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Abstract

In this paper we examine an interesting connection between the generalized Volterra lattices of Bogoyavlensky and a specia
case of an integrable system defined by Sklyanin. The Sklyanin system happens to be one of the cases in the classification ¢
Kozlov and Treshchev of Birkhoff integrable Hamiltonian systems. Using this connection we demonstrate the integrability of
the system and define a new Lax pair representation. In addition, we comment on the bi-Hamiltonian structure of the system.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction—Birkhoff integrable systems

In this paper we examine an interesting connection between the generalized Volterra lattices of Bogoyavlensky
[6] and a special case of an integrable system defined by SkljafinThe Sklyanin system happens to be one of
the systems in the classification of Kozlov and Treshchev of Birkhoff integrable Hamiltonian systems. Using this
connection we are able to prove the integrability of the system and define a new Lax pair representation different
from the one in26]. In addition, we comment on the multi-Hamiltonian structure of the system. This connection
was discovered in an effort to connect the Voltarasystem with the corresponding Toflg system as in the case
of the other classical Lie groups. In contrast to the other cases, the Valigisgstem does not correspond to the
TodaD,, system under the procedure of Moser but it actually corresponds to a special case of the Sklyanin system
mentioned above. A Miura type transformation between the Volterra and?pdgstems is therefore still an open
problem.

We begin with the following more general definition which involves systems with exponential interaction: consider
a Hamiltonian of the form:

N
1

H="=- (Vi, Q) 1
5P P) + ?:16 , 1)
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whereq = (g1, ... ,qn), P = (p1, ..., pn), V1, ..., Vy a@re vectors irR” and(, ) is the standard inner product in
R". The set of vectora\ = {v1, ..., vy} is called the spectrum of the system.
Let M be theN x N matrix whose elements are

Mij = (v, vj).
Hamilton’s equations of motion can be transformed by a generalized Flaschka transformation to a polynomial
system of 2V differential equations. The transformation is defined as follows:

aj = -V, bi = (v, p). (2)

We end-up with a system of polynomial differential equations:
N
ar=aby, b= Mia;. ®)
i=1

Eq. (3)admits the following two integrals:

N N
Fi=) kb,  F2=[]d’ @)
i=1 i=1

provided that there exist constantssuch thathil A:V; = 0. Such integrals always exist fof > n. One can
define a canonical bracket on the space of variale®;) by the formula:

{bi,aj} = (vi,Vj)a;

and all other brackets equal to zero. The integfaland F» are Casimirs of systei3).

An interesting case dfl) occurs when the spectrum is a system of simple roots for a simple Lie algelorthis
caseN = [ = rankg. It is worth mentioning that the case whe¥en are arbitrary is an open and unexplored area
of research. The main exception is the work of Kozlov and Treshft@wvhere a classification of systeth) is
performed under the assumption that the system possegs#gnomial (in the momenta) integrals. We also note
the papers by Ranadi26], Annamalai and Tamizhmaf8] and Emelyanoy10]. Such systems are called Birkhoff
integrable. For each Hamiltonian () we associate a Dynkin type diagram as follows: it is a graph whose vertices
correspond to the elements af Each pair of vertices;, v; are connected by

4(v;, v))?
(Vi, Vi) (Vj, V)

edges.

Example. The classical Toda lattice corresponds to a Lie algebra of Aypsg. In other wordsV =/ =n — 1 and
we chooseA to be the set:

vi=(1,-10,...,0),... ,Vp_1 = (0,0,...,0,1, —1).

The graph is the usual Dynkin diagram of a Lie algebra of t4pes. The Hamiltonian becomes

n n—1

1 a
H(qla"~ ,Qna p15'~' 7pﬂ)=Z§p12+Zeql qH—la (5)
i=1 i=1

which is the well-known classical, non-periodic Toda lattice. This system was investigdte?]i8,15,21,23,28]
and numerous other papers that are impossible to list here. This type of Hamiltonian was discovered ®8]Toda



52 P.A. Damianou, SP. Kouzaris/Physica D 195 (2004) 50-66

The original Toda lattice can be viewed as a discrete version of the Korteweg—de Vries equation. Itis called a lattice
as in atomic lattice since interatomic interaction was studied. This system appears also in Cosmology, in the work
of Seiberg and Witten on supersymmetric Yang—Mills theories and it has applications in analog computing and
numerical computation of eigenvalues. But the Toda lattice is mainly a theoretical mathematical model which is
important due to the rich mathematical structure encoded in it. The Toda lattice is integrable in the sense of Liouville.
There exis: independent integrals of motion in involution. These integrals are polynomial in the momenta.

As we mentioned earlier, the Toda lattice was generalized to the case where the spectrum corresponds to a roc
space of an arbitrary simple Lie group. These systems generalize the usual finite, non-periodic Toda lattice (which
corresponds to a root system of tygdg). This generalization is due to Bogoyavlendky. These systems were
studied extensively ifl 7] where the solution of the systems was connected intimately with the representation theory
of simple Lie groups. There are also studies by Olshanetsky and Perelgdjand Adler and van Moerbel#].

It is more convenient to work, instead with the space of the natyral) variables, with the Flaschka variables
(a, b) which are defined by

ai=3e2Ve9 =12 ... N, bi=-3p, i=12...,n (6)

We end-up with a new set of polynomial equations in the variales). One can write the equations in Lax pair
form, see, for examplg25]. The Lax pair {.(r), B(¢)) in G can be described in terms of the root system as follows:

! I !
L) =) biOhe, + Y _ai(®)(e; +e—a).  BO) =Y ai(t)(ea; — €a,).
i=1 i=1 i=1
As usualr,, is an element of a fixed Cartan subalgebra @nds a root vector corresponding to the simple rept
The Chevalley invariants @ provide for the constants of motion.
The first important result in the search for integrable cases of sydfeisidue to Adler and van Moerbek2].
They considered the special case where the number of elements in the spdactsumt- 1 (i.e., N = n + 1).
Furthermore, they made the assumption thatramgctors in the spectrum are independent. Under these conditions
a criterion for algebraic integrability is that
2(v;, Y,) %)
(Vi, Vl)

should be in the sef0, —1, —2,...}. The classification obtained corresponds to the simple roots of graded
Kac—Moody algebras. The associated systems are the periodic Toda lattices of Bogoygvlenke complete
integrability of these systems using Lax pairs with a spectral parameter was already establishédchimmethod
of proof in[2] is based on the classical method of Kovalevskaya.

Sklyanin[27] pointed out another integrable generalization of the Toda lattice:

n n—1
1 . ~ _
H@G1, ... Gns PLo- e P) = ) 5p1-2+ ) e gy et By €+ o, €70 4 B @7 (8)
i=1 i=1

He obtained this system by means of the quantum inverse scatf#imgtrix method. This potential will be the
main focus of this paper.

The next development in the study of syst€hpis the work of Kozlov and Treshchev on Birkhoff integrable
systems. A system of the for(t) is called Birkhoff integrable if it has integrals, polynomial in the momenta with
coefficients of the form:

ije(cf*q), fj c R, Cj € Rn,
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whose leading homogeneous forms are almost everywhere independent. We remark that in the definition given in the
book of Kozlov[20] there is no assumption on involutivity of the integrals[18] it is proved that the polynomial
integrals are in involution. The terminology has its origin in the work of Birkhoff who studied the conditions for

the existence of linear and quadratic integrals of general Hamiltonians in two degrees of freedom. A v&g$or in
called maximal if it has the greatest possible length among all the vectors in the spectrum having the same direction.
Kozlov and Treshchev proved the following theorem:

Theorem 1. Assume that the Hamiltonian (1) is Birkhoff integrable. Let v; be a maximal vector in A and assume
that the vector v; € A islinearly independent of v;. Then:

2(vi, V)
(Vi, Vi)
liesintheset {0, -1, -2,...}.

Note that the condition of the theorem is exactly the same as con@fjaf Adler and van Moerbeke. Of course
theorem 1 is more general since there is no restriction on the inké@re number of summands in the potential
of (1)). It turns out, however, thaV cannot be much bigger than In fact, it follows from the classification that
N < n + 3. A system of the forn{l) is called complete if there exist no vectosuch that the set U {v} satisfies
the assumptions dfheorem 11n [19] there is a complete classification of all possible Birkhoff integrable systems
based ormheorem 1The Dynkin type diagram of a complete, irreducible, Birkhoff integrable Hamiltonian system
is isomorphic to one of the diagrams showrFig. 1

Remark 1. In the list of diagrams we have omitted some cases that occur as sub-graphs of diagrams (a)—(k) (by
truncating one or more vertices). In other words, the spectrum of a Birkhoff integrable Hamiltonian system is
obtained from the spectrum of a complete system by dropping part of the elements.

Remark 2. The Dynkin type diagram determines only the angles between pairs of vecterslim order to
reconstruct the ratios of lengths of vectorsdrwe assign to théh vertex a coefficient proportional to the square
of the length ofv;. This explains the numbers appearing on the vertices of the diagrams.

We have to stress that this classification gives only necessary conditions for a system (@) typee Birkhoff
integrable. The integrability for each system in the list should be established case by case. We give a brief history
of the progress in this direction. As we already mentioned, the integrability of systems (a)—(g) was established in
[1,4]. The solution of these generalized periodic Toda lattices (associated with affine Lie algebras) was obtained by
Goodman and Wallach ifi4]. The graph (i) corresponds to a Hamiltonian system in two degrees of freedom with
potential:

ey gf2 4 g 192 | e~ (q1142)/2)

The additional integral can be found[it8]. The integrability or non-integrability of systemg @nd ) is still open.
No Lax pair is known for either system. It is believed that systénis(completely integrable, in fact integrability
is established iiiL O] for the case: = 4. It is generally believed that syste#) {n non-integrable.

In this paper we deal with the integrability of systém) which corresponds to the Hamiltonié®). Sklyanin in
[27] indicated this system as another integrable generalization of the Toda lattice. Thecd@eorresponds to
the potential:

V=ell"92 4 g2 4 2 €12 4+ 367 4 ¢y e 21,
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Fig. 1.

Annamalai and Tamizhmaf8] demonstrated the integrability of this particular case by using Noether’s theorem.
The second integral is of fourth degree in the momenta.

The case: = 3 (as well as the general case) is treated in Raf2@la Ranada proved integrability by using a
Lax pair approach. The additional integrals are of degree 4 and 6.
In this paper we examine the integrability of the system:

n n—1

1 . _
H(q1, ... . qn. P1, ..., Pn) :ZQP:'ZJFZ il 4 g g 2 4 P,
i=1 i=1

9

Without loss of generality we may assume that 8 = 1. We note that if eithew or g8 are zero then the system
reduces to well-known cases of generalized Toda lattices. The technique we use is entirely new and hopefully it will
lead to further results for similar systems. The strategy is the following: we considy, thielterra system whose

Lax pair formulation and multi-Hamiltonian structure was established recently in Koliz8}tidJsing a procedure

of Moser we transform the system into a new system in some intermediate varigbles.
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al = 2albla al = al(bl - bl*l)a i = 27 3’ BRI () a}’l+l = _Zan+lbns
bi = 2(a1'2+1 — aiz), i=12,...,n. (10)

We obtain a Lax pair for this system and the integrals of motion. The final step is the construction of a Flaschka
transformation from the Hamiltonian syste®) to the system(10). The inverse of Flaschka’s transformation
provides for the necessary constants of motion in the variafles) for the system(9). Thus, integrability is
established.

In Section 2we describe the construction of Bogoyavlensky—\Volterra systems follofgigg Bogoyavlensky
constructed the systems using the root system of a simple Lie algebra and then through a change of variables (from
c¢; tou;) he ended-up with homogeneous polynomial systems in the new varigbldse construction of Lax pairs
in the variables:; is in[18].

In Section 3we present part of the results [a8], namely theD,, case, since it is the only system needed for the
purposes of the present paper. We have to point out tils8]there is a complete treatment of the multi-Hamiltonian
structure, Lax pairs and integrability of Bogoyavlensky—\olterra lattices.

The results oection 4are entirely new. They can be summarized as two transformations, one Moser-type from
the VolterraD,, lattice to systenf10) and one Flaschka-type from the Sklyanin sys{@to system(10). Since
Flaschka-type transformations are well-known, we describe briefly the Moser approach.

Consider the system:

dui

r wi(wiyr —ui—1), i=1,...,n, (11)

whereug = u,4+1 = 0. This is the Volterra system, also known as the KM system and is related to the root system
of a simple Lie algebra of typd,,. The infinite KM-system was solved by Kac and van Moerbgl&} using a
discrete version of inverse scattering. The Lax pair for sygtElhican be found if22]. The Lax matrix has the
form:

0 a1z 0 O
ag 0 ax O

0O ap 0 a3

: (12)

ap—1

an_1 0

whereu; = 2al2 Moser in[22] describes a relation between the KM systdrh) and the non-periodic Toda lattice.

The procedure is the following: forni? which is not anymore a tridiagonal matrix but is similar to one. Let

{e1, e2, ..., e,} be the standard basis Bff, andE, = {spareg;_1,i = 1,2,...}, E. = {sparey,i = 1,2,...}.
ThenL? leavesE,, E, invariant and reduces to each of these spaces to a tri-diagonal symmetric Jacobi matrix. For
example, if we omit all even columns and all even rows we obtain a tridiagonal Jacobi matrix and the entries of this
new matrix define the transformation from the KM-system to the Toda lattice. We illustrate with a simple example
wheren = 5.
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In this case:
0 a1 0 0 O
air 0 ap 0 O
L=]0 a 0 a3 O (13)
0 O a3 0 au
0 0 O ags O

andL? is the matrix:

ai 0 aiaz 0 0
0 a% + a% 0 azas 0
aiaz 0 a% + a% 0 asas | . (14)
0 azas 0 a% + ai 0
0 0 asdaa 0 ai

Omitting even columns and even rowsiof we obtain the matrix:

a% aiaz 0
aiaz a% + a% azas | . (15)
0 asdas ai

This is a tridiagonal Jacobi matrix. It is natural to define new varialles= aiaz, A2 = azaq, B1 = ai,
By = a5 + a2, B3 = a5. The new variabled1, A, B1, B, B3 satisfy the Toda lattice equations.

This procedure shows that the KM-system and the Toda lattice are closely related: the explicit transformation
which is due to Hénon maps one system to the other. The mapping in the general case is given by

A= —% U2iU2i—1, Bi = %(MZi—l + uzi-2). (16)
The equations satisfied by the new variabdesB; are given by
Ai=Ai(Bir1— B, Bi=2(A% — A2 ).

These are precisely the Toda equation$li?]. We remark that the transformati¢h6) was first discovered by
Hénon. Hénon never published the result but he communicated the formula in a letter to Flaschka in 1973. We refer
to papei7] for more details. 1f7] one can find the multiple-Hamiltonian structure, higher Poisson structures and
master symmetries for systeihl).

We would like to generalize the Hénon correspondém6@(using the recipe of Moser) from generalized Volterra
to generalized Toda systems. The relation between the Volterra systems &,t@pel C,, and the corresponding
Toda systems is ifB]. It is natural to attempt to find a similar correspondence between the Volterra lattice of type
D,, and the generalized Toda lattice of typg. It is a surprising result, and this is the content of the present paper
that the VolterraD,, system corresponds not to the Tabia system but to a special case of the Sklyanin lattice.

2. Bogoyavlensky-Volterra systems

Bogoyavlensky constructed integrable Hamiltonian systems connected with simple Lie algebras, generalizing the
KM-system(11). For more details see Ref5,6]. In this section we summarize the construction of Bogoyavlensky.
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Let G be a simple Lie algebra of rankandIT = {w1, w2, ... , w,} the Cartan—-Weyl basis of the simple roots in
G. There exist unique, positive integdsssuch that

kowo + kiw1 + - - - + kyw, =0,

wherekg = 1 andwg is the minimal negative root.
We consider the following Lax pairs:

L =[B, L], L) = Zci(t)ewi + ewy + Z lew:» €w;]s B(r) = Z —ie,wi + e_wp- a7

i—1 1<i<j<n i i

Let % be a Cartan subalgebra gf For every rootw, € H* there is a uniqued,,, € H such thatw(h) =
k(Hy,, h)Vh € H, wherek is the Killing form. We also have an inner product & such that{w,, wp) =
k(Hy,, Hy,). We set

1 if (a),-,a)j) #* Oandi < Js
cij = 0 if (a),,wJO) ori = j,
-1 if (a),-,a)j) #* Oandi > J-

The matrixequation (17)s equivalent to the dynamical system:

n

b=-Y MU (18)

C.
=t

We determine the skew-symmetric variables:

Xjj = cijci_lc; , Xji = —Xij, xjj =0,
which correspond to the edges of the Dynkin diagram for the Lie algglrannecting the vertices; andw;.

The dynamical systerfi8)in the variables; takes the form:

n
Xij = Xjj st(Xivast)- (19)
s=1

We recall that the vertices;, ; of the Dynkin diagram are joined by edges onlydf, ;) # 0. Hencexjj = 0 if
there are no edges connecting the vertiseandw; of the diagram. We calEq. (19)the Bogoyavlensky—\olterra
system associated with(BV system for short).

We shall now describe the BV system for each simple Lie algébfidie number of independent variabhggr)
is equal ton — 1 and is one less than the number of variallgg. We use the standard numeration of vertices of
the Dynkin diagram and define the variablg$t) = xi;(r) corresponding to the edges of the Dynkin diagram with
increasing order of the verticés < j).

The phase space consists of variablgswith u; > 0. In the following list we give explicit expressions for the
\olterra systems in the variableg for each classical simple Lie algebra:
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An+1
w1 Wa w3 Wn Wnt1
O U O Uz O O Up O
wo=— (w1 +ws+-+ Wnt1)
k=1, i=1,...,n+1
0 |i-jl#£1 U =ity
=1 1 j=i+l o
-1 j=i-1 U = Ui(Uir — Ui1)
2<i<n-1
U =T = ooy 1= L.n
Bn+1
w1 w2 ws Wn Wn+1

wo = — (w1 + 2wz + - -+ + 2wn 1)
k1=1, kg=2, z=2,,n+1

U = uy (ug + 2up)

0 |‘l—]|7é1 122 =u3(2u3—u1)
cij = 1 ].=?+1 Up = —2Up_1Up
-1 j=i-1 U = 2ui(Uiv1 — Ui1)
3<i<n—1
ui:zi,ﬂlzﬁml i=1,...,n
Cn+1
w1 wa w3 Wr Wnt+1
O——7—O0——7—=0 =
wp = — (20-)1 + e+ 2wy +Wn+1)
ki=2,i=1,....n, kppp =1
o Uy = 2uyug
0 |Z _.7| # 1 '[l'n—l = un—l(un - 2un—2)
cij = L =i+l Uy = ~Un(Un + 2up_1)
-1 j=i-1 U = 2ui(Uips — Ui—1)
2<i<n-2
Ui=zi,i+1=ﬁ i=1,...,n
Dn+1
Wn
w1 (7)) w3
C Uu O U o

wo = — (w1 + 2w + -+ + 2wn—1 + Wp + Wat1)

ki=1,kp=1,kp1—=1 ,k=2,2<i<n-—1
1 2<j=i+1<n
_ . _Jo (@Gji)=(mn+1)
G="G=Y 0 3<it2<j<n
1 (ivj):(n_]vn+1)

1 )
Ui = Tijit1l = ooy 0=

...

1:'41 =
W =

1'47»—2 =
1"'»—1 =

Uy =

1
N — 1 y Up = zn—l,n+l T

Uy (2ug +u1) ,  Us = ug (2ug — )
2ui(uiy1 —uj—1) 3<i<n-3
Un—2 (Un + Un—1 — 2Up_3)

Un—1 (Un — Un—1 — 2Un_2)

—Un (Un — Up—1 + 2Up_3) .

(20)
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3. TheVolterra D, system
Consider the BVD,, 11 system(20)in the variables:;. We make a linear change of variables:

V1 = Uz, v =2ur, k=2,...,n—-2, Up—1 = Up—1, Vp = Uy,

to obtain the equivalent system:

Uk = v (Vi1 —vk—1), k=2,...,n—=3, Vp—2 = Vp_2(Uy + Vp—1 — Up—3),

Up = =V (Uy — Up—1 + Vp—2). (21)

v = v1(vy + v2),

V1=V 1(Vp — Uy—1 — Vp—2),

Before giving the Lax pair for the systef@1) we introduce some matrix notations:

X, = Ju 0 o= 00 ’ Ykzl- N 0 ’ Y0=i— 0 un .
0 okt 2\~v1 O

N 00 2
We also set
X= < «/E i/Un ) Y:l- < A/ Un—2Un A/ Un—2Un ) W:I— ( 0 Un—1—"Un )
—A/Un—-1 iyVUn1)’ 2 —/Un—2Un-1 /Un—2Un—1 ' 2\ vy — vy 0 .

Eq. (21)can be written in a Lax pair formh = [L, B], where

0 o .- 0 NOIR WA
0 0} X 0} 0
X 0 X,
L= ’
0 0O X,.» 0]
Juioo (@) X2
LiyJvi O 0} Xo o |
0 0 —54/V102 —%Jvlvz 0 07
0 o Y o 0
0 w (0] Y, 3
0 -Y! o 0} (0]
B = (22)
$Jiz O —Y,_3 0 Y3 O
0 0 —Y3 o o O
L O 0] 0] ) 0 Yol
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We note that the entries of the first row and the first columh ahd B are scalars while all the other entries are
2 x 2 matrices.
The invariant polynomials of this system are given by the functions:

Ho, Ha, ... ,H,_1, whenn is odd
H>, Hy, ..., H, > H,_1, whenniseven

whereH; = (1/k) Tr(L5).

We use the variables, 1 < j < n+1 of Eq. (18)in order to find a cubic bracket of the BV D, ;1 system. The
dynamical syster(il8)in the case of the Lie algebra of tyfk, 1 can be written in Hamiltonian for@; = {c¢;, H},
with Hamiltonian:

n—1
H =loge1 +2) logc;j +loge, + logc, i1
=2

and Poisson bracket:

{cj,cjy1} = —{cj+1.cj} =1, j=12,...,n—-1, {cn-1, cn1} = —{cpnt1, cn—1} = 1. (23)
All other brackets are zero. In the new variablgsvy = ¢y ;" v = 2c Mk = 2,....n — 2,v,1 =
e, et va = ¢, e, ) the above skew-symmetric bracket, which we denotedyis given by

{v1, v2} = v1iv2(2v1 + v2), {vi, viy1) = vivip1(vi +vi41), i=2,...,n—3,

{vn—2, Vp—1} = Vp—2Un—1(20—1 + vp—2), {vp—1, vp) = 20,10, (v, — Vn-1),

{vi, vigo} = vivigavigo, i=1,...,n =3,

{vi—2, vp} = vy_2v, (V2 + 2vy), {Vn—3, Vn} = Vy—_3Us—2V,. (24)

All other brackets are zero. As in the case of KM system we suppose thadd(n = 2m + 1) and we look for a
bracketr1 which satisfiesrsVHo = w1V Hy.
We define

j-1

V2k+1 .,
Tj = =T = vzi—1l_[ 5 fori < j, Tij = v2i—1
k=i 2

and we define the bracket as follows:

(i v} = O™ Yz ez forlsi<j<n—2
(_1 i+n
2

{vi, vp—1} = {vi, vu} = Tij2+1n2) fori=1,...,n-2,

1
{vn—1, vn} = —{vn, va—1} = E(vn — Up—1). (25)
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To illustrate, we give the Poisson matrix of the bracketn the case: = 7:

r 1 1
0 T11 —Ti2 T2 T3 5713 5713
— 0 — _1 -1
T11 722 T22 123 5723 5723
1 1
112 —122 O T2 —T23 5723 5723
1 1
m1=| —-112 T2 -T2 0 33 —5733 —5733
1 1
113 —T23 123 —t33 O 5733 5733
1 1 1 1 1 1
—5T13 5T23 —35T23 5733 —3733 0 5(v7 — ve)
1 1 1 1 1 1
| —57T13 5723 —3723 3733 —3733 —35(V7 — vp) 0 i
B 0 v1v3  V1v3 V1V3V5 v1V3V5 V1V3V5
V1 — —
V2 V2 V2U4 2v2v4 2v2v4
V35 V35 v3vs5
—v1 0 v3 —v3 — -
V4 2vs4 2v4
v1v3 v3vs5 v3v5 V35
—_— —v3 0 v3 —
v V4 2v4 2vs4
v1v3 U5 U5
- —— v3 —v3 0 U5 - -
) 2 2
v1V3V5 v3us5 v3Us5 U5 U5
V2V4 V4 V4 2 2
V1V3v5 v3vs5 V35 U5 U5 0 V7 — U6
2vov4 2v4 2v4 2 2 2
V1V3V5 v3v5 V35 ) ) V7 — V6 0
L 2vovs 2v4 2v4 2 2 2
The following theorem is fronil 8].
Theorem 2.
(i) 71, 3 are Poisson.
(i) The function:
n—2 1 n—2 )
N

1 1
2 M2 = gTH(LY) = vuovy + 200100 + 3 vivies +

i=1 i=2

is the Hamiltonian of the BV D,, ;1 system with respect to the bracket ;.

(i) The function:

n—2
F =, —v,-1) l—[ Vi
i=1

isthe Casimir of the BV D,,;1 systemin the bracket 1.

(iv) w1, 3 are compatible.
(V) n3VH2 = m1VH,.
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4. From Volterrato Birkhoff

We consider the Volterr®,, ;1 system(21). We assume that is odd, equal to 2 + 1 and rename again the
variables (i.e., usgy in place ofv;). We recall the equations for the system:

1 = ui(ug + uo), wp = up(Ugy1 — Ug—1) 2<k=<n-3 Up—2 =Up—2(n +Uy_1— Up_3),

Up—1=uUp—1(Up — Up_1 — Up_2), Uy = —up(Up — Up—1 + Up_2). (26)
We make the transformation (the analogue of Hénon transformgt&)rior the KM-system):

i 1 i
al = E(un - un71)7 aj = E\/ un72j+2un72j+la J= 29 37 cee,m, am+1 = Eula
1 1 .
b1 = _z(un +up—1+up_2), bj = —E(Mn_2j+1 tun—2j), Jj= 2,3,...,m. (@7)
This transformation is derived by mimicking the construction of Moser which takeg tNelterra lattice to the Toda
lattice, i.e., the construction that was described in the introduction. The forif¥aare obtained by considering

L2, whereL is given by(22), and assigning suitable entries to the variable$;.
We calculate

. i . [

al = E(“n —Up_1) = E[_un(’/‘n —Up—1+up—2) —up—1(Up —Up_1 — un—Z)]
i i

= 5(—u5 — Up—lty + U+ Up_uy_1) = E(un—l —up) Uy + Up_1+ uy_2) = 2a1b1.

In a similar fashion we obtain the equations of motion in the new variabjes;):

ai = 2a1bs, ai=a;(bi—bi—1), =23, ... ,m, Amt1 = —20m41bp,
bi=2a?,—a?), i=12...,m. (28)

This system can be written in a Lax pair form as follows:

b1 a1 a» 0 0
ai b1 0 —ap

ap 0 by 0

L=10 —a 0 —b . am 0 ’
0 —ay,
am 0 bm am+1

o - - 0 —am  Amt1  —bm
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0 —-a az O ... . 0
ai 0 0 az
—a» O 0
B=| o0 _—4 . - an, 0 (29)
0 0 an,
—am 0 0 am+1
0 e oo 0 —an —amy1 O

We have thaf. = [B, L] is equivalent tcEq. (28)
The functions:

1 2k
Hoy = —trL%, k=12 ... .
%= o m

are independent constants of motion. There is also a Casimir, which makes the system completely integrable, but
these functions are enough for our purpose.
We takeH> as the Hamiltonian and define a Poisson bragkets follows: we consider the mapping frag3”+1
to RZ"*+1 given by(27). In other words it is the mapping which transforms ifi¢o the new variable&;, b;). The
image of the brackg®5) (up to a constant multiple) is given by

fat, b1y =a1,  {abi}y=3a, i=23....m, Aaji,b}=—3a4, i=12..m-1
{am+17 but = —Aam+1. (30)

All other brackets are zero. The function:

2 2 2
C =amasa3---a,an11

is a Casimir. This is the Casimit of theorem 2 in(a, b) coordinates.
We also have involution of invariantgff;, H;} = 0. We denote this bracket byi. We have
w1V Ho

is equivalent tdeq. (28)
Define a Hamiltonian system R2" with coordinatesq1, ... , gm, p1, --- » Pm) DY

1 m m—1 -
Hg p) =3 pj+) et tenyein (31)
j=1 j=1

As in the case of the classical Toda lattice we make a Flaschka-type transformation:

a = ie“ﬂ, — ie‘]m7 a; = }el/z(‘b'—l—ql')

a = N i:2,3,...,m,
ﬁ m+1 \/E 2
1
biz—zpi, i=12 ... ,m. (32)

This is a mapping fronR?" — R2"+1 Note that we are not using transformati(®) but a more traditional
variation.
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We easily verify that Hamilton’s equations for the variableg b;) are preciselfq. (28) For example:

1 oH
a1 = ——=€ g1 = —a1— = —a1p1 = —a1(—2b1) = 2a1b;.
Ng) op1
We recall that the syste(@8) hasHo, Ha, ... , Ha, as aset of integrals in involution. Reverting back to the original

variables(g;, p;) in R¥" we obtainm independent integrals in involution, and this proves the integrabilit@ by
For example:

m m
I ST A IES ST
i=1 =2

corresponds to the HamiltonigB1). The integrals are of degrees®6, ... , 2m in the momenta. The Casimir
reduces to a constant equal 12371,
We note that for the syste(28) we may define a cubic bracket which satisfies the Lenard relation:

w3V Hy = w1V Hy. (33)

This bracket is the image of the brack2t) under the mappin@@7). The bracketrs is given by

{ai, ai+1} = aqjaj+1b;, i=2,3,... ,m—1, {a;, ai+1} = 2a;a;+1b;, i = landm,

(bi.biy1) = 2a2,1(bi +biy1). i=12....m—1  {a1,b1} = 2a1(d§ + b)),

{ai, biy = ai(@®+b?), i=23,...,m—1, {am, b} = am (@2, + b2 — a2, 1), a1, by} = 2d5ax,
{ai, bis1) = aqai, i=23,...,m—1, {az, b1} = —ax(a3 + b2 — a?),

{aiv1, b} = —aipa(@ + b)), i=23....m—1,  (an1. b} = —2apm41(a3 1 +b2),

{airo, b} = —aPqais2, i=1,2,...,m—2, {1, b1} = —2a% a1

All other brackets are zero. It is clear, by the way it was constructed, that this bracket is Poisson, compatible with
1 and that the integral#; are all in involution. We close with a few remarks:

1. One could try to obtain a bi-Hamiltonian formulation of the sys{@®) following the recipe of[9]. The
basic steps in the construction are the following: write the second braghet(g, p) coordinates (call it/3)
and define a recursion operator(in p) space by inverting the standard symplectic brackex (Define the
negative recursion operator g, p) space by inverting the second braclgt Define a new rational bracket
J1byJ 1= J1]3‘1]1. Finally, project the brackek_1 into the(a, b) space to obtain a rational bracket;.
The result is a bi-Hamiltonian formulation of the system:

w1VHy = w_1V Hy.

Note that a recursion operator in the b) space does not exist singe andnr3 are both singular. So far, we
were unable to compute the bracligtand we are not certain that it can be computed.

2. Itis a straightforward recursive process to solveithas functions of the;, b; using(27). After substitution
of the values ofi;, b; from (32) we obtain an expression of the as functions of;, p;. The formulas are too
complicated but in principle the invariants, symmetries and higher Poisson bracketggnhspace o0{31)
transfer to the corresponding ones for the Volterra syg&fvia this mapping.

3. One may predict the degrees of the integrals by computing the Kovalevskaya exponefitd périrour case
the degrees of the invariants4 ... agree with the predicted values.
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4. The Casimir:
2 2 2
C =aia5a3...a,,a,11

may be obtained in a different way using the following observation: the Casimir is the product of @l the
raised to certain exponents. We note that the exponents (not to be confused with the Kovalevskaya exponents)
(1,2,2,...,2,1) can be determined from the condition:

Vi+2vo+---+2vy_1+Vvy =0.

This is always the case for systems of the fdfhif N > n.
5. The procedure of this paper works equally well for the system:

n n—1
1 . _
H(q1,....qu, P1,---, Pn) = E Ep,er E e+l 4 e 21 4 Bein, (34)
i=1 i=1

The only difference is that we use the Voltedg 1 system withn = 2m.

6. The Hamiltonian(31) is positive, and the Casim keeps the variableg, from becoming zero. Thus, the
energy surface is compact, and solutions lie on tori. This suggests that it should be possible to introduce a
spectral parameter into the Lax pair and so get to Riemann surfaces and theta functions.
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