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a b s t r a c t

We analysed the dynamics of the positively charged ions of diatomic molecules (X2+ and XY+), in which
the bond is realized by the single electron. We assumed that the atomic cores separated by the distance
R were subjected to the external excitation of the harmonic type with the amplitude A and frequency
Ω . We found the ground states of ions using the variational approach within the formalism of second
quantization (the Wannier function was reproduced by means of Gaussian orbitals). It occurred that,
on the account of the highly non-linear dependence of the total energy on R, the chaotic dynamics of
cores induced the chaotic evolution of the electronic Hamiltonian parameters (i.e. the energy of the
electron orbital ε and the hopping integral t). Changes in cation masses or in the charge arrangement
does not affect qualitatively the values of Lyapunov exponents in the A-Ω parameter space.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

While analysing the results of the conventional deterministic
haos theory, one can notice that the complicated dynamics of
he physical system does not necessarily result from its intri-
ate structure. Much more significance should be attached to
he presence of the nonlinear interactions in the examined sys-
em, because they can lead to the exponential divergence of the
nitially close trajectories in the phase space. Let us recall the ex-
mple of the three-body system with gravity interactions, which
as examined in detail e.g. by Poincare [1] (see also [2]). Similar
imple system (Lorenz equations) was successfully applied also to
he phenomenon of thermal convection [3], or to the dynamics
f the Belousov–Zhabotinsky chemical reaction [4]. And the ex-
remely simple system of this kind is the periodically accelerated
endulum for which the gravity force component implying the
otion is proportional to the sine of the swing angle [5].
The conventional chaos theory is fairly well established by

ow and its results are presented in many scientific treatises [6–
]. On the other hand, for the case of quantum systems, we cannot
peak of full understanding of their dynamics yet [9–13]. This
s due to the fact that these systems are described by much
ore complex formalism than Newton formalism. Specifically,
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E-mail address: jarosikmw@wip.pcz.pl (M.W. Jarosik).
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0167-2789/© 2021 Elsevier B.V. All rights reserved.
fermions are described by the Schrödinger equation [14–17], its
relativistic version, i.e. the Dirac equation [18,19], and the quan-
tum electrodynamics [20,21]. Boson systems are also subject to
the quantization procedure (see e.g. [22,23]). However, in the case
under consideration there is a classical limit, which facilitates
the interpretation of the obtained results. The researches carried
out so far seem to suggest that there is no quantum system
which would behave in the chaotic way (i.e. the one exhibiting
the continuous power spectrum or deterministic diffusion) [6].
This fact can be checked by studying the example of the Arnold’s
quantum transformation [24] or stricken quantum rotator [25].
However, these quantum systems, which on approach to the
boundary of validity of the conventional theory exhibit chaotic
behaviour, have their wavefunctions distinctly different from the
systems with regular behaviour at the same boundary. The wave-
functions of the free particle in the stadium and in the circle can
be compared as the example [26]. The reason for suppression
of chaos in quantum system is said to be the finite value of
the Planck constant (h), which along with the Heisenberg un-
certainty principle introduces the indistinguishability of points in
the 2N-dimensional phase space contained within the (h/2π )N
volume.

Currently developed research directions related to quantum
chaos are based on the methods for solving quantum problems,
where the perturbation cannot be considered small
[13,27–29]. In particular, the statistical descriptions of energy
levels are used [30–35]. The starting point for considerations is

https://doi.org/10.1016/j.physd.2021.132929
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he distribution of level spacing between eigenlevels: P (s) =

δ
(
p − Ej + Ej+1

)⟩
. For regular systems, P (s) has the universal

form of the Poisson distribution [36]: P (s) = e−s, i.e. the suc-
cessive energy levels are not correlated. The universal nature
of the distribution means that it is valid for systems belong-
ing to the same symmetry class and does not depend on their
individual properties. Based on the Random Matrix Theory, it
was shown that in the case of quantum chaotic systems three
basic universal distributions can be distinguished: the Gaussian
Orthogonal Ensemble, the Gaussian Unitary Ensemble, and the
Gaussian Symplectic Ensemble [37–40]. Other chaotic criteria
were also obtained, e.g. the spectral stiffness [41], the autocor-
relation function of energy levels velocity [42,43], and the noise
of 1/f type [44]. Please note that the 1/f feature is universal,
.e. this behaviour is the same for all kinds of chaotic systems,
ndependently of their symmetries. Another approach is based
n the semiclassical methods such as periodic-orbit theory con-
ecting the classical trajectories of the dynamical system with
he quantum features [45]. In addition, studies that directly refer
o the correspondence principle are worth emphasizing [13,29].
ecently, the out-of-time-order correlators (OTOC) have been
ntensively discussed as a measure for quantum chaos [46–51].
he OTOC are useful to quantify quantum chaos by defining
he quantum analogue of the Lyapunov exponent [52,53]. The
orrelators were first studied in the context of theory of super-
onducting state [54]. Note that the discussed method of analysis
s very universal, as it was also used in context of the quantum
ravity, the anti-de Sitter/conformal field theory correspondence,
he field theories, and the many-body physics (including the
any-body localization [47,55–57]).
The presented paper analyses the dynamics of positively char-

ed ions of diatomic molecules (X+

2 or XY+), whose atomic cores
re subjected to the harmonic excitation. The chaotic dynam-
cs analysed in the study is that of the classical mechanical
ystem of the nonlinear oscillator subjected to the harmonic
orce, whose potential is classically given by the ordinary nonlin-
ar function (which is quantum-mechanically evaluated before-
and by the adiabatic approximation [58]). Let us note that at
resent the theoretical description of small molecular systems
s so developed that it is possible to calculate their physical or
hemical properties with high accuracy [58–63]. From the point
f view of the issues discussed in the paper, the particularly
oteworthy are the results obtained for such molecules as: Li+2 ,
a+

2 , LiNa+, K+

2 , and LiH+; the cation Cu+

2 or other examples
64–73]. The high accuracy of obtained theoretical predictions
or the small molecular systems results from the possibility of
xact diagonalization of the electron Hamiltonian, since these
ystems contain at most a few electrons. As standard, calculations
re made under the formalism of the second quantization [74],
hich enables the strict consideration of many-body interactions

n issues related to chemistry and solid state physics [75]. In the
ase at hand, the electron Hamiltonian is conveniently written in
he form proposed by Hubbard [76,77] due to the fact that this
pproach makes it possible to easily distinguish one- or two-body
ontributions to the electron energy. The diatomic molecules X+

2
r XY+ are rather unique from the chaos theory point of view,
ecause they consist of two correlated subsystems of very simple
tructure: the conventional one (the atomic cores or – in the
xtreme case of hydrogen – protons) and the purely quantum one
the electron). Let us notice that this description of the molecule
s based on the Born–Oppenheimer approximation [58], which
akes use of the fact that the atomic cores can have thousands
f times greater mass than the single electron. Therefore their
otion is slower by several orders of magnitude than the motion
f electrons. Reversely, electrons adapt themselves ‘immediately’
o the changed position of cores. Because of this one can examine
2

the influence of the chaotic dynamics of atomic cores, resulting
from the existence of the highly nonlinear internuclear poten-
tial, on the time evolution of the parameters of the electronic
Hamiltonian (energy of the electron orbital ε and the hopping
integral t). This does not mean that the quantum subsystem (the
electronic one) will evolve in the chaotic manner. Nevertheless
it will respond to the behaviour of atomic cores, so that the
model described here can serve as the basis for investigation of
the changing dynamics of electrons in order to determine the
influence of the chaotic evolution of the core subsystem on the
quantum electronic system.

The structural simplicity of the considered systems is well
worth attention, since it plays the considerable role. It enables
to perform complicated quantum-mechanic calculations with the
utmost accuracy (which is demanded in quantum chemistry)
[58–60,63]. We performed calculations for the presented work
with an accuracy to six decimal places.

It is worth noticing that during the performed analysis we
took into account cations with different core masses and the
asymmetric charge distribution between the cores. It allowed us
to show the universal character of the chaotic behaviour of cores
in the whole family of diatomic cations with the molecular bond
realized by the single electron.

2. Description of the ground state of cations with one-electron
bond

Let us consider ions composed of two either identical (X) or
different (X and Y) atoms, while we regard their atomic nuclei
with the inner shell electrons as the atomic cores. The effective
charges of these cores are Z1 and Z2, where Z1 + Z2 = +2 (in
atomic units). The atomic cores are bound to form the molecule
by means of the single electron. In the considered case either
the X+

2 or the XY+ cation arises. The simplest example of such
the system is the H+

2 or D+

2 molecule [61], however the core
charge asymmetry does not occur there (Z1 = Z2 = +1). But
the above presented description can also be applied to the more
complicated systems, e.g. the homo and heteronuclear alkali-
metal cation dimers (Li+2 , Na

+

2 , LiNa
+, K+

2 , LiH
+), and the cation

Cu+

2 [64–73]. It is also worth noting that the system consisting of
two nuclei and one electron was already studied in the twenties
of the last century [78,79].

Let us take into account the total energy of an exemplary
diatomic cation: ET = Ec + Ee, where Ec = 2Z1Z2/R, represents
the energy of the core–core interaction (R stands for the intercore
distance R = |R|). The energy of the electron orbital in the
ground state is denoted by Ee symbol. It can be calculated with the
use of Hubbard Hamiltonian written in the second quantization
notation [74–77]:

Ĥe = ε1n̂1 + ε2n̂2 +

∑
σ

(
t12n̂12σ + t21n̂21σ

)
, (1)

where: n̂j =
∑

σ n̂jσ , n̂jσ = ĉ†
jσ ĉjσ , and n̂ijσ = ĉ†

iσ ĉjσ . The symbol
ĉ†
jσ (ĉjσ ) represents the creation (annihilation) operator referring
to the electronic state of the spin σ ∈ {↑, ↓} on the jth core.
The energetic parameters of the Hamiltonian should be calculated
numerically directly from their definitions [80]:

εi =

∫
d3rΦi (r)

[
−∇

2
−

2Zi
|r − R|

]
Φi (r) , (2)

tij =

∫
d3rΦi (r)

[
−∇

2
−

2Zj
]

Φj (r) .

|r − R|
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he symbol Φj (r) denotes the Wannier function:

1 (r) = A+ (S) φ1 (r) + A− (S) φ2 (r) , (3)
Φ2 (r) = A− (S) φ1 (r) + A+ (S) φ2 (r) ,

here the normalization constants take the form:

± (S) =
1
2

[
1

√
1 + S

±
1

√
1 − S

]
. (4)

The overlap integral should be calculated by using the formula:
S =

∫
d3rφ1 (r) φ2 (r) = exp

(
−α2R2/2

)
, where the Gaussian

rbital is given by the expression: φi (r) =
(
2α2/π

)3/4 exp [
−α2

(r − Ri)2
]
, and α is the variational parameter. The construction of

he Wannier function by using two Gaussian orbitals was dictated
y the requirement to obtain qualitatively good results using rela-
ively simple numerical methods. It should be clearly emphasized
hat the Wannier function can also be composed of more compli-
ated functions than the Gaussian orbitals (e.g. the 1s Slater-type
rbitals [62,63]). From the mathematical point of view, this case
s equivalent to considering the Wannier function being the series
ade up of the Gaussian orbitals. The numerical results can also
e improved by considering more than one variation parameter
e.g. two for different atoms in the molecule). Nevertheless, this
pproach complicates the numerical calculations very much due
o the possibility of the existence of many local minimums of
he total energy functions. Moreover, in the Born–Oppenheimer
pproximation the core of each atom is treated as infinitely
assive, as a result of which different atoms differ only in the
alue of the effective nuclear charge Zi. This fact is included in
he presented model in the energy of molecular orbital ε and the
opping integral t (see Eq. (2)).
It is worth noticing that the Hamiltonian (1), despite its sim-

licity, takes into account all contributions to the energy of the
lectron orbital due to the fact that we consider cations with the
ne-electron bond. In the case of the multiple bond, the energies
f electronic correlations should be additionally included. For
he simplest case of the double bond they comprise the on-
ite Coulomb repulsion U , the energy of the inter-site Coulomb
epulsion K , the exchange integral J , and the energy of correlated
lectron hopping V . These quantities are thoroughly discussed
.g. in [75].
The electronic Hamiltonian in matrix notation takes the form:

ˆ e =

⎛⎜⎝ ε1 0 t12 0
0 ε1 0 t12
t21 0 ε2 0
0 t21 0 ε2

⎞⎟⎠ , (5)

for the basis assumed as follows:

|1A, 1/2⟩ = |(1, 0), (0, 0)⟩ = ĉ†
1↑|0⟩, (6)

1A, −1/2⟩ = |(0, 1), (0, 0)⟩ = ĉ†
1↓|0⟩, (7)

|1B, 1/2⟩ = |(0, 0), (1, 0)⟩ = ĉ†
2↑|0⟩, (8)

|1B, −1/2⟩ = |(0, 0), (0, 1)⟩ = ĉ†
2↓|0⟩. (9)

e introduced the notation |wx, s⟩, where w denotes the max-
mum number of electrons at the site A (x = A) or B (x = B).
he symbol s represents the resultant spin (s ∈ {−1/2, 1/2}).
he notation |0⟩ = |(0, 0), (0, 0)⟩ describes the vacuum state. It
hould be clearly stated that the second quantization formalism
s absolutely equivalent to the formalism of wave mechanics
ntroduced by Schrödinger [14–17].

The eigenvalues of the Ĥe Hamiltonian can be calculated ana-
ytically:
3

Fig. 1. Total energy (ET ) of the ion of molecule H+

2 versus the intercore distance
R. The blue line is for the Gaussian orbitals used in the calculation. The inset
presents the distribution of the electronic charge in the equilibrium state (R =

R0). The green line indicates the results obtained for H+

2 ion by using the Slater-
type orbitals. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

E1 = E2 =
ε1 + ε2

2
−

√
t12t21 +

(
ε1 − ε2

2

)2

(10)

= Emin,

3 = E4 =
ε1 + ε2

2
+

√
t12t21 +

(
ε1 − ε2

2

)2

. (11)

It can be easily seen that the ground state is the degenerated
one, this being related to the existence of two directions of the
electronic spin projections. The degeneration can be removed by
the constant external magnetic field (H) applied to the cations:
ĤH = −2H

(
Ŝz1 + Ŝz2

)
, where Ŝzj =

1
2

(
n̂j↑ − n̂j↓

)
[81,82]. The

eigenvectors have the form:

|1, 1⟩ = e2

(
1
e3

ĉ†
1↑ +

e−

1

e4
ĉ†
2↑

)
|0⟩, (12)

|2, 1⟩ = e2

(
1
e3

ĉ†
1↓ +

e−

1

e4
ĉ†
2↓

)
|0⟩, (13)

|3, 1⟩ = −e2

(
1
e3

ĉ†
1↑ +

e+

1

e4
ĉ†
2↑

)
|0⟩, (14)

4, 1⟩ = −e2

(
1
e3

ĉ†
1↓ +

e+

1

e4
ĉ†
2↓

)
|0⟩, (15)

here the numbers x, y included in |x, y⟩ stand for the index
of eigenvector and the number of electrons in the system under
study, respectively. We introduced some auxiliary designations in
the above formulae, namely:

e±

1 = ε2 − ε1 ±

√
4t12t21 + (ε1 − ε2)

2, (16)

e2 =

√
2t12 (t12 + t21) − (ε1 − ε2) e+

1 , (17)

e3 =
√
2
√

(t12 + t21)2 + (ε1 − ε2)
2, (18)

e4 = 2t12e3. (19)

The first step of the analysis focuses on the case of charge
symmetry (Z1 = Z2 = +1).

Fig. 1 presents the total energy of H+

2 ion versus the intercore
distance R (also for the case of Wannier function comprises two
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Fig. 2. The dependence of the energy of the electron orbital ε and the hopping
integral t on the intercore distance R for the case of H+

2 ion. The results were
obtained using the Gaussian orbitals.

Fig. 3. The influence of the charge asymmetry of the atomic cores on the
energetic state of the XY+ ion. The insets show the dependence of R0 and ED on
∆Z . The value ∆Z = 0.3 corresponds to the cation LiH+ and the value ∆Z = 0.9
corresponds to the LiNa+ system.

1s Slater-type orbitals [62,63]: ϕj (r) =
√

α3/π exp
[
−α|r − Rj|

]
).

he ET (R) function exhibits the characteristic minimum at R0 =

.85818 a0 (a0 ≃ 0.529 · 10−10 m) of the value equal to E0 =

T (R0) = −1.09797 Ry (Ry= 13.6 eV). From the physical
iewpoint R0 determines the equilibrium distance of the sys-
em, which corresponds to the dissociation energy ED = E0 −

imR→+∞ ET (R) = −0.24658 Ry. The background in Fig. 1 shows
he equilibrium distribution of the electronic charge for the H+

2
on (ρ (r) =

∑
j Φ

⋆
j (r) Φj (r)). For the case of Wannier function

ith two Slater-type orbitals that is equivalent to the sum of
ifteen Gaussian orbitals (Φi (r) = α3/2 ∑15

a=1 βaφ
(a)
i (αr), where:

(a)
i (r) =

(
2α2

a/π
)3/4 exp [

−α2
a (r − Ri)2

]
, and the coefficients βa

ike αa are responsible for minimize the total energy), we came
o the following estimates: R0 = 2.00330 a0, E0 = −1.17301 Ry,
nd ED = −0.17241 Ry (see also Fig. 1). These results agree
ith the results of the numerical analysis carried out by Schaad
4

and Hicks: R0 = 1.9972 a0 and E0 = −1.20527 Ry [61].
Comparing the energy curves presented in Fig. 1, it is clear that
using the Wannier function given by the formula (3) leads to the
slight overestimation of energy of the ground state E0, and the
reater overestimation of the equilibrium distance R0. However,

the shape of E (R) curve is correctly rendered with just one
variational parameter α.

Using the value of R0 for H+

2 ion (the Gaussian orbitals), we
calculated equilibrium values of the energy of the electron orbital
ε0 and the hopping integral t0. The results are: −1.53949 Ry and
−0.25823 Ry, respectively. The value of the variational parameter
α0 is equal to 0.66410 a−1

0 . For the case of Slater-type orbitals,
we obtained: ε0 = −1.69825 Ry, t0 = −0.47312 Ry, and α0 =

1.23803 a−1
0 . The full dependence of the energy of the electron

orbital and the hopping integral on the intercore distance for the
H+

2 cation is presented in Fig. 2. It can be seen that the energetic
parameters of the Hamiltonian depend strongly on R.

Let the symbol Ô represent the operator corresponding to
the given physical quantity. We determine the observables by
means of the formula:

⟨
Ô
⟩

=

⟨
w|Ô|w

⟩
, where |w⟩ denotes the

eigenvector of the electronic Hamiltonian corresponding to the
minimum value of the total energy [82]. As far as we consider the
positively charged ion of the molecule with one-electron bond,
only one observable is physically interesting — the occupation
at site j: nj =

⟨
n̂j

⟩
=

∑
σ

⟨
n̂jσ

⟩
. Other observables either are

the re-scaled nj values or take the zero value [80]. If we choose
an electron with the upward directed spin, we can calculate nj
analytically from the formulae:

n1 =

(
e2
e3

)2

, (20)

n2 =

(
e2e−

1

e4

)2

= 1 − n1,

n12 =
e22e

−

1

e3e4
= n21.

The same results we would obtain also for the downward directed
spin.

Let us discuss now the physical state of the XY+ cation, the
case of asymmetric distribution of the core charge (Z1 ̸= Z2).
Fig. 3 illustrates the influence of the increasing charge asymmetry
of the atomic cores constituting the XY+ ion on the shape of
the ET (R) function. One can notice that the equilibrium distance
R0 shortens with an increase in the parameter ∆Z = |Z1 − Z2|
(inset (a)). The dissociation energy ED at first slightly increases,
then decreases (inset (b)). The equilibrium values of the electronic
Hamiltonian parameters can be found in Table 1.

The results collected in Fig. 3 and in Table 1 can be referred
to stable cations LiH+ and LiNa+ analysed in the literature [73].
In the first step, let us calculate the effective nuclear charge
Z = N − σ for H, Li, and Na atoms. The symbol N denotes the
atomic number and σ is the Shielding or screening constant. The
parameter σ is the sum of the following contributions: (i) Each
other electron in the same group as the electron of interest shield
to the extent of 0.35 nuclear charge units — except 1s group, in
which the other electron contributes only 0.30. (ii) If the group
n is of s, p type (n is the shell number and s or p denotes the
subshell label), the amount of 0.85 from each electron in n− 1th
hell and the amount of 1 for each electron from n−2 and lower
shells is added to the shielding constant. (iii) If the group is of d
or f type, the amount is equal to 1 for each electron.

The electronic configurations H, Li, and Na atoms are in the
form: 1s1, 1s22s1, and 1s22s22p63s1, respectively. From here, we
get: ZH = 1, ZLi = 1.3, and ZNa = 2.2. The calculations give:
∆Z+

= 0.3 and ∆Z+
= 0.9.
LiH LiNa
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Table 1
The electronic parameters and the occupation at site j for selected values of ∆Z . The stable ions LiH+ and LiNa+

are characterized by the following values: ∆Z = 0.3 and ∆Z = 0.9.
∆Z ε10 [Ry] ε20 [Ry] t120 [Ry] t210 [Ry] n1 n2 n12 = n21

0 −1.5393 −1.5393 −0.257969 −0.257969 0.5 0.5 0.5
0.1 −1.68416 −1.39315 −0.259146 −0.258067 0.745972 0.254028 0.435313
0.2 −1.83909 −1.24525 −0.270709 −0.268424 0.87115 0.12885 0.335034
0.3 −2.00904 −1.08618 −0.292397 −0.288287 0.924195 0.0758051 0.264686
0.4 −2.19494 −0.908019 −0.322854 −0.31562 0.949019 0.0509811 0.219959
0.5 −2.39521 −0.70532 −0.360416 −0.348134 0.962394 0.0376063 0.190242
0.6 −2.60878 −0.474263 −0.404472 −0.384519 0.970489 0.0295114 0.169235
0.7 −2.83662 −0.209848 −0.456342 −0.424812 0.975819 0.024181 0.155278
0.8 −3.07207 0.0834013 −0.51086 −0.464853 0.979696 0.020304 0.141038
0.9 −3.32195 0.416627 −0.574607 −0.507966 0.982581 0.017419 0.130827
o
b
i
f
R

µ

Fig. 4. Energies of the electron orbital ε1 and ε2 , as well as the hopping integrals
12 and t21 versus the intercore distance R. (a) The case of the LiH+ cation
∆Z = 0.3). (b) The case of the LiNa+ cation (∆Z = 0.9).

Fig. 5. Occupation at the XY+ ion sites for the increasing charge asymmetry of
he atomic cores. The value ∆Z = 0.3 describes the system LiH+ and the value
Z = 0.9 corresponds to the LiNa+ system.

Fig. 4 shows full trajectories of the energies of the electron
rbital and the hopping integrals versus R for LiH+. The obtained
esults prove that the charge asymmetry of the atomic cores
an induce great differences in values of the considered quan-
ities. It should be also noticed that the change in the shape of
he ET (R) function induced by the asymmetric distribution of
he charge distribution on the atomic cores will result in the
5

noticeable change in phonon properties and the values of the
electron–phonon coupling function [83].

The influence of the charge asymmetry of atomic cores on
the occupation at site j is represented in Fig. 5. The selected
values of n1 and n2 are gathered in Table 1. We can observe the
same probability of finding the electron on either core for the
symmetric case Z1 = Z2. As expected, the charge asymmetry
increases the occupation at the atomic core with higher Zj value.

3. Time evolution of the energy of the electron orbital and the
hopping integral

Variationally computed dependence of the total energy ET
n the distance R models the effective potential of interaction
etween atomic cores in the cation. If the cores are additionally
nfluenced by the harmonic force of the amplitude A and the
requency Ω , then the Newton equation which determines the
(T ) function takes the form:

d2R (T )

dT 2 = −

[
dET (r)

dr

]
r=R(T )

− A|cos (ΩT ) |, (21)

where the quantity µ = MC1MC2/(MC1 + MC2) denotes the re-
duced mass of atomic cores. The minimum value of µ is obtained
for the H+

2 cation and is equal to 918.076336 (in electron mass
units me). For more complicated systems, the mass of the given
core MC can be estimated from the formula: MC ∼

(
np + nn

)
mp,

where np (nn) represents the number of protons (and neutrons)
contained in this core, mp is the proton rest mass. We neglected
the contribution from the intercore electrons because me ≪ mp.

It should be mentioned that we take into account only the
case when the external harmonic force stretches the molecule.
Therefore the absolute value symbol occurs in equation (21). We
do not analyse the case of the compressive force to exclude the
possibility of the molecule rotation, which could proceed perpen-
dicularly to the direction of the external force. This convenient
limitation refers to the fact that the fundamental properties of the
atomic core dynamics (e.g. the chaotic state occurrence) do not
depend on the exciting force direction (its inward or outward ori-
entation), but result from the strong nonlinearity of the effective
intercore potential [6,63].

As we already know the total energy function ET (R) calculated
from the first principles, we can solve the Newton equation.
On the account of our interest in the chaotic behaviour of the
molecule, we presented the adequately selected results for the
intercore distance versus time in Fig. 6(a). Precisely speaking, we
took into account two trajectories, R1 (T ) and R2 (T ), which ini-
tially were 10−6 a0 apart. Additionally, we assumed that the value
of Lyapunov time (T ) would be reached when the trajectories
went apart as far as the distance of 10−1 a0. The Lyapunov time
for the case presented in Fig. 6(a) occurred to be TR = 9664.4 τ0,
where τ0 ≃ 2.418·10−17 s is the unit of time in the atomic system
of units.
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Fig. 6. (a) Time dependence of the intercore distance of H+

2 cation (the case
f Gaussian orbitals) for two very close trajectories R1 (T ) and R2 (T ), initially

10−6 a0 apart. The following parameters of the exciting force were assumed:
A = 0.3 a0 and Ω = 0.06 τ−1

0 . (b) and (c) Chaotic evolution of the energy of
the electron orbital and the hopping integral. Black arrows point to the values
of Lyapunov time.

The time dependence of the intercore distance correlates di-
rectly to the time dependence of electronic Hamiltonian parame-
ters (the energy of the electron orbital ε and the hopping integral
t). This results from the fact that these quantities depend directly
from the distance R (see Fig. 2). Fig. 6(b) and (c) represent the
time dependence of the energy of the electron orbital ε and
he hopping integral t . The obtained trajectories also indicate
he chaotic behaviour, characterized with Lyapunov time values
ε = 10973.2 τ0 and Tt = 10973.2 τ0, respectively. The values
f Tε and Tt are quite close to the value of TR, what signifies that
hese parameters can be used interchangeably to characterize the
haotic behaviour of H+

2 system.
Besides the Lyapunov time, also the structure of the power

pectrum Px (ω) = |lima→+∞

∫ a
0 dT exp (iωT ) x (T ) |

2
, where x =

or x = t , gives the evidence of chaos. Fig. 7(a) and (b) show
ur results in this respect. One can see the large broadening of
he power spectrum indicating the great number (theoretically
n infinite number) of frequencies present in examined signals.
t is the characteristic feature of the power spectra of functions
hanging in the chaotic way (irregular and non-periodical). Let us
otice that for the quasi-periodic functions, which are also very
omplicated, one obtains the discrete lines corresponding to the
efinite frequencies [6].
The overall characteristics of the chaotic properties of H+

2
ation is presented in diagrams 8(a)–(c), where we plotted the
alues of the Lyapunov exponents (λ ∼ 1/T ), namely λR, λε , and
t , versus the amplitude A and the frequency Ω of the exciting
orce. It can be easily seen in Fig. 8(a) that the atomic core
ubsystem is in the chaotic state only for selected values of A and
6

. Values of the λR exponent corresponding to the chaotic state
form characteristic ‘islands’, the one particularly extensive being
found for low exciting frequencies. The juxtaposed diagrams 8(b)
and (c), presenting λε and λt , are very similar to the diagram
R (A, Ω), as was expected.
The presented model allows also to analyse the chaotic be-

haviour of the XY+-type cations, where the molecular bonding is
realized by means of the single electron. Such cations can differ
from the H+

2 cation with respect to the reduced mass µ and/or
to the value of the |∆Z | parameter. Our results prove that the
haotic behaviour of the considered group of cations has similar
haracteristics as the H+

2 ion.

. Summary and discussion of results

In the paper, we studied the dynamic properties of the
olecules X+

2 (H+

2 ) and XY+ (LiH+, LiNa+) both with symmetric
nd the asymmetric charge distribution. In the case when the
ations are subjected to vibration by the harmonic force, the
haotic changes of the intercore distance R can be observed for
ome values of the force amplitude A and the force frequency
. It should be emphasized that the chaotic behaviour of the
xamined systems results from the presence of the highly non-
inear intercore potential, and not from the specific form of the
xciting force. The comprehensive analysis of the atomic core
ynamics shown that there exist characteristic areas in the A-

Ω parameter space for which the non-zero values of Lyapunov
exponent λR can be found. The particularly large ‘islands’ of this
type were revealed for the low excitation frequencies.

The chaotic changes of the intercore distance induce directly
the chaotic evolution of the electronic Hamiltonian parameters
ε and t . It should be stressed, that the change of the core mass
or the charge distribution not influences qualitatively the general
structure of the diagrams λR (A, Ω) or λx (A, Ω), where x = ε

or x = t . Moreover, the great similarity between λR (A, Ω) and
λx (A, Ω) can be observed.

The results presented in the paper were obtained as part of
the formalism of the second quantization using the variational
calculations. Our method of analysis is one of the most accurate
methods that can be used. This is evidenced by the results that
we received for H+

2 , which turned out to be consistent with the
results obtained by Schaad and Hicks [61]. It should be empha-
sized that the discussed method can using in order to successfully
characterized even more complex systems than single-electron
cations. In particular, for the hydrogen molecule H2 and the anion
H−

2 , it has been obtained: R0 = 1.41968 a0, (E0 = −2.323011 Ry),
and R0 = 3.476828 a0, (E0 = −1.947958 Ry). In the case of
the hydrogen molecule, our results are fully consistent with the
Kołos and Wolniewicz data [59,60]: R0 = 1.3984 a0 and E0 =

−2.349 Ry, and the results obtained by Ka̧dzielawa et al. [62]:
R0 = 1.43042 a0 and E0 = −2.29587 Ry. Please note that, the
value of E0 calculated using the Mopac software package [84]
differs from the results of Kołos and Wolniewicz by 12 %. The
calculations made by us using the Quantum Espresso [85] package
gave the inaccurate value of the dissociation energy (∼ 0.17 Ry,
the PBE functional). For the ion H−

2 , literature data are divergent.
The early theoretical paper by Eyring, Hirschfelder, and Taylor,
using the valence bond technique with two variation parame-
ters, found the stable ground state with the minimum at R0 =

3.40151 a0 [86]. This result correlates well with ours, where R0 =

3.476828 a0. However, the paper [87] suggests that the ion H−

2 is
not stable relative to the auto-ionization into H2 and the electron
at infinity.

Nevertheless, the presented model contains some simplifica-
tions. In particular, we use the Born–Oppenheimer approxima-
tion [58], and we treat the atomic nucleus with the inner shell



I.A. Domagalska, M.W. Jarosik, A.P. Durajski et al. Physica D 423 (2021) 132929
Fig. 7. Power spectra Pε (ω) and Pt (ω) of the ε(T ) and the t(T ) functions. The case of H+ cation (the Gaussian orbitals).
2
Fig. 8. Values of the Lyapunov exponents λR , λε , and λt in the A-Ω parameter space. The case of H+

2 cation (the Gaussian orbitals).
electrons as the atomic core. Using the Born–Oppenheimer ap-
proximation in our calculations did not include the non-adiabatic
terms that would give better approximations when expanded to
orders not less than r1/4, where r ∼ 544 · 10−6 is the ratio of the
electron to the proton mass [88]. On the other hand, the atomic
core approximation is commonly used in quantum chemistry,
allowing to obtain the correct results for the right screening
constant Z . It should be clearly emphasized that the calculations
carried out outside the Born–Oppenheimer and atomic core ap-
proximation will not significantly change our results regarding
the chaotic evolution of electron parameters ε and t , because
they will not lead to the linear relationship between total energy
(ET ) and the distance R between the atoms. In our view will be
the opposite, the ET (R) function should contain additional small
nonlinear corrections.

The results obtained in the paper should be of particular
interest to researchers dealing with the analysis of dynamics
of open systems far from equilibrium, where the strong cor-
relations and the nonlinear effects occur simultaneously [89].
The out-of-equilibrium dynamics are of great current interest
in the molecular physics (molecules [83] or the Hubbard nan-
oclusters [90]), in the solid-state physics [91–93], in the optical
lattices [94], and in the quantum transport [95–97]. In all these
cases, due to the highly non-linear interatomic potentials, for
properly selected excitation, the dynamics of electron parameters
should be chaotic. Please note that currently such research can
be successfully carried out because, we have very advanced tools
for analysing the complex dynamics of quantum systems. Let us
list here the exact diagonalization [62,80], the density matrix
renormalization group approaches [98–100], the nonequilibrium
dynamical mean field theory [91,101] and iterative path inte-
gral [102]. What is particularly important theoretically obtained
results can be confronted with experimental results (the time-
resolved spectroscopy experiments [103–105], and experiments

on ultracold atoms trapped in the optical lattice [94,106].)

7

The molecular stability issues are another compelling research
area for which our results may be useful. It can be easily seen that
the molecule subjected to external excitation showing chaotic
changes in atomic distances will be very susceptible to disso-
ciation [63]. This effect can be eliminated or strengthened by
appropriately selecting the parameters of excitation. Possible ap-
plications range from chemistry to molecular biology.
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