminate s̄ in equations (23) and (26) in

favor of θ̄. Thus, the solutions of the nonlinear transcendental equations
(23) and (26) (whenever exist) give the values of θ̄ and θ0 as functions of
the length `, the elasto-capillarity length `ec and the radius r. Hence, the
solution is completely determined.

1 2 3 4 5
%

0

0.2

0.4

0.6

0.8

1

ε

Bottom contact

Self-contact

Figure 2: The shaded area represents the region of the parameters ε and % where
the solution is valid. This region is delimited by two solid curves. The first (long-
dashed thick line) identifies the configuration at which the blister vertex (s = 0)
is in contact with the diametrically opposite point s = `/2. We say that the
elastic strip “touches the container at the bottom”. For values of (%, ε) along
the second curve (solid thick line), the elastic strip is in contact with itself in
an intermediate point (self-contact). For % . 1.8 the adherent length decreases
monotonically with ε. For % & 1.8 the adherent length follows a non-monotonic
behavior with increasing ε. The dashed thin line divides the shaded solution space
into two subregions: below the dashed line, in the light-grey shaded area, `(adh)

is a decreasing function of ε, while in the dark-grey region `(adh) is an increasing
function of ε.

It is now of special interest to study the expression of the length of the
adherent portion of the strip, defined as `(adh) := ` − 2s̄, and that of the
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blister height, defined as δ := r − y(0). These are, in fact, quantities easily
accessible experimentally. The former is simply given by

`(adh) = 2r(π + θ̄) . (27)

In order to derive δ as a function of θ̄ and θ0, we note that δ = r − (y(0) −
y(s̄))− y(s̄), so that we can write

δ = r(1− cos θ̄) +

∫ s̄

0

sin θ(s)ds = r(1− cos θ̄)− 1

τ

∫ s̄

0

θssds

= r(1− cos θ̄)− 1

τ
[θs(s̄)− θs(0)] .

We then use Eqs.(19) and (20) to simplify further and obtain

δ = r(1− cos θ̄) +
2

η

√
cos θ̄ − cos θ0

(√
cos θ̄ − cos θ0 +

√
1− cos θ0

)
. (28)

The solution in terms of elliptic integrals is relatively simple to implement
computationally. However, the type of solution we seek remains valid as long
as there is no self-intersection and the strip does not touch the lower part of
the circular container. For later convenience, it is apposite to introduce the
following adimensional quantities

ε =
`− 2πr

2πr
, % = ηr = 1 +

√
2 r

`ec
. (29)

The former measures the excess length with respect to the confining circum-
ference, while the latter determines the relative importance of the adhesion
induced by curvature with respect to the adhesion by elasto-capillarity.

The region of the (ε, %)-plane in which our solutions are admissible is
sketched in Figure 2. We gather that, for % < %∗, with %∗ ≈ 2.916, the
contact with the wall occurs before the self-contact, and viceversa for % > %∗.
We also find that, while the blister height is an increasing function of the
total length, the adherence length may exhibit a non-monotonic behavior.
Thus, with reference to Figure 2, `(adh) decreases with ε in the region below
the dashed line, while it reverse its behaviour in the region above. Obviously,
this change of slope occurs only if the adherence strength is suitably large.
This is clearly displayed in Figure 3, where the equilibrium shapes of the
elastic strip are plotted for different excess-lengths and for two values of the
adherence strength, corresponding to % = 1 (no capillarity) and % = 5.
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(a) (b)

Figure 3: Equilibrium shapes of the elastic strip calculated with (a) zero capillarity
(% = 1) and (b) % = 5, obtained using the following values for the excess length:
ε = 0.01 (thin solid lines), ε = 0.05 (dashed lines), ε = 0.1 (dotted lines) and
ε = 0.2 (thick solid lines). In absence of elasto-capillarity, Figure (a) shows a
decrease of the adherence length for increasing excess-length. By contrast, Figure
(b) clearly shows that the adherence length is a non-monotonic function of ε for
moderate capillarity effects (% & 1.8).

3.1. Asymptotic analysis

The main aim of this Section is to provide an approximation to some
physically relevant quantities when the length of the strip slightly exceeds
that of the confining circumference. To this end, we first derive the approxi-
mations of θ̄ and θ0 by performing an asymptotic expansion of Eqs.(23) and
(26) in the limit ε � 1, where ε is defined as in (29). Subsequently, we ap-
ply these results to find the approximations of `(adh) (complementary to the
blister width), δ and the internal stresses.

When ε = 0, there is only the trivial solution: θ0 = θ̄ = 0. Since we
don’t expect any singular behaviour in the solution of the problem at hand,
we look for asymptotic expansions where θ0(ε) = o(1) and θ̄(ε) = o(1), as
ε ↓ 0. However, we do not make at present any specific assumption on the
ratio v(ε) = θ̄(ε)/θ0(ε). Next, we substitute the leading approximations for
the elliptic integrals, as given in equations (A.3), (A.4) and consider only the
leading approximation to the following function

√
cos θ̄ − cos θ0

1− cos θ0

∼
√

1− v2 . (30)
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After a simple manipulation, equations (23) and (26) can then be recast in
the following form,

θ0

[√
1− v2(π − arcsin v) + %v

]
= πε% , (31a)

θ3
0

12

[
3
√

1− v2(π − arcsin v) + v3(3− 2%) + v(6%− 3)
]

= −πε%
(

1− θ2
0

2
+
θ4

0

24

)
(31b)

which is particularly suited to a dominant balance argument [17]. From
Eq.(31b), we recognize that the only possible asymptotic balance is θ0 ∼ a1ε

1/3,
with a1 to be determined. Eq.(31a) then implies that the leading order term
of v(ε) = v0 + o(ε) must satisfy the following equation

%v0 +
√

1− v2
0(π − arcsin v0) = 0. (32)

These results show how to extend the asymptotic analysis to higher orders.
In particular, we know that: (i) the expansion is regular with an asymptotic
sequence given by (ε1/3, ε2/3, . . . , εk/3); (ii) θ̄ and θ0 have the same asymptotic
behavior, i.e, v0 = O(1). Thus, we simplify the elliptic integrals in Eqs.(23)
and (26) as described in detail in Appendix A –specifically, we use Eqs.(A.7),
(A.8)– and then look for solutions of the following form:

θ0 = a1ε
1/3 + a2ε

2/3 + a3ε+ o(ε) , (33a)

θ̄ = v0

(
a1ε

1/3 + b2ε
2/3 + b3ε+ o(ε)

)
. (33b)

The substitution of these expressions into Eqs.(23), (26) yields the following
equations for the coefficients

a1 =

[
12π%v−1

0

3− 3%+ v2
0(2%− 3)

]1/3

(34a)

a2 = 0 (34b)

a3 =
[
15π%

(
1− v2

0

)2 (
20v2

0 − 1
)

+ 2π%2
(
15− 320v2

0 + 497v4
0 − 192v6

0

)

+ π%3
(
−15 + 310v2

0 − 384v4
0 + 120v6

0

) ]
f(%)−1 (34c)

b2 = 0 (34d)

b3 =
[
15π%

(
1− v2

0

)2 (
21− 2v2

0

)
− 2π%2(1− v2

0)
(
315− 225v2

0 + 8v4
0

)

+ π%3
(
315− 420v2

0 + 136v4
0

) ]
f(%)−1 , (34e)

f(%) = 40v0(%+ v2
0 − 1)[3− 3%+ v2

0(2%− 3)]2 , (34f)
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where v0 is again given by Eq.(32). Figure 4 reports the relative errors of
our approximations in the range of interests.

The asymptotic expansion of θ̄ immediately yields the behaviour of `(adh)

as a function of ε (see Eq.(27)). However, it is slightly more complicated
to obtain a good approximation of the blister height, δ. In fact, the Taylor
expansion of Eq.(28), once θ̄ and θ0 are expressed in terms of ε, only very
slowly converge to the numerical solution and thus not provide a good ap-
proximation when ε varies in the range of Figure 4. However, the two-term
approximation is still accurate, within a 10% of relative error (see Figure
4b), when ε < 0.05. Despite small, this value of the excess-length already
accounts for large deformations suitable to direct measurements, since the
blister height is of the order of magnitude of the container radius (see Figure
3). Thus, the two term approximation can be used to compare the theoretical
predictions with experiments.
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0.4
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Figure 4: Relative-error contour-lines of the two-term approximations to blister
height (a) and the adherence length (b). The grey shaded region identifies the
limit of validity of our approximation as we neglect the contact with the container
at the bottom and the self-contact (see Figure 2).

We now turn to the discussion of two important limiting cases of adher-
ence: (i) the pure-curvature regime (% = 1) and (ii) the elasto-capillarity
regime (%� 1).

3.1.1. Curvature regime (% = 1)

In this regime the only source of adherence is due to the curvature of
the confining wall. When % = 1, equation (32) is solved by v0 = v(1)

0 , with
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v(1)

0 ≈ −0.9761. The expansion coefficients reduce to

a(1)

1 = −(12π)
1
3

v(1)

0

, (35a)

a(1)

3 =
π

2v(1)

0

(
9

5
− 1

4(v(1)

0 )2

)
, (35b)

b(1)

3 =
π

4v(1)

0

(
−7

5
+

9

2(v(1)

0 )2

)
. (35c)

−2

−1

0

1

2

0 0.1 0.2
ε

θ̄

θ0

Figure 5: Plot of θ̄ and θ0 versus ε for % = 1. The thick solid line represents
the numerical solution. The one-term approximation (dashed line) agrees with
the numerical solution only for very small values of ε. The two-term asymptotic
expression (solid thin line) gives a much better agreement on a wider range of ε.

Figure 5 sketches the angles θ̄ and θ0 as functions of ε. The comparison
with the numerical approximation clearly shows that the two-term approxi-
mation is needed in order to better capture the behavior of the solution in
the whole range of interest. This is to be contrasted with Fig.5 of Ref.[2]
where only the one-term approximation of the contact angle is plotted. The
two-term approximation is also sufficient to describe the adherence length, as
shown in Figure 6a. However, as already discussed in §3.1, Figure 6b clearly
shows that the blister height is accurately represented by the two-term ap-
proximation only in a limited range of ε.
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`(adh)/r

0 0.1 0.2
ε

(a)

0

1

2

δ/r

0 0.1 0.2
ε

(b)

Figure 6: Plot of (a) the adherence length, `(adh)/r, and (b) the blister height, δ/r,
as functions of ε, when % = 1. The solid thick lines are the numerical solutions,
the dashed lines represent the one-term approximation while the solid thin lines
show the two-term approximation. This latter approximation seems to describe
the adherence length reasonably well, but it does not fully capture the behaviour
of the blister height.

3.1.2. Elasto-capillarity regime (%� 1)

Whenever the adhesion potential is dominant, we have `ec � r and,
hence, %→∞. In this case, equation (32) yields

v(∞)

0 (%) ≈ −π
%
, (36)

and consequently

a(∞)

1 (%) ≈ 2
2
3%

1
3 , a(∞)

3 (%) ≈ 1

24
%, b(∞)

3 (%) ≈ −7

8
%. (37)

It is worth comparing the length of the free part of the strip and the blister
height with the analogue quantities in the planar case as given by formulas
(9) and (10) of [3]. To this end, we observe that the compression ∆l can be
express in terms of ε as ∆l := 2πrε. By using % ≈

√
2r/`ec, the length of the

non-adhering portion (measured in unit of elasto-capillarity length) is

− 2r

`ec
sin θ̄∞ ≈ −2

r

`ec
θ̄∞ = 2π2/3

(
∆l

`ec

) 1
3

− 7

8

∆l

`ec
. (38)
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Similarly, we obtain the expression for the blister height

δ∞
`ec
≈ 2
√

2

(
∆l

π`ec

) 2
3

− 1

2
√

2

(
∆l

π`ec

) 4
3

. (39)

Not surprisingly, these results coincide with those reported in [3].

4. Adherence by curvature with unilateral contact

Let us now suppose that the container can be modelled as a unilateral
and frictionless contact (w = 0). This means that the wall can exerts only
contact forces directed along the inward normal direction. We discuss this
problem from the mechanical point of view, within the theory of the Euler-
Bernoulli beam. Accordingly, at equilibrium the internal force T(s) and the
internal torque M(s) obey the following equilibrium equations

dT(s)

ds
+ f(s) = 0,

dM(s)

ds
+ t(s)×T(s) + m(s) = 0, (40)

where f and m are the external forces and torques per unit length, respec-
tively. This equations must hold in any section s ∈ [s1, s2] of the curve.
Since we assume the effects of gravity to be negligible, the only source of ex-
ternal distributed forces is the contact force exerted by the container, while
m = 0. In the presence of a concentrated force F and torque Γ at s = s∗
the following local balances hold

lim
s→s+∗

T(s)− lim
s→s−∗

T(s) = F, lim
s→s+∗

M(s)− lim
s→s−∗

M(s) = Γ . (41)

This system of equations is completed by the Euler constitutive equation,
that, within the hypothesis of plane deformations, states that the internal
torque is proportional to the difference between the curvature and the intrin-
sic curvature c0:

M(s) = κ[θs(s)− c0]ez. (42)

The free part of the beam is not subject to any external distributed load.
Therefore, (40)1 shows that T must be constant throughout s ∈ [0, s̄). The
equilibrium equation of the free part is thus provided by the balance of torque
(40)2 which reads

κθss − Tx sin θ + Ty cos θ = 0, (43)
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where Tx and Ty are the Cartesian components of the internal force. We
recall that, by our convention, the tangent unit vector to the beam is t(s) =
cos θ(s)ex + sin θ(s)ey. At first sight, equation (43) differs from the equilib-
rium equation (13) as it contains a term in cos θ. However, we have assumed
that θ(s) is odd (and therefore also θss is odd). It is then easy to show that
Ty must vanish and the torque equation reduces to (13). As a further con-
sequence of this symmetry, we observe explicitly that from Ty = 0 it also
follows that the constant internal stress, T, is purely horizontal: T = Tx ex.

−Tt

−Tx

ψ

φ

Figure 7: Internal and external forces acting on the half-beam in case of unilateral
and frictionless contact. The forces Tx and Tt, as given in equations (45) and
(46) respectively, are negative, so that the beam is under compression for any
admissible configuration. The concentrated force ψ is necessary to balance the
vertical components of the internal forces at s = s̄.

When the beam is in contact with the external container, the balance
of forces requires the introduction of the contact forces, whose density per
unit length will be denoted by φ(s). Since we model the container as an
ideal unilateral frictionless constraint, φ is directed along the inward normal
to the surface, hence, we assume φ(s) = −φ(s)n(s), with φ(s) ≥ 0, where
n(s) = − sin θ(s)ex + cos θ(s)ey. Furthermore, the curvature of the beam
in contact with the container is constant and Eq.(42) implies that also the
internal moment M is constant. Thus, from (40)2, we obtain that the normal
component of the internal force, Tn, must vanish for s ∈ (s̄, `/2]. On the other
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hand, equation (40)1, projected along n and t, gives

φ = −Tt
r
, Tt = constant (44)

where Tt is the axial component of T. This also implies that necessarily
Tt ≤ 0.

More subtle is the discussion of the balances at detachment point. To
put the problem in the right perspective, we isolate a small portion of beam
around the detachment point. Since the internal force in the adherent part
posses a non-zero vertical component, while Ty = 0 in the free part, the
balance of forces requires the introduction of a concentrate reactive force
ψ = −ψn(s̄). This can only be given by the container, and therefore it is
necessarily direct as the inward normal (ψ ≥ 0). More precisely, the balance
in the y-direction is

Tt sin θ̄ = ψ cos θ̄. (45)

Thus, ψ is non-negative (and the contact is truly unilateral) only for θ̄ ∈
[−π/2, 0]. On the other hand, the continuity of the axial internal force yields
Tt cos θ̄ = Tx − ψ sin θ̄ whence

Tt = Tx cos θ̄. (46)

The restriction θ̄ ∈ [−π/2, 0] implies that Tx is non-positive, in agreement
with the fact that the entire beam is under compression. Finally we remark
that (when w = 0) the transversality condition (15) implies the continuity of
the curvature at s̄ and, thus, the continuity of the internal torque.

It is now of special interest to study the asymptotic behaviour of the
reactive forces φ and ψ. Equations (44), (45) and (46) yield φ = −Tx cos θ̄/r
and ψ = Tx sin θ̄. Recalling that Tx = −κτ , we gather that both φ and ψ
diverge as ε goes to zero, because τ diverges. In fact, by using (19) together
with the asymptotic expansions (33) and (35a), to leading order we find

τ ∼ 1

r2(1− (v(1)

0 )2)θ0
2 ∼

(v(1)

0 )2

r2(1− (v(1)

0 )2)(12πε)2/3
. (47)

This result is in agreement with the analysis of [2] and the experimental
results reported in [9], where it is shown that the mean pressure exerted by
the strip on the container becomes very large when ε tends to zero.

Finally, we explicitly notice that the spontaneous curvature, c0, does not
affect the equilibrium shapes and the corresponding forces.
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5. Concluding remarks

We have studied the morphology of an elastic closed inextensible strip of
length `, confined by a cylinder of radius r, where ` > 2πr. The excess length
forces the beam to detach from the cylinder, leading to two distinct parts: an
adhering portion and a free part (or ‘blister’). These regions are governed by
different equations and must agree at the detachment point, whose position
is part of the problem.

Two different mechanisms concur to promote the adhesion. The first is
purely geometric and is the curvature of the container. The second has a
physical origin and it is given by the elasto-capillarity interaction of the strip
with the container. At human length scales the former usually dominates.
However, at small scales the elasto-capillarity often plays a significant role in
many phenomena [11].

We have presented numerical results for the equilibrium shape when the
strip length ` and the adhesion strength are given, allowing for the possibility
of large deformations. At fixed `, the solution depends upon a dimensionless
parameter % ∈ [1,∞) that measures the relevance of the adhesion due to the
curvature with respect to that due to the adhesion potential. The geometrical
aspects dominate whenever % approaches one. On the contrary, for very large
%, while the elasto-capillarity length remains finite, we match the results that
apply to the formation of delamination blisters on a rigid flat substrate [3].

In addition to the numerical results, we have provided the asymptotic
expansions for two quantities related to the blister shape: the length of the
adhering region `(adh) and the blister height δ. The small parameter used in
these expansions is the normalized excess length ε := (` − 2πr)/(2πr). The
two-term approximation is able to capture the behaviour of `(adh) up to the
points of self-contact or contact of the blister with the delimiting wall. By
contrast, the same approximation predicts the blister height accurately only
in a smaller range of ε. In any case, the asymptotic analysis yields simple
laws that an experimentalist can possibly use to determine some constitutive
parameters by inverse analysis.

Finally, we have considered the case where the delimiting wall is modelled
as an ideal frictionless unilateral contact and hence determined the external
actions that the surface exerts on the strip. These consist in a distributed
force (per unit length) and, unexpectedly, also in concentrated force acting
at the detachment point. The latter makes the derivative of the curvature
discontinuous at the detachment point and is also responsible for the discon-
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tinuity of the internal shear force. We also find that when the detachment
angle, θ̄, reaches π/2, the contact force exerted by the container changes sign,
thus violating the unilateral constraint. This effect places an upper limit to
the value of admissible ε. More precisely, we find that this effect appears
for ε ≈ 0.228, a value below that attained for the blister contact with the
container. Furthermore, our asymptotic analysis has shown that the internal
force and, consequently, the external actions diverge when ε tends to zero.
This agrees with the experimental results reported in [9]. In our opinion, the
origin of this singularity could be a consequence of the assumed inextensibil-
ity. In a more realistic model, one should relax the inextensibility constraint
in favor of a penalization energy term related to compression/dilatation.
Thus, initially the strip may undergo a slight compression and then form a
blister, beyond a compression threshold.
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[8] G. Domokos, W. Fraser, I. Szeberényi, Symmetry-breaking bifurcations of the
uplifted elastic strip, Physica D: Nonlinear Phenomena 185 (2) (2003) 67–77.
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Appendix A. Asymptotic approximations for elliptic integrals

Very simple approximations of F(x|m) and E(x|m) for small x can be
obtained as follows

F(x|m) =

∫ x

0

dt√
1−m sin2 t

≈
∫ x

0

dt√
1−mt2

=
1√
m

arcsin(
√
mx) , (A.1)

E(x|m) =

∫ x

0

√
1−m sin2 t dt ≈ 1

2

[
x
√

1−mx2 +
1√
m

arcsin(
√
mx)

]
.

(A.2)

Therefore, the leading approximations of the elliptic integrals contained in
Eqs.(23), (26) are found to be

2F(q0)− F(q̄) ≈ θ0

2

(
π − arcsin(θ̄/θ0)

)
, (A.3)

2E(q0)− E(q̄) ≈ θ0

4

(
π − arcsin(θ̄/θ0)− θ̄/θ0

√
1− (θ̄/θ0)2

)
. (A.4)

Despite quite crude, these approximations are surprisingly good, as some
numerical experiments readily show. However, to be on the safe side, we
look for more refined approximations. To this end, we adapt the strategy
outlined in the electronic supplementary information of Ref.[3]. We make
the substitution u =

√
m sin t, du =

√
m cos t dt, so that

dt =
1√
m

du√
1− u2

m

.

We then substitute m = csc2 θ0/2, and expand for θ0 � 1,

dt = sin
θ0

2

(
1 +

1

2
u2 sin2 θ0

2
+O(θ4

0)
)
du .

The incomplete elliptic integrals are then approximated by

F(q̄) ≈
∫ sin θ̄/2

sin θ0/2

0

sin
θ0

2

(
1 +

1

2
u2 sin2 θ0

2

) du√
1− u2

, (A.5)

E(q̄) ≈
∫ sin θ̄/2

sin θ0/2

0

sin
θ0

2

(
1 +

1

2
u2 sin2 θ0

2

)√
1− u2 du . (A.6)
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These integrals can be computed exactly. However, we are only interested in
their approximation for θ0 � 1 and θ̄ � 1. After some calculations, which
we do not report for brevity, we obtain

2F(q0)− F(q̄) ≈
(θ0

2
+
θ3

0

96

)(
π − arcsin(θ̄/θ0)

)
+
θ2

0 θ̄

96

√
1− (θ̄/θ0)2 , (A.7)

2E(q0)− E(q̄) ≈
(θ0

4
− θ3

0

384

)(
π − arcsin(θ̄/θ0)− θ̄/θ0

√
1− (θ̄/θ0)2

)

− θ2
0 θ̄

192

(
1− (θ̄/θ0)2

)3/2
. (A.8)


