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Three algorithms have been proposed for solution of the Rayleigh-Taylor turbulent mixing problem.
They are based upon three different physical principles governing the Euler equations for fluid flow.
The principles serve to select the physically relevant solution from among many nonunique solutions.
The admissibility principle is in dispute. The three different algorithms, expressing the three physical
admissibility principles can be formulated in terms of the three energy dissipation rates or the entropy
production rates, as selected by the size of the sub grid scale coefficients. These have maximal values
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DNS of prior results and on new results presented here. We review experimental data used for validation
ILES and sufficient to discriminate among the three. We present a new analysis of this data. We show that
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the hypothesized long wave length perturbations in the initial conditions are not significant, so that
validation can be based on this data in a straight forward manner.
One of the algorithms is labeled direct numerical simulation, but is not, and as a consequence, the

two algorithms with less than maximal SGS coefficients are variants of one another.
Recommendations for the numerical modeling of the deflagration to detonation transition in type

la supernova are discussed.
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1. The crisis for V&V

The solutions of the Euler equation for fluid dynamics are not
unique. An additional physical principle in the form of an ad-
missibility criterion is needed to select the physically meaningful
solution. Wild and manifestly nonphysical solutions have been
studied extensively [1,2]. These constructions offer cautionary
counter examples to enlighten studies of the Euler equation as
a model for fully developed turbulence. This paper is concerned
with less dramatic, and in that sense more troublesome, examples
of the nonuniqueness for Euler equation solutions: ones that are
the limit of mesh generated solutions as the mesh tends to zero.

We identify three different algorithms with markedly different
solutions, based on three different physical principles of admissi-
bility. The primary distinction among the three is in the grid level
dissipation of energy: maximal or two levels of submaximal. We
find strong evidence that the dissipation of energy occurs at a
maximum rate, which we formulate as a necessary admissibil-
ity condition. We introduce new evidence and review existing
evidence to justify this conclusion.
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The nature of the problem is summarized in the quote from
[3], Section 6 from the comprehensive survey articles [3,4], re-
garding evaluation of the Rayleigh-Taylor (RT) instability growth
rate ay, (See Section 3 for a definition of «}.) “agreement between
simulations and experiment are worse today than it was several
decades ago because of the availability of more powerful com-
puters”. The quote defines a challenge to existing standards of
verification and validation (V&V). While the governing physics
model is disputed, the crisis persists. The evidence presented
here, supporting the principle of a maximum rate of dissipation
admissibility, falls within the general framework of V&V.

Pending a resolution of the admissibility issues, the crisis
remains. It pertains not to the V&V methodology, but rather to
the lack of its application to this problem. This paper contributes
a resolution of the V&V crisis, in favor of the maximum rate
principles for admissibility.

If turbulence or non turbulent stirring is present in the prob-
lem solved, we propose that the standards of V&V should ensure
the physical relevance of the solutions obtained.

1.1. RANS, LES and DNS

Reynolds averaged Navier-Stokes (RANS) simulations resolve
all length scales needed to specify the problem geometry. Large
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eddy simulations (LES) resolve not only these scales, but in addi-
tion they resolve some, but not all, of the generic turbulent flow.
The mesh scale, i.e., the finest of the resolved scales, occurs within
the turbulent flow. As this lies in a strongly coupled flow regime,
problems occur at the mesh cutoff. Resolution of all relevant
length scales, known as Direct Numerical Simulation (DNS) is
computationally infeasible for many problems of scientific and
technological interest.

According to ideas of Kolmogorov [5], denoted K41, the energy
in a turbulent flow, conserved, is passed in a cascade from larger
vortices to smaller ones. This idea leads to the scaling law

(lv(k)?) = Ce® [k > (1)

for the Fourier coefficient v(k) of the velocity v. Here Cg is a
numerical coefficient and ¢, the energy dissipation rate, denotes
the rate at which the energy is transferred within the cascade
from the large scales to the smaller ones. It is a measure of the
intensity of the turbulence.

1.2. Three models for the Reynolds stress

Grid values for numerical solutions of the Euler and Navier—
Stokes equations are interpreted as cell averages. Because the
equations are nonlinear, the averaging produces an error (the
difference between the average of a product and the product of
the average). This difference, known as the Reynolds stress,

Reynolds Stress = v 7 — v , (2)

occurs on the right hand side (RHS) of the discretized Euler or
Navier-Stokes equation. As it is a sub grid quantity, unknown at
the grid level, a grid level model of the Reynolds stress is needed
as an approximation. The Sub Grid Scale (SGS) terms, added to
the RHS of the momentum and species concentration equations,
generally have the form

ViV and VD,V . (3)

The coefficients v, and D; are called viscosity and diffusivity
SGS coefficients. The Reynolds stress analysis motivates the SGS
coefficient v¢, while a similar average of the equation for the
transport of species concentration motivates D;.

At the grid level, the numerically modeled cascade is broken.
Energy accumulates at the grid level. In this manner, the sub grid
scale flow exerts an influence on the flow at the resolved level.
The SGS terms (3) serve to dissipate this excess grid level energy
so that the resolved scales see grid level data as if the cascade
had continued into the smaller (sub grid) scales.

The three algorithms belong to the LES family. The maximum
dissipation algorithm (as measured by the size of the SGS terms)
is FronTier. It is based on dynamic SGS models in the spirit
of [6,7], and front tracking. A limited dissipation algorithm is
Implicit Large Eddy Simulation (ILES). A variant of ILES, also with
limited dissipation, claims to be DNS, but is not. We call it macro
DNS (MDNS), to distinguish it from true DNS. A definition of DNS
is that the mesh scale Reynolds number should be unity. In MDNS,
the velocity differences occurring in the Reynolds number are
not correctly evaluated. The required peak value (an L, norm)
for the velocity difference is replaced by the global average (an
Ly norm of velocity fluctuations). This definition is not found
in the undocumented MDNS study [8], but is found in [9]. The
result is a time dependent, globally constant in space SGS coef-
ficient multiplying a simple version of the Smagorinsky model
(MDNS) or a higher order version of the Smagorinsky model (ILES,
MIRANDA). The resulting SGS choice and the algorithm it pro-
duces is dependent on the mesh resolution. MDNS results at
varying degrees of disagreement to experiment have been ob-
tained. The energy dissipated at the grid level is determined by

the SGS coefficients in the three algorithms. In regions of intense
turbulence, FT dissipates more energy than the others. In re-
gions of low turbulent intensity, ILES and MDNS could artificially
dissipate more energy. These facts are reflected in Table 4.

1.3. The three physical principles: a V&V selection

The three physical principles lead to three distinct algorithms,
which differ in their treatment of mesh level dissipation of en-
ergy, from limited to full (maximum) dissipation rates. The more
recent MDNS algorithm, enabled by today’s large scale computers
in [8], shows the largest disparity relative to experiment, provid-
ing the basis for the comment of Zhou, that large scale computers
have increased the disparity between simulation and experiment.

Extensive experimental validation evidence with data from
[10,11] is reviewed in summary form in Section 3. A new sim-
ulation showing comparison of scaling law exponents is also
presented in Section 3. Both strongly favor the maximum dissipa-
tion rate. We quote from Zhou [3], Section 5.2, in discussing the
FronTier solution [12]:

“it was clear that accurate numerical tracking to control nu-
merical mass diffusion and accurate modeling of physical scale-
breaking phenomena and surface tension were the critical steps
for the simulations to agree with the experiments of Read and
Smeeton and Youngs”.

The data [10,11] is unique in its use differentiating among
these principles. This data has been discounted due to the pos-
sibility of long wave length perturbations (“noise”) in the ini-
tial data. There is no experimental basis for noise of sufficient
strength. We show the opposite: its strength is insufficient to
modify the turbulent mixing rate o}, appreciably. The data of [13]
could in principle serve the purpose of comparison of algorithms,
but it has not been simulated in comparison studies. The initial
data of [ 13] is analyzed in [ 14], wherein long wave length noise is
asserted to be significant. We will discuss this issue in Section 2.4.

The noise hypothesis for the [10,11] data, widely discussed in
the literature, concerns initial condition noise. Noise in the form
of mode 1 perturbations generated during the acceleration pro-
cess is discounted as follows. Such, if lateral, side to side sloshing
would generate mode 1 signals in the developing wave front. This
was excluded through Plate 4 of [10,11] through an analysis of
Plate 4 bubble tip noise, which produced data consistent with
the Plate 3 bubble tip noise, and was shown to be negligible
in its effect on «,. Mode 1 perturbations in plates 5 and 6 (the
final of the experiment) can be excluded from visual inspection.
Noise in the direction of the acceleration would manifest itself
in a noisy perturbation on the t? growth rate for a;. There is
no sign of such noise in the «), growth rate of size sufficient to
affect o, appreciably, and it has never been postulated to occur
in the [10,11] data.

On the basis of our demonstration that the noise in the
data [10,11] is of minor importance in its effect on the values of
the RT mixing rate «;, we use this data directly in a validation
study. We point to the extensive record of FronTier simula-
tions (maximum rate algorithm) in agreement with the [10,11]
data. This combination (simulation in agreement with noise free
experimental data) is a proof of validation.

Verification in the traditional sense of convergence under
mesh refinement has been addressed [15,16]. Verification re-
lated to assessing the proper admissibility law of physics will be
addressed in separate publications.

The two less than maximum dissipation algorithms model
the Reynolds stress with a clear departure from a maximum
dissipation rate, and thus violate the postulated maximum rate
of physics for fluid turbulence.
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1.4. SGS terms: three choices

ILES is the computational model in which the minimum value
of v; is chosen (minimum of grid level excess energy is removed)
to retain the |k| /3 scaling law. The prefactor Cyxe2/3 is not guar-
anteed. ILES depends on limited and globally defined SGS terms.
It does not use the sub grid terms that correspond to the local
values of the energy dissipation cascade. Miranda is a modern
compact scheme. An ILES version of Miranda is presented in [17].
This reference provides details for the ILES construction. The sub
grid terms are chosen not proportional to the Laplacian as in (3),
but as higher order dissipation rates, so that small wave numbers
are more strongly suppressed. The SGS modeling coefficients v;
and D; are chosen as global constants. The basis for the choice
is to regard the Reynolds stress and the accumulation of energy
at the grid level as a Gibbs phenomenon to be minimized [17].
Miranda achieves the ILES goal of an exact —5/3 spectral decay,
see Fig. 3 right frame in Ref. [17].

FronTier uses dynamic SGS models [6,7], and additionally uses
a sharp interface model to reduce numerical diffusion. In this
method, SGS coefficients v; and D; are defined in terms based
on local flow conditions, using locally defined turbulent scaling
laws, extrapolated from an analysis of the flow at one scale
coarser, where the sub grid flow is known. This local scaling
need not come from Kolmogorov or more advanced [18] scaling
laws. FronTier allows the locally modified scaling laws that occur
with weakly quasi stationary flows. The actual definition of the
dynamic SGS algorithm is discussed in Section 5.3 and is based
on raising the energy dissipation rate to the maximum level
permitted by local flow conditions.

The MDNS algorithm is a variant of ILES, with a different, but
less than maximal choice of SGS coefficients. It is not based on a
physical principle but rather on the belief that MDNS is true DNS
(or at least sufficiently close to true DNS) and as such, employs
sufficient sub grid terms.

Through the choice of Reynolds stress modeling, the ILES
and MDNS algorithms block some fraction of the locally defined
grid level dissipation, as estimated by turbulent scaling laws. By
energy conservation, this grid level choice blocks dissipation in
the entire turbulent cascade, and results in the observed decrease
in the observed values of «. Thus we see that the Reynolds stress
is an inherently physical quantity.

Regarding the Reynolds stress as a Gibbs phenomenon, a nu-
merical artifact, and on this basis minimizing its possible values,
is the direct cause of the lower «; values ILES achieves.

Solution differences between FronTier and ILES were reviewed
in [19], with FronTier but not ILES showing agreement with the
data [10,11]. The MDNS solutions [8] and choice of SGS terms
are even further from experimental validation while the MDNS
solutions [9] are closer to experimental «; values, but still in
disagreement with experiments.

A number of authors label simulations as DNS in which the
simulation Ax is modestly larger than the Kolmogorov scale. It
seems to be a universal practice in such studies, however, to
include comparison to experiment relative to the quantity of
interest. In other words, use of resolution coarser than true DNS
is accompanied by a validation study. For [8], this standard is not
followed. Moreover, the mesh size of MDNS beyond DNS is not
modest.

The Refs. [20,21] focus on the local turbulent intermittency at
the MDNS defined scale. These papers find a range of power law
behavior which indicates that MDNS is in fact not true DNS.

1.5. A non equilibrium thermodynamics perspective

A mathematical proof of the principle of maximum entropy
production was derived [22,23] from laws of statistical physics,
based on the thermal fluctuations of particle positions. The use of
a maximum entropy production admissibility principle is familiar
from numerical modeling of shock waves. This entropy is also the
thermal entropy of the molecules.

The entropy related to turbulence concerns random fluctua-
tions of the particle velocities, rather than their positions.

The maximum rate of entropy production, as an admissibility
condition for fully developed turbulence, is an extension of the
second law of thermodynamics, in the sense that under this
extension, a most probable (statistical expectation) path for the
dynamic evolution of entropy increase is tightly constrained and
usually unique. The theories of maximal rates (of energy dissi-
pation or entropy production) have an ambiguous history. This
principle has been applied successfully to many natural processes
[24] including problems in climate science (terrestrial and other
planets) [25], in astrophysics, and the clustering of galaxies. As
noted in [26], it does not have the status of an accepted law of
physics. The analysis [27] studies the principle of maximum en-
tropy production of Ziegler [28,29] and its relation to the opposite
theory of minimal entropy production by Prigogine [30].

Prigogine’s analysis applies to deterministic flows, and the
maximal rates apply to energy dissipation. Motivated by the
analysis of [27], and for physics restricted to single density in-
compressible fluid flow, we observe that the acceleration (after
projection onto the curl subspace of the velocity fields, to elimi-
nate gradient pressure forces), can be divided into a sum of deter-
ministic and dissipative parts. For descriptions of fully developed
turbulence, we omit viscous diffusion forces. The deterministic
part is defined by the Prigogine theory, and the dissipative part
occurs at a maximum dissipation rate. For energy conserving
algorithms, this division is assured, and if either is maximized,
so is the other.

Momentum conservation, imposed locally in space and time,
defines a solution of the Euler equation. This solution is also
energy conserving if fractal or multifractal scaling laws are ac-
cepted, but it does not select among its nonunique solutions. The
Ziegler-Prigogine controversy is not resolved by this discussion.

Experiment, i.e., validation, is the fundamental step for resolu-
tion of the Prigogine-Ziegler issue. We find validation support for
the maximum rate solution for RT flows as the main thrust of this
paper. See Sections 2, 3. We validate Ziegler and not Prigogine for
the RT mixing dissipation rate with the data [10,11].

2. The initial condition noise level

This section and the following Section 3 establish our valida-
tion analysis in favor of the maximum dissipation algorithm. Here
we show that the data [10,11] is free of significant initial pertur-
bation long wave length noise, and thus can be used directly in
validation.

2.1. Noise and LES vs. experiments

The validation data [10,11] is unique in its ability to differ-
entiate among the three admissibility principles and in having
been used to assess simulation models by the three. This data is
in dispute due to the possible influence of long wave length noise
in the initial conditions.

To account for observed discrepancies in predictions of o + b
between predictions based on the minimum dissipation algo-
rithm (ILES) and experimental data, it is common to add “noise”
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to the physics model. As noise increases the entropy, some dis-
crepancies between simulation and measured data are removed.

Thus initial condition noise is a central issue to select the phys-
ically relevant solution and admissibility principle from among
the three.

2.2. Noise and immiscible experiments [10,11]

There are five experiments, all immiscible, of [10,11] with data
sufficient to analyze both the long wave perturbations and the
growth rate «p, namely Exps. 56, 63, 104, 105 and 114. Initial
perturbations were analyzed in [31]. The surface tension in Exps.
104, 105 and 114 is 1.37 mNm! = 1.37 e—5 g/ms>.

The initial perturbations are reported separately at the time of
Plate 1 and Plate 3. Plate 3 data is directly observed, while Plate 1
data is inferred from it, using deterministic exponentially grow-
ing perturbative analysis and deterministic single mode growth
propagated backward in time. Plate 1 is basically the initial con-
dition, and Plate 3 occurs approximately at the beginning of
the t? growth of bubble interaction and bubble merger which
characterizes the major part of the dynamics observed in [10,11].

For the purpose of comparison to a power law model for
the noise spectrum, the Plate 1 data is needed. The resulting
power law is not perfect, with the longest wave length (mode
1) perturbations showing variability by factors of 8, while the
correlation between this mode 1 perturbation and «}, is basically
zero.

For the purpose of modeling bubble growth in the regime of
t? growth, the Plate 3 data is essential, as this is the time where
all £ dynamic growth models first become applicable.

We consider two possible scenarios or hypotheses for the role
of long wave length initial data perturbations.

H1. The noise affects all experiments, to elevate the noise-free
value of o}, from its intrinsic value of o, ~ 0.04 to the observed
values.

This possibility is excluded through the analysis [19,31] of a
single experiment, Exp. 105 of [10,11]. We have shown that the
noise is insufficient to restore agreement of ILES and MDNS with
the data of [10,11]. It accounts for at most a 5% effect relative
to the experimental data [11] used for validation. Our simulation
analysis of multiple experiments, see [15,19] and references cited
there, indicate that the «; values have converged numerically,

Having excluded the systematic effect of noise, we now con-
sider an alternate possibility.

H2. Fluctuations in the noise levels between distinct experi-
ments explain fluctuations in the observed variation of «.

The mean of the five o} values is @, = 0.065, the standard
deviation is ¢ = 0.0061 and the coefficient of variation is
o /o, = .094. Table 1 presents experimental o, and mode number
perturbation spectral amplitudes, the latter dependent jointly on
mode number and experiment. The tabulated entries, in units of
cm, represent spectral amplitudes of directly observed data, as is
defined in eq. (214) of [31] and the accompanying discussion. The
process of direct measurement is also described in that reference.
The missing entries are associated with late time coarse (large)
bubbles, which exceed the Nyquist limit for Fourier analysis. We
complete the table with entries 0 in those cases.

We analyze the data from Table 1 using the method of least
squares [32,32]. In the terminology of that subject, the y; = doy =
ap — oy are the observed variables and the entries £2; of the
matrix §2 defined in Table 1 are the design variables. The index j
is an experiment number and the index i is a mode number. Least
squares determines y; as

J’j:bo-i-blZ-Qij-i-Ej, (4)

Table 1

Summary of long wave (modes 1-8) perturbation amplitude data (units cm)
derived from analysis of Plate 3 of [10,11] for 5 immiscible experiments and
corresponding o, data.

Exp 56 63 104 105 114

ap 0.058 0.069 0.068 0.072 0.060
Mode 1 0.058 0.087 0.040 0.011 0.019
Mode 2 0.021 0.057 0.010 0.013 0.011
Mode 3 0.011 0.037 0.028 0.020 0.015
Mode 4 0.025 0.057 0.007 0.006 0.016
Mode 5 0.020 0.025 0.014 0.017 0.011
Mode 6 0.021 0.028 0.024 0.012 0.006
Mode 7 0.027 0.007 0.008 0.024
Mode 8 0.008 0.017 0.012 0.011

with a residual ¢; of unexplained effects. We see that variation
in initial perturbations explains 9% of the variation and the re-
mainder, 91%, unexplained in this statistical analysis, is due to
variation in the experimental parameters. The 9% effect is realized
by analysis of modes 1-4 and is not improved when considering
modes 1-8.

The 9% of the «, variation explained by the modal perturbation
analysis can be compared to the 5% uncertainty in «; resulting
from uncertainties in the bubble amplitudes that generated in
the £2;; data. We are thus left with an assurance effect of 4% in
the «, amplitudes, and we can reject H2. as lacking in statistical
significance; Even without this final subtraction, the statistical
predictions give a small effect on the o} values and their variation
across experiments. On this basis we do not analyze the data
further, with the conclusion that the noise effects on «, are minor.

2.3. Noise [10,11] summary

We assert that initial condition noise in the [10,11] data is a
minor contributor to the observed values of «y,. The basis for this
assertion is

1. Excellent V&V results for multiple FronTier based simula-
tions. These simulations have no noise added to the initial
condition. This implies that initial condition noise does not
have a major influence on «j.

2. For simulations of Exp. 105 of [11], observed initial noise
was added in the simulations. Very minor influence on «}
was observed [19,31].

3. Statistical analysis of the observed initial noise level as
measured at the onset of the regime of t2 growth (bubble
merger) shows minor correlation between the observed
values of «}, for 5 experiments and the corresponding noise
levels. The null hypothesis that initial condition noise can
generate an o, & 0.04 is rejected.

4. No validation (experimentally based) evidence has been
offered to show that the actual noise levels in the exper-
iments in [10,11] are of sufficient size to be important.
Theoretical models with a power law behavior are pos-
tulated. These postulates are qualitative only, as there is
no prediction (other than through our analysis) for the
coefficient in front of the power law. In our analysis, the
theory fails quantitatively. Systematic effects are minor
and noise related variations in «; are minor. Other studies
only state: If the noise is large enough then the effect is
significant.

Noise analysis is a central part of the validation issue. We offer
three reasons based on experimental evidence to accept the «y
data of [10,11] as correct, with only minor modifications due to
noise in the initial conditions. Equally important is the absence
of a basis in experimental data or quantitatively justified physical
theory for the opposing conjecture, that the initial condition noise
is important.
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Table 2

Least squares solution parameters, o« + bo, by, ||€]]2 and ||€]|o/o for mode
number combinations up to 1-8. The final column shows the fraction, 91%, of
the o, variation not explained by this statistical analysis. These effects are due
to variation in experimental conditions.

Modes bo + oy by [lell2 llell2/o
Mode 1 0.0659 —0.0120 0.0061 1.0
Mode 1-2 0.0651 0.0092 0.0057 0.93
Mode 1-3 0.0644 0.0335 0.0056 0.92
Mode 1-4 0.0647 0.0258 0.0055 091
Mode 1-5 0.0647 0.0279 0.0055 0.91
Mode 1-6 0.0646 0.0318 0.0055 0.91
Mode 1-7 0.0653 0.0058 0.0055 091
Mode 1-8 0.0653 0.0051 0.0055 0.91

2.4. Noise in the initial data [13,14]

Dimonte [14] introduced a model based on the single mode RT
bubble terminal velocity (proportional to the Froude number (Fr))
for the analysis of the Linear Electric Motor (LEM) RT data [13].
The model is driven by long wave length perturbations to the
initial data augmented by combination of nearly adjacent mode
number perturbations to form a collective perturbation.

Dimonte observed that the bubbles in [13] move more rapidly
than is expected from single mode experiment, simulation and
theory. The experimentally required value is Fr ~ 1. [14] states
that bubble merger models [33] explain this recalibration of .
The balance of [14] explores an alternate explanation.

In citing simulation studies, [ 14] predates the accurate FT sim-
ulations, e.g. [15,31] in which the experimental values o, ~ 0.06
are obtained. The simulations reviewed in [14] are universally in
disagreement with experiment. These simulations fail the Ziegler
admissibility criteria of a maximal rate of LES energy dissipation.
This failure of admissibility means that the simulations are not
the physically relevant solutions, and should be accepted only to
the degree that they agree with experiment (which they do not).

Ref. [14] continues with an analysis of a planar cross section
of the early time interface location. To support a physics model
based on the evolution of single modes or ensembles of them, the
analysis of this data is conducted at the level of single bubbles,
with a tip followed by a full column of light fluid.

Without entering into the details, we capture the general
theme by stating that the analysis in [14] is based on the full
bubble to spike or full midplane to bubble tip analysis. This is ap-
propriate for a model which depends on the single mode growth
rates. In contrast, the data analysis of [31] is based on fluctuations
of bubble tips, an analysis consistent when the driving model is
bubble interactions and mode coupling as in a bubble merger
model [33].

The analysis [14] draws support from the bubble merger
model [34], although as is noted by Dimonte, this model is defec-
tive in that the bubble diameter to height ration ratio disagrees
with experiment by a factor of 3. The bubble merger model of
[33] agrees with experiment in its ratio of bubble width to height
a well as in its predictions of «. Thus it appears that the more
accurate merger model [33] is not supportive of the analysis
of [14].

The bubble tip analysis of noise is summarized in Sections
2.2, 2.3 for the data [10,11]. Here we reproduce that analysis for
the data [14]. We identify 8 modes as significant outliers relative
to their early time bubble height in the data [14] These bubble
height modes have a mean of 0.02 and a STD of 0.14. The mean
is approximately 4 times larger than the mean over the 5 exper-
iments [10,11] tabulated in Table 1. We deduce that the noise
levels in the two families of experiments are not comparable and
are dependent on the experimental modalities. The LEM value
ap = 0.061 is hardly different from the mean o, = 0.065. of the 5

experiments of [10,11]. This juxtaposition of these two numbers,
an «y virtually unchanged and even decreasing, while the noise
level increases four-fold, suggests that the noise level is not the
driving factor in setting «. The lack of correlation between oy
and the noise level is consistent with the analysis in Table 2.
The difference between the two analyses lies in the underlying
physics model which drives the analyses.

2.5. Noise [35] summary

All three algorithms compared here fail the Ziegler criteria of
a maximum rate of energy dissipation. For this reason, corrobo-
ration to supporting experiments is an important aspect of V&V
for these simulations. The FT algorithm is distinguished relative
to ILES and MDNS in meeting this test. Additionally, the dynamic
choice of the SGS coefficients in FT is closer to a maximum
dissipation rate than the other two, and is actually maximal in a
limited context (restriction on statistical observables predicted).

Thus we are left not with a clear resolution, but a physics level
judgment between a model based on bubble height fluctuation
and one based on single bubble motion. In this judgment, we
have cited supporting evidence in the form of simulations in
agreement with experiment and of consistency with fundamental
thermodynamics admissibility criteria of Ziegler.

3. Validation: Instability growth rates and scaling laws

We refer to the RT unstable turbulent mixing process and
characterize in summary the principal differences in the insta-
bility growth rates obtained from the three proposed principles
of physics and the resulting three algorithms.

RT unstable flow is generated experimentally [10,11] by taking
a tank, with light fluid above the heavy (stable to gravity), and
accelerating it rapidly downwards, thereby reversing the gravi-
tational and inertial forces. The resulting flow is unstable and a
mixing layer grows on an acceleration (t?) time scale, according
to the formula

hi = a;Agt? (5)

describing the self-similar penetration h; of the each of two fluids
into the dominant phase of the other, Here i = 1, 2 denotes the
heavy or light fluid, g is the reversed acceleration force, and the
Atwood number A = (p1 — p2)/(p1+ p2) is a buoyancy correction
to g. p; denotes a fluid density. It is common to refer to 2 = b
penetrations as bubbles.

Table 3 summarizes the major code comparisons of this paper,
based on the RT instability growth rate «,. More detailed compar-
isons are found in [15,19,31] and references cited in these papers.
An MDNS scheme, compact and higher order [8], has the smallest
value «y. ILES is larger but also below experimental values. The
FronTier scheme using dynamic SGS is the largest of the three,
uniquely in agreement with experiment.

We present a new comparison of the differences in the spec-
tral scaling exponents among the three algorithm. Experiments
do not provide a clear record of RT spectral scaling exponents,
but from turbulence studies [36], we expect intermittency cor-
rections, and a steeper than —5/3 decay. The velocity spectral
properties in [8] and the ILES simulation [17] show a —5/3
spectral exponent.

As [8,17] employ thinly diffused initial layers separating two
fluids of distinct densities, the immiscible experiments of [10,11]
are the most appropriate for comparison. We note the very large
growth of the interfacial mixing area, [8] Fig. 6, a phenomenon
which we have also observed [37,38]. We believe this growth of
interfacial area is a sign of a stirring instability, as discussed next.
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Table 3
Three types of RT simulation algorithms according to the physics dissipation
principle implemented and their value for «y, compared to the data of [10,11].

Code Energy Solution Evaluation relative
dissipation properties to [10,11]

MDNS compact None ap ~ 0.02 Inconsistent

high order [8]

Miranda ILES [17] Limited ap ~ 0.03 Inconsistent

FronTier [19,31] Maximum ap ~ 0.06 Consistent

Table 4

Turbulent and molecular values of viscosity and diffusivity (cm?/s) for Exp.
112 of [10,11], using numerical resolution typical of RT simulations [19]. The
turbulent viscosity and diffusivity are variable through space and time. We
tabulate here two measures of these quantities: their spatial L; and Ly, norms
taken at a late time. The L; norm has been normalized through division by the
volume of the experimental container. It is a simple average.

varblh ||Vturb ‘ ‘oo Vmol ||Dturb||1 ||Dturb||:>o Dinol
1.8E—1 5.5E+1 1.01E-2 1.5E—-1 5.7E+1 1.8E-5
10!

A 1071
g
S
b 103

103

10° 10t 102

k

Fig. 1. Plot of the spectral decay rate, in log variables, from the two point
function (as studied in [39]). Numerical data is taken from the final time step of
RT simulations modeling experiment 105 reported in [19]. The immiscible decay
rate —3.17 reflects a combination of turbulent intermittency and the effects of
a stirring cascade.

Fig. 1, from the late time FronTier simulations reported in [19],
shows a strong decay rate in the velocity spectrum, resulting
from a combination of the turbulent fractal decay and a separate
cascading process we refer to as stirring. Stirring is the mixing of
distinct regions in a two phase flow. It occurs in the concentration
equation and is driven by velocity fluctuations. For stirring, the
concentration equation describes the (tracked) front between the
phases. Stirring fractal behavior is less well studied than turbulent
velocity. It accounts for the very steep velocity spectral decay
seen in Fig. 1. MDNS and ILES [17] capture neither the expected
turbulent intermittency correction to the decay rate nor any
stirring correction beyond this.

4. MDNS vs. DNS
4.1. MDNS usage

True DNS of fluid flows means full resolution of all flow vari-
ables. This goal means 1 < Ax, with 1 the Kolmogorov scale and
Ax = 1 the mesh spacing, for DNS relative to the viscosity, and
further refinement to the Batchelor scale if the problem Schmidt
number Sc > 1. DNS is prohibitive in computational cost, and is
not achievable for most meaningful problems. The goal of DNS
is to avoid the ambiguities of the SGS terms, and compute in a
reliable, and model-free manner.

DNS is popular within the turbulent mixing community, with
compromises involved in the usage of this term. Proponents of
this use of DNS for the study of RT mixing point to possible

difficulties in the experimental data, and omit experimental val-
idation of their conclusions. In applications to RT mixing, it is
believed that MDNS will give a “noise free” value for the RT
mixing rate o, relative to the data [10,11].

In essence, the compromise in the use of DNS to model RT
mixing is a substitution of globally defined variables for the
true DNS choice of local ones, as is explained in detail in the
documentation of the DNS code, Miranda [40], in its application
to RT mixing.

MDNS is analyzed in terms of global flow quantities, so that

Reglobal =VL/v = <5Uglobal>L/V , (6)

where L is the domain length scale. V is the expectation value of
the velocity fluctuations, expressed as (3vgopal). The angle brack-
ets denote a spatial ensemble average of the turbulent statistics.
We estimate the unknown Axpys in Section 4.2 from scaling laws
of turbulence.

We are now in a position to define MDNS. With V as in (6),
we define Reypns mesh = V Ax/v and MDNS is defined to satisfy
the equation Reypns.mesh = 1, with Ax the MDNS mesh size. the
value of «, sensitive to v, is reduced.

In [8], pg. 563, it is stated that n = Ax. The assumption that n
is determined from globally defined variables is clear from the
context. Similarly, [8] reports a grid level Re of about 1, again
using macro, not local flow parameters to define Re. Thus we
conclude that [8] presents an MDNS algorithm.

The reservation is that MDNS is not true DNS, but rather is
a variant of ILES, with a time dependent but globally in space
constant viscous SGS coefficient for a Smagorinsky model. This
solution is in itself nonunique, as it depends on the mesh resolu-
tion.

4.2. An estimate for Axpys

Our analysis is based on (17), valid only for turbulent length
scales, and omit dissipation phenomena at scales finer than the
Taylor scale. The resulting estimates for the DNS mesh level
Axpns of refinement needed to achieve DNS overstate the needed
refinement.

The scaling laws we need concern |[v||r,,. This quantity is a
constant relative to the turbulent statistics, so that angle brackets
to average over these statistics are omitted. The quantity ||§vi||1,,
represents the unresolved turbulent intensity at scale I

We estimate the DNS mesh level Axpys as

Axpys = (A%)" 1080 /01|, 7)

in terms of data known at some mesh level Ax.
The global Reynolds number is defined as

Reglobal = LV/U s (8)

with L the domain size and V = [|§vgiobaill Lo -

We apply the scaling law (17) twice, once to determine the
prefactor C and again to achieve the prediction (7).

The DNS mesh scale Reynolds number is

Repns = AxpnsllSvpnsliil/v =1 (9)

The value 1 in the RHS in (9) is a commonly accepted compromise
in the definition of DNS. It marks the end of the applicability of
our analysis. Applying the scaling law between the global and Ax
scales, we have

Ax\"° 8
c2X _ 18V Axll Lo , (10)
L 1%

which yields

L9
C= (Ax) 6vaxllie /V - (11)
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A similar application of the scaling law between the global and
DNS scales leads to

L 1/9
C= ) V. 12
( AXDNS) [8vons ./ (12)

Equating the RHS of Egs. (11), (12), we see that the global factors
cancel, with the resulting identity

(AxDNs>”9  vons i, (a3
Ax 16vax Il
Substituting (7) in (13), the equation
AXons 1/9 .
(%) = (I18vax/ L AXors) - (14)

expresses Axpys in terms of the Ax turbulent intensity and Ax
mesh spacing. Solving this equation for Axpys, we have our main
result, (7).

4.3. Structure functions

The scaling laws of multifractal turbulence needed for the
analysis of turbulence are described by structure functions. The
structure functions give a precise meaning to clustering of bursts
of turbulent intensity, compound clustering, meaning clustering
of clusters etc. They measure the dependence of these compound
clustering rates on the length scale of observation and thus the
size of the clusters. There are two families of structure func-
tions, one for velocity fluctuations and the other for the energy
dissipation rate €.

We start with a definition of the tensorial dissipation rate
€j = usé, with v the kinematic viscosity and S;; = dv;/dx; the
strain rate. The scalar dissipation rate, €, occurs in K41 and is
recovered by the sum of ¢;; over its tensorial indices, or more
conventionally from a direct definition € = (v/2) Z,—_j(S,-j + Sjj)z.

The structure functions are defined as the expectation value
of the pth power of each variable. Each has an averaging radius
I, which gives rise to asymptotic scaling as a power of . For each
value of p, the structure functions define a fractal related to their
power law. The structure functions and the associated scaling
exponents ¢, and 7, are defined as the expectation values

() ~ 17 (15)

where dv; and ¢ are respectively the averages of velocity dif-
ferences and of €. The absolute values in (15) allow non integer
values of p.

In defining ¢, we also introduce tensor indices. The i, j tensor
velocity difference ¢, is defined as |(6; + &6 j)vil/2, where 8. ;
is the forward (backward) difference in the coordinate direction
j with a step size I. A sum over the tensor indices i,j yields an
orthogonal group invariant expression. The resulting quantity is
taken to the pth power and then averaged spatially to define the
i, j tensorial component of ¢,. The definition for the scalar e starts
with an average over the interior of a sphere of radius I, and
includes a sum over the tensor indices i, j.

The power p = 1 for 1, has a special property. Assume a
scaling law (15) for 7,—; only and for any value of ;. A change
in order of integration between the spatial average defining the
ensemble (- - -) and the averaging ball eliminates the average over
By, so that the spatial average of €(x, t), which we denote €y(t) =
J, €(x, t)dx, is finite. It follows that r; = 0 and € € Ly(V x [0, T]).
As is conventional in turbulence modeling, we also set the smaller
p value 713 = 0.

The two families of exponents are related by a simple scaling
law

H=p/3+1s3 (16)

(16v|Py ~ I and

derived on the basis of scaling laws and dimensional analysis by
Kolmogorov [41].

Using the scaling (16), 7,;3 = 0, and the scaling exponent is
¢p = p/3 for all p as a consequence of K41. As corrections to K41
scaling, 7, = O forall p < 3, and 7, = —2p/3 42+ o0(1) according
to [18]. By (16), it follows that {, = p/9 42+ 0(1) as p — oo.

The L, norm of §v; is ({(§v;)"))"/P. Substituting the t structure
function analysis of [ 18] into (16), we postulate that the §v; struc-
ture functions are a mixture of exponentials, while in the large p
limit, the width of the mixture of exponentials is vanishing. The
scaling exponents for the L, norms are divided by p, so that the
Lo norm has a scaling 1/9+ o(1/p). In this case, the large p limit
is well modeled by a single exponential, 1/9, and its prefactor,
which is denoted by here C. We summarize this discussion in the
formula

I8villLe ~ 177 (17)
4.4. When does MDNS give correct answers?

Validation experimental data for RT other than [10,11] either
do not distinguish among the alternate physical principles of
admissibility conditions or have not been considered by the three
algorithms.

To illustrate both of these possibilities, the hot-cold water
channel experiments of [42] match simulation data for «; for
all three algorithms, and thus do not distinguish among the
three physical principles. The more demanding salt-fresh water
channel, which likely would have differentiated among them, was
not considered in a validation study of the zero or minimum
dissipation algorithms. The analogous salt-fresh water experi-
ment Exp. 112 of [10,11], with exceedingly tight experimental
error bars, provided validation data for simulations [43] of the
maximum energy dissipation algorithm and physical principle.
For problems which are (a) intrinsically noisy, (b) diffusive, (c)
weakly turbulent, (d) limited in the objective functions used for
data comparison, ILES and even MDNS algorithms can model «}
correctly [42,44].

5. Maximum dissipation rate: Verification
5.1. Energy conservation

We observe that

T
€Vx[0,T] =/ /e(x, t)dxdt < oo . (18)
o Jv

and so €(x,t) € Ly(V x [0, T]) for flow in a periodic domain V,
for a bounded time interval [0, T], using a change of variables as
outlined in Section 4.3.

An integration by parts evaluates the above integral as

r
/ / e(x, t)dxdt = v/ v(x, t)Av(x, t)dxdt (19)
0o Jv Vx[0,T]

as the amount of energy that has been dissipated viscously into
heat. Here A is the Laplace operator. Due to the principle of
conservation of energy, more energy cannot be dissipated into
the turbulent cascade than is removed by viscous dissipation
at the end of the cascade. Thus the globally averaged € is a
solution specific maximum dissipation value and the upper bound
in (18) is justified. We remark that in the Euler limit, with zero
viscosity, (19) is interpreted as saying that this dissipation occurs
at distance scale 0.

We now assert that €(x, t) is locally a solution specific max-
imum energy dissipation rate. For this purpose we assume the
existence of a locally defined maximum dissipation rate, which
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we call MD(x,t). As 0 < e(x,t) < MD(x,t), and as its inte-
gral is the global maximum dissipation rate, the integral of the
difference MD(x, t) — €(x, t) satisfies

T
0< f /(MD(X, t) —€(x, t))dxdt =0, (20)
o Jv

and the nonnegative integrand must vanish a.e.

The solution specific analysis does not address a comparison
of the dissipation rates among multiple nonunique solutions of
the Euler equation.

5.2. Weak quasi stationarity

The central verification issue here is to confirm that the dy-
namic SGS choice of turbulent coefficients agrees with the so-
lution specific locally defined maximum dissipation rate €(x, t).
Our reasoning depends on turbulent scaling laws, and in view
of the comments [36] regarding scaling laws for non stationary
turbulence, we consider the weak quasi stationary hypothesis, in
which scaling laws continue to hold, but with modified scaling
exponents ¢, and 1, defined locally in space and time. The weak
quasi stationary hypothesis applies to many flows of scientific
and technological interest; we address later its validation for RT
mixing, where it is also generally accepted.

Classical single fluid turbulence, when considered locally, is
non stationary and non homogeneous. These properties refer to
global aspects of turbulent flow, but they do not describe its
local properties, which are far from uniform. The intermittency of
clusters of turbulent intensity implies that the scaling laws when
applied to local flow regions, must necessarily invoke the weak
quasi stationary hypothesis.

5.3. SGS terms as models for Reynolds stress

The Reynolds stress is the basis for the three alternative con-
structions of the SGS terms. The Reynolds stress is the unique
term in the discretized equations to involve sub grid scales.
Due to its nonlinearity, it couples the resolved scales to the
sub grid scales. According to turbulent scaling laws ideas, we
ignore backscatter and assume that locally the Reynolds stress is
identical to the energy transferred from the grid scale to the sub
grid.

We coarsen the mesh by a factor of two. Then the Reynolds
stress is computable and it is identical to the grid coarsened
local energy dissipation rate €(x, t). We recognize the Reynolds
stress as a velocity difference at scale | = Ax, with turbulent
scaling laws given by ¢,, p = 2. Scaling for ¢, is related to a
turbulent scaling law for 7,,3 by (15). Scaling laws for (uAuy),
introduced as a model for the dynamic SGS term (multiplied by u)
come from t,, p = 2. From this analysis, we determine uniquely
the dynamically defined SGS [6,7] turbulent coefficient v, scaled
from the coarsened mesh level to the current mesh level. Similar
reasoning applies to the selection of the eddy diffusivity D;, for
which details are omitted.

This is not how the SGS terms are defined. At the test filter
level, the known values for the Reynolds stress and the Smagorin-
sky model for it are known. Using these locally defined values,
the required SGS coefficients are also determined at the test
filter level. They are expressed as a ratio of Reynolds stress to
Smagorinsky model values. Tensor degrees of freedom are sup-
pressed in this analysis, so that the ratio is one of two scalar
quantities. The key assumption in the derivation of the dynamic
SGS model is that these coefficients are unchanged, and can be
used at the filter level. This assumption gives rise to a cancella-
tion, known as Germano’s identity [45] and allows evaluation of
the v, with a single level of mesh coarsening.

This description is overly simplified in two respects. It is
possible to obtain negative values for v;. To ensure a numerically
stable simulation algorithm, the v, is restricted to be nonnegative.

A further, and important compromise with the strict logic
is the reduction of tensor components to a single scalar using
least squares. In a study to be reported separately, we find that
the tensor product analysis is equivalent to a restriction of the
dynamic SGS method accuracy to observable quantities which are
orthogonally invariant. This restriction in accuracy is reflected in
the known problems in applying the dynamic SGS algorithm to
turbulent boundary layers, where orthogonal invariance fails. The
important RT observables, o, and ® are orthogonal invariant, and
from this fact we have confirmation in the FT accuracy of the
predictions of these observables.

These features are justified ultimately by the nearly 3 decades
of validation success in the design and optimization of structures
that interact with turbulent flows in real world applications.

In summary, FronTier, based on the maximum dissipation
principle, models the Reynolds stress according to locally defined
(weak quasi-stationary) turbulent scaling laws. The minimum
dissipation algorithm, ILES, sees the Reynolds stress as a Gibbs
phenomenon, and selects a minimizing model. MDNS models
the Reynolds stress as zero. MDNS uses a mesh scale dependent
model for these SGS coefficients, larger or smaller than ILES.

This choice of dissipation rates, applied at the mesh level only,
affects the entire solution, and defines the difference among the
three algorithms.

5.4. RT mixing

RT mixing is more complicated than classical turbulence. There
are no externally defined stirring forces, but there are dynami-
cally defined inertial forces. The RT inertial force is part of the RT
dynamics and cannot be specified in advance.

The reduced dissipation solutions are also solutions of the
Euler equation. Due to energy conservation, there is a reduction
in the dynamically generated inertial forces to compensate for the
Prigogine required reduction in dissipation forces. This translates
into the commonly noted reduction in «.

The proof that the RT €(x, t) is the local maximum dissipation
rate proceeds as before. We consider RT mixing as two-fluid
incompressible flow. The upper boundary is now reflecting, rather
than periodic. We restrict the times so that each phase has not yet
reached its opposite (top/bottom) wall. In this case the bound-
ary conditions, defined by reflection symmetry, are not affected
by density dependence in the gravitational or inertial forces. In
reasoning regarding total energy as a finite upper bound, we
include potential as well as kinetic energy, and make the same
hypotheses. The proof is unchanged.

Our already noted validation for RT mixing is a validation for
the weak quasi stationary hypothesis of turbulent scaling and also
for the allowance to be made for the approximations with this
strategy in the use of the dynamic SGS algorithm.

In selecting the maximum dissipation rate as the admissibility
principle for solutions of the Euler equation, we have contributed
to the resolution of the controversy between the minimum dissi-
pation rate ideas of Prigogine and the maximum dissipation rate
ideas of Ziegler, in favor of Ziegler.

5.5. Energy vs. viscous dissipation in RT simulations

We examine the FronTier simulation of Exp. 112 of [10,11].
Its dynamic SGS terms, from a late time step, give the turbulent
(eddy) energy dissipation and the turbulent concentration diffu-
sion. The SGS coefficients are variable in space and time. They
are tabulated in Table 4 terms of their L; and Ly, norms in space.
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The SGS coefficients depend on the level of mesh resolution,
with the mesh resolution 144 x 24 x 178 cells used here. The
molecular coefficients are small relative to their SGS counterparts.
The L; norm of the SGS coefficient v, is 20x larger than the
molecular values and the L,, norm is 5000 times larger. The
SGS diffusion coefficients are even larger in comparison to the
molecular coefficients. indicating the dominant role of the SGS
coefficients relative to the molecular coefficients. Thus molecular
coefficients can be neglected in an approximate analysis.

6. Significance: An example

For highly complex physical processes, domain knowledge
must be retained. It appears to be more feasible to bring multi-
fractal modeling ideas into the domain science communities than
the reverse. In this spirit, we propose here a simple method for
the identification of (turbulence related) extreme events through
a modification of adaptive mesh refinement (AMR), which we
call Fractal Mesh Refinement (FMR). We propose FMR to seek a
deflagration to detonation transition (DDT) in type Ia supernova.

AMR refines the mesh wherever the algorithm detects un-
der resolution. In contrast, FMR skips over most of these under
resolved refinements, and only refines in those extreme cases
of under resolution which are potential candidates for DDT. By
being more selective in its refinement, FMR allows high levels
of strongly focused resolution, a feature which enhances the
chance of discovery of highly concentrated deflagration fronts as
a precursor to DDT. The method is thus proposed to assess as
possible preconditions for a DDT the extreme events generated
by multifractal turbulent nuclear deflagration. Such events, in a
white dwarf type la supernova progenitor, are assumed to lead to
DDT, which produces the observed type Ia supernova. See [46,47]
and references cited there.

The detailed mechanism for DDT is presumed to be diffused
radiative energy arising from some local combustion event of
extreme intensity, in the form of a convoluted flame front, em-
bedded in a nearby volume of unburnt stellar material close to
ignition. Consistent with the Zeldovich theory [48], a wide spread
ignition and explosion may result. FMR refinement criteria will
search for such events. See [49] for a more detailed develop-
ment of these ideas. In [50], initial conditions with a high local
concentration of deflagration fronts are shown to lead to a DDT.

There is a minimum length scale for wrinkling of a turbulent
combustion front, called the Gibson scale. Mixing can proceed in
the absence of turbulence via stirring. Thus the Gibson scale is
not the correct limiting scale for a DDT event. Stirring, for a flame
front, terminates at a smaller scale, the width of the flame itself.
The analysis of length scales must also include correctly modeled
transport for charged ions [51], which can be orders of magnitude
larger than those inferred from hydro considerations. The micro
structure of mixing for a flame front could be thin flame regions
surrounded by larger regions of burned and unburned stellar ma-
terial (as with a foam of soap bubbles, with a soap film between
the bubbles). Here again multifractal and entropy issues appear to
be relevant. A multifractal clustering of smaller bubbles separated
by flame fronts can be anticipated, and where a sufficient fraction
of these bubbles are unburnt stellar material, a trigger for DDT
could occur.

This micro structure is a further law of physics, and for flame
fronts, the change of topology of the flame front occurs more
frequently than would occur in a pure stirring scenario.

For implementation of the above analysis, the astrophysics
code should be based on dynamic SGS, not on ILES.

7. Conclusions

The main result of this paper is the selection of the maxi-
mum rate admissibility principle to complete the otherwise under
specified Euler equations, and in application to RT, to accept the
maximally dissipative algorithm as physically correct.

Validation. Validation for RT simulations is the heart of this
paper. We itemize the three key steps:

1. Identification of the data [10,11] as uniquely distinguishing
among the three admissibility principles and in having
been tested for all three.

2. Absence of significant noise in this data, so that it can be
used for validation purposes.

3. Extensive numerical simulation based on the maximum
rate principle, and in agreement with the [10,11] data.

Verification. With input from the validation step, the weakly
quasi stationary hypothesis for the RT data allows the use of
turbulent scaling laws for non stationary flows.

A detailed justification of the dynamic SGS method as maxi-
mizing the energy dissipation rate as measured by orthogonally
invariant observables will be presented separately.

The quasi stationary hypothesis is generally accepted for RT
flows and many other non stationary flows and will be the subject
of a further, and separate, analysis. This hypothesis is consistent
with the dynamic SGS terms used in the FronTier code, so that the
validation step includes validation of this hypothesis for RT. With
the RT validation as a physics input, the mathematical verification
of the statistical analysis proceeds through identification of the
Reynolds stress with the dynamic SGS model for it.

Relevance. We have contributed to the resolution of the
Prigogine-Ziegler controversy regarding energy dissipation rates
of turbulent flow, in favor of the maximum dissipation rate of
Ziegler.

We have noted the potential for ILES related errors to influ-
ence ongoing scientific investigations, including the search for
DDT in type Ia supernova.

Outlook. V&V standards should include an analysis of the
physical relevance of proposed solutions to problems which in-
clude turbulent or stirring phenomena.

We recognize that the conclusions of this paper will be con-
troversial within the ILES and high order compact turbulent sim-
ulation communities.

A deeper consideration of the issues raised here is a possible
outcome. The issues to be analyzed are clear:

o [s there an experimental (validation) basis for asserting that
sufficient noise is present in the [10,11] data? Is there some
other data set which will distinguish between the three
admissibility principles?

e Is the transport of energy and concentration limited at the
grid level in ILES and its variant MDNS, correct physics?
Are the full standards of DNS simulations to be ignored in
simulations claiming to be DNS? If MDNS is used, is there a
need for a separate validation step?

e Is the energy dissipation and the Reynolds stress to be
regarded as a Gibbs phenomenon [17], and thus to be min-
imized?

e Should a solution using established algorithms and in full
satisfaction of standards of V&V be accepted as correct?

A response to the V&V issues raised here by appeal to consen-
sus (everyone else is doing it) necessarily fails. Consensus violates
standards of V&V, and for this reason it is a weak argument. The
engineering community using dynamic SGS models is far larger
than the community of ILES users. Dynamic SGS models are used
in the design of engineering structures and in the calibration
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of RANS models. They are backed by nearly three decades of
extensive experimental validation and experience in the design
and optimization of engineering structures tested in real applica-
tions. Consensus in this larger community overwhelms the ILES
consensus by its magnitude and by its nearly three decades of
designed structures that are “use tested” in actual operations.
ILES loses the consensus argument.
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