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a b s t r a c t

For two solutions of the WDVV equations that are related by the inversion symmetry, we show that
the associated principal hierarchies of integrable systems are related by a reciprocal transformation,
and the tau functions of the hierarchies are related by a Legendre-type transformation. We also
consider relationships between the Virasoro constraints and the topological deformations of the principal
hierarchies.
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1. Introduction

The Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations,
which arise in the study of 2D topological field theory (TFT) at the
beginning of the 1990s, are given by the following system of PDEs
for an analytic function F = F(v1, . . . , vn):

(i) The variable v1 is specified so that

ηαβ :=
∂3F

∂v1∂vα∂vβ
= constant, det(ηαβ) ≠ 0; (1.1)

(ii) The functions cα
βγ := ηανcνβγ with

cαβγ =
∂3F

∂vα∂vβ∂vγ
, (ηαβ) = (ηαβ)−1 (1.2)

yield the structure constants of an associative algebra for any
fixed v = (v1, . . . , vn), i.e, they satisfy

cλ
αβc

ν
λγ = cλ

γβc
ν
λα, for any 1 ≤ α, β, γ , ν ≤ n. (1.3)

Here, and inwhat follows, summationwith respect to repeated
upper and lower indices is assumed.

In [1,2] Dubrovin formulated the WDVV equations with an
additional quasi-homogeneity condition on F ; we will recall
this condition in Section 4 and call a solution of (1.1)–(1.3)
satisfying the quasi-homogeneous condition a conformal solution
of the WDVV equations. These equations, together with the
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quasi-homogeneity condition, are satisfied by the primary free
energy F of the matter sector of a 2D TFT with n primary
fields as a function of the coupling constants [3–5]. In [1,2]
Dubrovin reformulated these equations in a coordinate-free form
by introducing the notion of Frobenius manifold structure on the
space of the parameters v1, . . . , vn and revealed significantly rich
geometric structures of the WDVV equations, which have become
important in the study of several different areas of mathematical
research, including the theory of Gromov–Witten invariants,
singularity theory and nonlinear integrable systems, see [2,6–8]
and references therein. In particular, such geometrical structures
enable one to associate a solution of the WDVV equations with a
hierarchy of bi-Hamiltonian integrable systems of hydrodynamic
type, which is called the principal hierarchy in [8]. This hierarchy
of integrable systems plays an important role in the procedure of
reconstructing a 2D TFT from its primary free energy as a solution
of the WDVV equations. In this construction, the tau function that
corresponds to a particular solution of the principal hierarchy
serves as the genus zero partition function, and the full genera
partition function of the 2D TFT is a particular tau function of an
integrable hierarchy of evolutionary PDEs of KdV type which is a
certain deformation of the principal hierarchy; such a deformation
of the principal hierarchy is call the topological deformation [8].

In this paper we are to interpret a certain discrete symmetry of
the WDVV equations in term of the associated principal hierarchy
and its tau function. The discrete symmetry we consider here was
given by Dubrovin in Appendix B of [2] and is called the inversion
symmetry. This symmetry is obtained from a special Schlesinger
transformation of the system of linear ODEs with rational
coefficients associated to the WDVV equations (see Remark 4.2
of [9] for details). It turns out that in terms of the principal
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hierarchy and its tau function the inversion symmetry has a simple
interpretation. On the principal hierarchy it acts as a certain
reciprocal transformation, and on the associated tau function it
acts as a Legendre-type transformation. In Appendix B of [2]
there is given another class of discrete symmetries of the WDVV
equations which are called the Legendre-type transformations or
the type I symmetries, the relation of such symmetries with the
principal hierarchy and its tau function is given in [8]. Besides these
discrete symmetries, theWDVV equations also possess continuous
symmetries whose Lie algebra of infinitesimal generators (without
the quasi-homogeneity condition) was studied in [10–14].

Recall [2] that a symmetry of theWDVV equations is given by a
transformation

vα
→ v̂α, ηαβ → η̂αβ , F → F̂ (1.4)

that preserves theWDVVequations. The inversion symmetry given
in [2] has the following form:

v̂1
=

1
2

ηαβvαvβ

vn
, v̂i

=
vi

vn
(i = 2, . . . , n − 1),

v̂n
= −

1
vn

,

η̂αβ = ηαβ , F̂(v̂) = (vn)−2

F(v) −

1
2
ηαβv1vαvβ


.

(1.5)

Here we assume that η11 = 0 and the coordinates v1, . . . , vn are
normalized such that the constants ηαβ take the values

ηαβ = δα+β,n+1. (1.6)

This can always be achieved by performing an invertible linear
transformation

v1
→ ṽ1

= v1
+

n
i=2

bivi,

vj
→ ṽj

=

n
i=2

ajiv
i ( j = 2, . . . , n),

where bi, a
j
i ∈ C. We call the solution F̂(v̂) of theWDVV equations

(1.1)–(1.3) the inversion of the solution F(v).
The content of the paper is arranged as follows. We first

recall in Section 2 the definition of the principal hierarchy
and its tau functions associated to a calibrated solution of the
WDVV equations. We then show in Section 3 that the action
of the inversion symmetry of the WDVV equations on principal
hierarchies is given by a certain reciprocal transformation, and we
give the transformation rule of the associated tau functions, see
Propositions 3.2 and 3.3. In Section 4 we impose the conformal
condition on solutions of the WDVV equations and consider
the transformation rule of the inversion symmetry on principal
hierarchies and their bi-Hamiltonian structures. These results will
be used when we study the topological deformations of principal
hierarchies. In Section 5we consider the transformation rule of the
Virasoro constraints for tau functions of the principal hierarchies.
In Section 6 we consider the action of the inversion symmetry on
topological deformations of the principal hierarchies and their tau
functions.

The present paper is a rewrite of an early preprint [15]. We
omit the content associated to the type I symmetries of the WDVV
equations, and refine presentations of the results given there. The
main new content is the proof of Conjecture 6.1 of [15].
2. Calibrations, principal hierarchies, and tau functions

The notion of calibrations of a solution of the WDVV equations
(or a Frobenius manifold) corresponds to the choice of a system of
deformed flat coordinates on a Frobenius manifold [2], it was first
introduced in [16] and then modified in [10]. In what follows we
use the modified one.

It is well-known that the system of WDVV equations is
equivalent to the flatness of the deformed flat connection (see [2]
for details):

∇̃X (z)Y = ∇XY + z X · Y ,

where X, Y are vector fields on the Frobenius manifold M , ∇ is
the Levi–Civita connection of the metric (ηij), and z is an arbitrary
nonzero complex number.

The flatness of the deformed connection implies the existence
of deformed flat coordinates, so the following equation

∇̃dṽ(v, z) = 0 (2.1)

has n linearly independent solutions ṽ1(v, z), . . . , ṽn(v, z) which
are analytic at z = 0. We denote them by

ṽα(v, z) = ηανθν(z) = ηαν

p≥0

θν,p(v)zp,

then the Eq. (2.1) implies that

∂α∂βθν(z) = z cγ

αβ∂γ θν(z), ∂α =
∂

∂vα
, α, β, ν = 1, . . . , n. (2.2)

Solutions to the above equations are not unique,most of the results
given below in this section hold true only for those solutions that
are normalized by certain conditions coming from topological field
theories. These carefully chosen solutions are called calibrations of
the Frobenius manifoldsM .

Definition 2.1. Let F(v) be a solution of the WDVV equations, a
family of functions
θα,p(v) | α = 1, . . . , n; p = 0, 1, 2, . . .


is called a calibration of F(v) if their generating functions

θα(z) =


p≥0

θα,p(v)zp

satisfy the Eqs. (2.2) and the normalization conditions

θα(0) = vα := ηαβvβ , (2.3)

∂µθα(z) ηµν ∂νθβ(−z) = ηαβ , (2.4)

θα,1(v) =
∂F
∂vα

, (2.5)

∂1θα(z) = z θα(z) + η1α. (2.6)

The solution F(v) together with a calibration {θα,p(v)} is called a
calibrated solution of the WDVV equations.

Let (F(v), {θα,p(v)}) be a calibrated solution of the WDVV
equations, we introduce a hierarchy of evolutionary PDEs of
hydrodynamic type:

∂vγ

∂tα,p
= ηγ β ∂

∂x


∂θα,p+1

∂vβ


, α, γ = 1, . . . , n, p ≥ 0. (2.7)

It is easy to see that

∂vγ

∂t1,0
=

∂vγ

∂x
,
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so in what follows we identify t1,0 with x. By using the WDVV
equations one can prove the following results:
(i) Each flow ∂α,p possesses a Hamiltonian formalism with the

Hamiltonian operator P1 = (Pαβ

1 ) = ηαβ∂x and Hamiltonian
Hα,p[v] =


θα,p+1(v) dx;

(ii) {Hα,p,Hβ,q}1 = 0, where {, }1 is the Poisson bracket defined
by

{H1,H2}1 =


δH1

δvα
Pαβ

1


δH2

δvβ


dx; (2.8)

(iii) Denote ∂α,p :=
∂

∂tα,p , then ∂β,qθα,p(v) = ∂α,pθβ,q(v).

The second property (ii) also implies
[∂α,p, ∂β,q] = 0, ∂α,pHβ,q = 0,
which are easy corollaries of the properties of Poisson brackets.

Definition 2.2. The hierarchy (2.7) of integrable evolutionary
PDEs is called the principal hierarchy associated to the calibration
{θα,p(v)}.

Remark 2.3. The notion of principal hierarchy was introduced
in [8] for Frobenius manifolds associated to conformal solutions
of the WDVV equations, in this case calibrations are given by
the deformed flat coordinates of the Frobenius manifolds [2], see
Section 4 below.

Nowwe are to define tau functions of the principal hierarchy as
it is done in [2,8]. First we recall the definition [2] of the family of
functions
Ωα,p;β,q(v) | α, β = 1, . . . , n; p, q = 0, 1, 2, . . .


by the following generating functions
p,q≥0

Ωα,p;β,q(v) zp wq
=

∂µθα(z) ηµν ∂νθβ(w) − ηαβ

z + w
. (2.9)

Then one can prove that
Ωα,p;β,q = Ωβ,q;α,p, ∂γ ,sΩα,p;β,q = ∂α,pΩγ ,s;β,q, (2.10)
which imply that if vα(t) is a solution of the principal hierarchy
associated to certain calibration (here we use t to denote all the
time variables tα,p of the principal hierarchy), then there exists a
function f (t) such that
Ωα,p;β,q(v(t)) = ∂α,p∂β,qf (t).
In particular, we have θα,p(v(t)) = Ω1,0;α,p(v(t)) = ∂1,0∂α,pf (t).

Definition 2.4. Let (F(v), {θα,p(v)}) be a calibrated solution of the
WDVV equations, {∂α,p} be the associated principal hierarchy. A
function τ(t) is called a tau function of the principal hierarchy if

Ωα,p;β,q(v(t)) = ∂α,p∂β,q log τ(t), (2.11)

where vα(t) = ηαβ∂1,0∂β,0 log τ(t).

Note that if τ(t) is a tau function of the principal hierarchy, then
vα(t) = ηαβ∂1,0∂β,0 log τ(t) is a solution of the principal hierarchy.
Indeed, by using the property of the functions Ωα,p;β,q [2]

∂ξΩα,p;β,q =
∂θα,p

∂vσ

∂θβ,q

∂vλ
cσλ
ξ , cσλ

ξ = ησγ cλ
γ ξ (2.12)

we have
∂vα(t)
∂tβ,q

= ηαγ ∂1,0∂γ ,0∂β,q log τ(t) = ηαγ ∂1,0Ωγ ,0;β,q(v(t))

= ηαγ ∂Ωγ ,0;β,q

∂vξ
vξ
x (t) = ηαγ ∂θβ,q

∂vλ
cλ
γ ξv

ξ
x (t)

= ηαγ ∂x
∂θβ,q+1

∂vγ
.

On the other hand, the above argument shows that a solution of
the principal hierarchy also defines a tau function.
3. The actions of the inversion symmetry

In this section, we study the actions of the inversion symmetry
on calibrations, principal hierarchies, and tau functions of a
solution of the WDVV equations. We fix a pair of solutions
F(v), F̂(v̂) of the WDVV equations that are related by the
transformation (1.5).

Proposition 3.1. Let {θα,p(v)} be a calibration of F(v), then the
following functions

θ̂1,0(v̂) = −
1
vn

, θ̂1,p(v̂) = −
θn,p−1(v)

vn
, p ≥ 1,

θ̂i,p(v̂) =
θi,p(v)

vn
, 2 ≤ i ≤ n − 1, p ≥ 0, (3.1)

θ̂n,p(v̂) =
θ1,p+1(v)

vn
, p ≥ 0,

give a calibration {θ̂α,p(v̂)} of F̂(v̂).

Proof. According to the definition of calibration, we need to show
that the generating functions θ̂α(z) satisfy Eq. (2.2), i.e.

∂2θ̂ν(z)
∂ v̂α∂ v̂β

= z ĉγ

αβ

∂θ̂ν(z)
∂ v̂γ

,

and the normalization conditions. Note that both v̂ and θ̂α,p are
defined in three cases, so to prove the above identity one needs to
verify 3 × 2× 3 = 18 cases. The computation is not hard (in fact, it
requires nothingmore than elementary calculus), but very lengthy,
so we omit the details.

The following identity is frequently used in these verifications:

vnδn
α

∂vµ

∂v̂β
+ vnδn

β

∂vµ

∂v̂α
=

∂2vµ

∂v̂α∂v̂β
+ ηαβvnδ

µ

1 ,

it can be proved by definition and case by case verifications
(18 cases again). By using the above identity and the following ones

ĉαβγ (v̂) =
∂3F̂(v̂)

∂v̂α∂v̂β v̂γ
= (vn)−2 ∂vλ

∂v̂α

∂vµ

∂v̂β

∂vν

∂v̂γ
cλµν(v)

which was given in [2], one can prove the proposition straightfor-
wardly. �

Proposition 3.2. Let {∂α,p} be the principal hierarchy associated to
a calibration {θα,p(v)} of F(v). Introduce the following reciprocal
transformation

dx̂ =

n
α=1


p≥0

θα,p(v)dtα,p, (3.2)

t̂1,0 = x̂, t̂1,p = −tn,p−1, p ≥ 1,

t̂n,p = t1,p+1 (p ≥ 0), t̂ i,p = t i,p, 2 ≤ i ≤ n, p ≥ 0,
(3.3)

and denote ∂̂α,p :=
∂

∂ t̂α,p , then we have

∂v̂β

∂ t̂α,p
= η̂βγ ∂

∂ x̂


∂θ̂α,p+1(v̂)

∂v̂γ


, α, β = 1, . . . , n, p ≥ 0, (3.4)

i.e. {∂̂α,p} is the principal hierarchy of F̂(v̂)with calibration {θ̂α,p(v̂)}.
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Proof. From the definition of the reciprocal transformation we
have

∂

∂ x̂
=

1
vn

∂

∂x
,

∂

∂ t̂1,p
= −

∂

∂tn,p−1
+

θn,p−1(v)

vn

∂

∂x
, p ≥ 1,

∂

∂ t̂ i,p
=

∂

∂t i,p
−

θi,p(v)

vn

∂

∂x
, 2 ≤ i ≤ n, p ≥ 0,

∂

∂ t̂n,p
=

∂

∂t1,p+1
−

θ1,p+1(v)

vn

∂

∂x
, p ≥ 0.

(3.5)

The proposition can be proved by direct calculation. �

Proposition 3.3. Let τ(t) be a tau function of the principal hierarchy
associated to a calibration {θα,p(v)} of F(v). Define

log τ̂ (t̂) = log τ(t) − x
∂ log τ(t)

∂x
, (3.6)

then τ̂ (t̂) is a tau function of the principal hierarchy associated to
{θ̂α,p(v̂)}.

Proof. By definition the functions Ω̂α,p;β,q(v̂) are given by (2.9) in
terms of the functions {θ̂α,p(v̂)}. From the relation (1.5) and (3.1) it
follows that

Ω̂α,p;β,q(v̂) = (−1)δ
1
α+δ1β


Ωα+(n−1)δ(α),p−δ(α);β+(n−1)δ(β),q−δ(β)(v)

−
1
vn

θα+(n−1)δ(α),p−δ(α)(v) θβ+(n−1)δ(β),q−δ(β)(v)


, (3.7)

where δ(α) = δ1
α − δn

α , and we assume that θn,−1 = 1, Ωα,p;n,−1 =

Ωn,−1;β,q = 0when (α, p), (β, q) ≠ (1, 0). Then one can verify, by
using (1.5), (2.11) and (3.1), that

Ω̂α,p;β,q(v̂(t̂)) = ∂̂α,p∂̂β,q log τ̂ (t̂),

where v̂α(t̂) = ηαβ ∂̂1,0∂̂β,0 log τ̂ (t̂). The proposition is proved. �

Let τ(t) be a tau function of a principal hierarchy, then the
reciprocal transformation (3.2) can be written as

dx̂ = d


∂

∂x
log τ(t)


.

It follows that up to the addition of a constant we have

x̂ =
∂

∂x
log τ(t). (3.8)

The constant can be absorbed by a translation of x̂ in the definition
of the reciprocal transformation, so we will assume from now on
the validity of (3.8). Thus in terms of a given tau function, the
reciprocal transformation (3.2) and (3.3) can be represented by
(3.3), (3.6) and (3.8).

We note that the inverse of the transformation (3.3), (3.6) and
(3.8) is given by (3.3) and

x = −
∂

∂ x̂
log τ̂ (t̂), log τ(t) = log τ̂ (t̂) − x̂

∂ log τ̂ (t̂)
∂ x̂

. (3.9)

They are transformations of Legendre type.
4. Conformal case

In this section we are to include the quasi-homogeneity
condition into the WDVV equations as it is formulated in [2].

Definition 4.1. A solution F(v) of the WDVV equations is called
conformal if there exists a vector field E, called the Euler vector
field, of the form

E =

n
α=1


qα
βvβ

+ rα

∂α, qα

β , rα
∈ C,

and some constants d, Aαβ , Bα, C ∈ C such that

E(F) = (3 − d)F +
1
2
Aαβvαvβ

+ Bαvα
+ C .

It is often assumed that the matrix Q = (qα
β) is diagonalizable

and q11 = 1. The coordinates v1, . . . , vn are normalized so that

E =

n
α=1

(dαvα
+ rα) ∂α, d1 = 1,

and rα
= 0 if dα ≠ 0. In this paper, we assume that

r1 = · · · = rn = 0.

This assumption ensures that the solution F̂(v̂) of the WDVV
equations obtained from F(v) by the action of the inversion
symmetry also has a diagonalizable Euler vector field, while this
is not always true without the above assumption, see [2] and
Lemma 4.2. Then the Euler vector field can be written in the
following form:

E =

n
α=1


1 −

d
2

− µα


vα ∂α, µ1 = −

d
2
,

where the constants d and {µα} are called the charge and the
spectum of F(v) respectively [2].

Note that the WDVV equations only involve the third-order
derivatives of F(v), so we can add certain quadratic functions of
v1, . . . , vn to F(v) such that the constants Aαβ , Bα, C satisfy the
following normalizing conditions

Aαβ ≠ 0 only if µα + µβ = −1,

Bα ≠ 0 only if µα =
d
2

− 2,

C ≠ 0 only if d = 3.

Furthermore, our assumption on η11 and rα implies that

A1α = 0, B1 = 0.

The following lemma is proved in [2].

Lemma 4.2 ([2]). Let F(v) be a conformal solution of the WDVV
equations with charge d and spectrum {µα}, and F̂(v̂) be its inversion,
then F̂(v̂) is also conformal, whose charge d̂ and spectrum {µ̂α} read

d̂ = 2 − d, µ̂1 = µn − 1, µ̂n = µ1 + 1,

µ̂i = µi (2 ≤ i ≤ n − 1). (4.1)

Definition 4.3. Let F(v) be a conformal solution of the WDVV
equations with spectrum {µα}, a calibration {θα,p(v)} is called
conformal if there exist constant matrices R1, R2, . . . such that

E

∂βθα,p(v)


=

p + µα + µβ


∂βθα,p(v)

+

p
k=1

∂βθγ ,p−k(v) (Rk)
γ
α , (4.2)
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and

(Rk)
α
β ≠ 0 only if µα − µβ = k, (4.3)

ηαγ (Rk)
γ

β + (−1)kηβγ (Rk)
γ
α = 0. (4.4)

The property (4.3) implies that there is only finitely many
nonzero matrices Rk. These matrices, the metric (ηαβ) and the
spectrum {µα} form a representative of the monodromy data of
F(v) at z = 0, and

vα(z) =


p≥0

θγ ,p(v)

zµzR

γ
α

, α = 1, . . . , n

form a system of flat coordinates for the deformed flat connection
of the Frobenius manifold associated to the conformal solution
F of the WDVV equations. Here R = R1 + R2 + · · · and µ =

diag(µ1, . . . , µn). See [2,9] for details.

Proposition 4.4. Let (F(v), {θα,p(v)}) be a calibrated conformal
solution of theWDVV equations, then the calibration {θ̂α,p(v̂)} of F̂(v̂)
is also conformal.

Proof. We only need to compute Ê

∂̂β θ̂α,p(v̂)


, then the matrices

R̂1, R̂2, . . . for F̂(v̂) can be obtained

(R̂k)
α
β = (−1)δ

α
1 +δ1β


Rk+δ(α)−δ(β)

α+(n−1)δ(α)

β+(n−1)δ(β)
, k = 1, 2, . . . .

The proposition is proved. �

The principal hierarchy associated to a conformal calibtation
has a very important additional structure—the bi-Hamiltonian
structure. We already know from Section 2 that the principal
hierarchy has one Hamiltonian structure P1. When the calibrated
solution (F(v), {θα,p(v)}) is conformal, we have the following
results.

Lemma 4.5 ([2]). Define a matrix differential operator P2 = (Pαβ

2 ),
where

Pαβ

2 = gαβ(v)∂x + Γ αβ
γ (v) vγ

x , (4.5)

gαβ(v) =


1 −

d
2

− µγ


vγ cαβ

γ (v),

Γ αβ
γ (v) =


1
2

− µβ


cαβ
γ (v),

(4.6)

then P2 is a Hamiltonian operator which is compatible with P1.
Furthermore, for any conformal calibration {θα,p(v)} of F(v), we have

{· ,Hα,p−1}2 =


p + µα +

1
2


{· ,Hα,p}1

+

p
k=0

(Rk)
β
α {· ,Hβ,p−k}1, (4.7)

where { , }2 is the Poisson bracket defined by P2, see (2.8).

It has been shown in Proposition 3.2 that the inversion
symmetry preserves the first Hamiltonian structure P1, then it
is natural to ask: does it also preserve the second Hamiltonian
structure P2?

Proposition 4.6. Let F(v), F̂(v̂) be a pair of solutions of the WDVV
equations that are related by the inversion symmetry, and Pi, P̂i (i =

1, 2) be the corresponding Hamiltonian structures. Denote by Φ the
reciprocal transformation (3.2) and (3.3), then we have

Φ(P1) = P̂1, Φ(P2) = P̂2.
We note that the action of reciprocal transformations of the
form (3.2) and (3.3) on evolutionary PDEs of hydrodynamic type
and their Hamiltonian structures of the form (4.5) was first
investigated by Ferapontov and Pavlov in [17]. After the action of a
reciprocal transformation a Hamiltonian operator of the form (4.5)
becomes nonlocal in general, the nonlocal Hamiltonian operator is
given by a differential operator of the form (4.5) plus an integral
operator, in this case the metric (gαβ) is no longer flat. In [18]
Abenda considered the conditions under which such a reciprocal
transformation preserves the locality of a Hamiltonian structures
of hydrodynamic type. In [19] we studied a general class of
nonlocal Hamiltonian structures in terms of infinite dimensional
Jacobi structures and gave the transformation rule of such
Hamiltonian structures under certain reciprocal transformations,
a criterion on whether a reciprocal transformation preserves the
locality of a Hamiltonian structure was also given in [19].

Theorem 4.7 ([19]). Let P be a quasi-local bivector,ρ be an invertible
differential polynomial, the reciprocal transformation defined by ρ is
denoted by Φ . Then Φ(P) is local if and only if

[P, Λ] = 0, z(P, ρ) = 0,

where Λ =


ρ dx, and z(P, ρ) is the nonlocal charge of the pair
(P, ρ).

In the above theorem the bracket [ , ] is the Schouten–Nijenhuis
bracket defined on the space of quasi-local multi-vectors [19], and
the functionρ in our present case is given byρ = vn. The definition
of the nonlocal charge z(P, ρ) will be given below in the proof of
Proposition 4.6.

Proof of Proposition 4.6. According to the general results of [19]
(c.f. [17]), Φ(Pi) (i = 1, 2) are Jacobi structures of hydrodynamic
type. To prove the proposition, one needs to show that they are
both local, and their associated metrics coincide with the ones of
P̂i (i = 1, 2).

We first give the proof of the locality of Φ(P2) by using
Theorem 4.7. The proof of locality forΦ(P1) is easier and is omitted
here.

In our reciprocal transformation (3.3), ρ = vn, so Λ =


vn dx,
then we need to show that

[P2, Λ] = 0, (4.8)

which is equivalent to saying that there exists a constant c such
that

∇
i
∇k

vn

= c δi
k,

where ∇ is the Levi–Civita connection of the metric (gαβ) =

(gαβ)−1 (see (4.6)). By a straightforward calculation one can obtain
that c =

1−d
2 , thus (4.8) holds true.

We then need to compute the nonlocal charge z(P2, vn) defined
in [19] by

z(P2, vn) =
1
2
gαβ

∇α(vn)∇β(vn) − c vn. (4.9)

It is equal to

1
2
gnn

−
1 − d
2

vn
= 0.

This fact together with (4.8) implies the locality of Φ(P2).
Next, we need to show the coincidence of the metrics of Φ(Pi)

and of P̂i, i = 1, 2. This follows from the following identities

(vn)2η̂αβ dv̂αdv̂β
= ηαβ dvαdvβ ,

(vn)2ĝαβ(v̂) dv̂αdv̂β
= gαβ(v) dvαdvβ ,

and the transformation rule of the metrics of hydrodynamic Jacobi
structures [17,19]. The proposition is proved. �



S.-Q. Liu et al. / Physica D 241 (2012) 2168–2177 2173
5. Virasoro constraints of the tau functions

There is an important class of solutions of the principal
hierarchy (2.7) which can be obtained by solving the following
system of equations [2,8]:

t̃α,p ∂θα,p(v)

∂vγ
= 0, γ = 1, . . . , n, (5.1)

where t̃α,p
= tα,p

− cα,p and cα,p are some constants, which
are assumed to be zero except for finitely many of them. These
constants are required to satisfy the genericity conditions that
there exist constants v1

0, . . . , v
n
0 such that

cα,p∂γ θα,p(v)|v=v0 = 0,

and the matrix

(Aσ
γ ) =


α,p

cα,p∂σ ∂γ θα,p(v0)


is invertible. Here ∂γ =

∂
∂vγ and ∂σ

=


ξ ησξ∂ξ . One can obtain in
this way a dense subset of the set of analytic monotonic solutions
of the principal hierarchy (2.7), see Section 3.6.4 of [8] for details.
The tau function for the solution v1(t), . . . , vn(t) satisfying (5.1)
can be chosen to be

log τ(t) =
1
2


α,β,p,q

t̃α,p t̃β,q Ωα,p;β,q(v(t)). (5.2)

The validity of the defining relation (2.11) follows from (5.1) and
the identity (2.12) for the functions Ωα,p;β,q.

Proposition 5.1. Let v(t) = (v1(t), . . . , vn(t)) be a solution of the
principal hierarchy (2.7) given by (5.1), and v̂(t̂) = (v̂1(t̂), . . . ,
v̂n(t̂)) be the solution of the principal hierarchy (3.4) defined via (1.5),
(3.2) and (3.3). Then v̂(t̂) satisfies the equations

˜̂t
α,p ∂θ̂α,p(v)

∂v̂γ
= 0, γ = 1, . . . , n, (5.3)

where ˜̂t
α,p

= t̂α,p
− ĉα,p with

ĉ1,0 = 0, ĉ1,p+1
= −cn,p, ĉ i,p = c i,p, ĉn,p = c1,p+1

for i ≠ 1, n, p ≥ 0, and θ̂α,p are defined in (3.1). The associated tau
function

log τ̂ (t̂) =
1
2


α,β,p,q

˜̂t
α,p

˜̂t
β,q

Ω̂α,p;β,q(v̂(t̂)) (5.4)

satisfies (3.6).

Proof. To prove the validity of (5.3) let us consider the case when
γ = n, the proof for other cases is similar. By using (1.5), (3.1) and
(3.3) we have

˜̂t
α,p ∂θ̂α,p(v̂)

∂v̂n
=


˜̂t
α,p


−
1
2


σ ≠1,n

vσ vσ ∂

∂v1

+


σ ≠1,n

vσ vn ∂

∂vσ
+ (vn)2

∂

∂vn


θ̂α,p

= −
1

2vn


σ ≠1,n

vσ vσ

α,p

t̃α,p ∂θα,p

∂v1

+


σ ≠1,n

vσ

α,p

t̃α,p ∂θα,p

∂vσ
+ vn


α,p

t̃α,p ∂θα,p

∂vn

−


α,p

t̃α,pθα,p + t̂1,0 − ĉ1,0
= −


α,p

t̃α,pθα,p + t̂1,0

= −
∂ log τ

∂x
+ x̂ = 0.

Here we used the relation (3.8) and the fact that

∂ log τ(t)
∂x

=


α,p

(tα,p
− cα,p)θα,p(v(t)), (5.5)

which follows from (2.12), (5.1) and (5.2). The validity of the
relation (3.6) follows from (3.3), (3.7), (5.2) and (5.5). The
proposition is proved. �

In the case when the solution F(v) of the WDVV equations
is conformal, the tau function (5.2) satisfies the Virasoro con-
straints [20–22]

aα,p;β,q
m

∂ log τ

∂tα,p

∂ log τ

∂tβ,q
+


bβ,q
m;α,p t̃

α,p ∂ log τ

∂tβ,q

+


cm;α,p;β,q t̃α,p t̃β,q

= 0, (5.6)

where m ≥ −1, and the coefficients that appear in the above
expressions are some constants determined by the monodromy
data of the Frobenius manifold of F(v), they define a set of linear
differential operators

Lm =


aα,p;β,q
m

∂2

∂tα,p∂tβ,q
+


bβ,q
m;α,pt

α,p ∂

∂tβ,q

+


cm;α,p;β,qtα,ptβ,q

+ δm,0 c (5.7)

which give a representation of the half branch of the Virasoro
algebra

[Li, Lj] = (i − j)Li+j + n
i3 − i
12

δi+j,0, i, j ≥ −1. (5.8)

The first two Virasoro operators have the expressions

L−1 =


p≥1

tα,p ∂

∂tα,p−1
+

1
2

ηαβ tα,0tβ,0,

L0 =


p≥0


p +

1
2

+ µα


tα,p ∂

∂tα,p
+


p≥1

p
r=1

(Rr)
β
α tα,p ∂

∂tβ,p−r

+
1
2


p,q≥0

(−1)q (Rp+q+1)
ξ
α ηξβ tα,p tβ,q

+
1
4


α


1
4

− µ2
α


. (5.9)

See [20,8] for the explicit expressions of Lm,m ≥ 2. From
Proposition 5.1, it follows that the tau function of the principal
hierarchy (3.4) obtained from the tau function (5.2) of (2.7) via the
action of the inversion symmetry of the WDVV equations satisfies
the Virasoro constraints

âα,p;β,q
m

∂ log τ̂

∂ t̂α,p

∂ log τ̂

∂ t̂β,q
+


b̂β,q
m;α,p

˜̂t
α,p ∂ log τ̂

∂ t̂β,q

+


ĉm;α,p;β,q

˜̂t
α,p

˜̂t
β,q

= 0 (5.10)

associated to the solution F̂(v̂) of the WDVV equations.

6. The topological deformations

The principal hierarchy (2.7) possesses the following Virasoro
symmetries [20]
∂τ

∂sm
=


aα,p;β,q
m

1
τ

∂τ

∂tα,p

∂τ

∂tβ,q
+


bβ,q
m;α,pt

α,p ∂τ

∂tβ,q

+


cm;α,p;β,qtα,ptβ,qτ , (6.1)

where m ≥ −1. Note that these symmetries are nonlinear in τ .
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It is proved in [8] that, for a calibrated semisimple1 conformal
solution F(v) of the WDVV equations, there exists a unique
deformation of the principal hierarchy such that

• The deformed hierarchy possesses tau functions;
• The Virasoro symmetries (6.1) are deformed to the following

ones
∂τ

∂sm
= Lmτ , m = −1, 0, 1, . . .

which is linear in τ . Here we need to introduce a deformation
parameter ϵ into the Virasoro operators Lm by the rescaling
tα,p

→ ϵtα,p.

The tau function of the deformed hierarchy that is specified by
the Virasoro constraints

Lm

tα,p→tα,p−δα

1 δ
p
1
τ(t) = 0, m = −1, 0, 1, . . .

corresponds to the partition function of a 2D TFT if the solution
F(v) of theWDVV equations is given by the primary free energy of
thematter sector of the 2D TFT. Due to this fact such a deformation
of the principal hierarchy is called the topological deformation, it
has the form

∂wα

∂tβ,q
= ηαγ ∂x


∂θβ,q+1(w)

∂wγ


+


g≥1

ϵ2gKα
β,q;g(w; wx, . . . , w

(2g+1)). (6.2)

Here α, β = 1, . . . , n, Kα
β,q;g are differential polynomials of

w1, . . . , wn, i.e. polynomials of the x-derivatives of w1, . . . , wn

whose coefficients depend smoothly on w1, . . . , wn.
In this section, we will study the relation between the

topological deformations of the principal hierarchies of calibrated
conformal solutions of theWDVV equations that are related by the
inversion symmetry.

We redenote the Hamiltonian structures Pi, { , }i, Hα,p, . . . of the
principal hierarchy (2.7) that appear in the previous sections by
P [0]
i , { , }

[0]
i , H [0]

α,p, . . . respectively. Then the topological deformation
(6.2) of the principal hierarchy also possesses a Hamiltonian
structure given by the following data:

(i) A Hamiltonian operator P1 with leading term P [0]
1

P1 = P [0]
1 + ϵ2 P [1]

1 + ϵ4 P [2]
1 + · · · ,

where P [k]
1 (k ≥ 1) are matrix differential operators whose

coefficients are differential polynomials of w1, . . . , wn with
deg P [k]

1 = 2k + 1;
(ii) A set of differential polynomials {hα,p(w, wx, . . .)} of the form

hα,p(w, wx, . . .) = θα,p(w) + ϵ2 h[1]
α,p(w, wx, wxx)

+ ϵ4 h[2]
α,p(w, wx, . . .) + · · · ,

where h[k]
α,p (k ≥ 1) are differential polynomials of degree 2k.

They define respectively the deformed Poisson bracket

{H1,H2}1 =


δH1

δwα
Pαβ

1


δH2

δwβ


dx

= {H1,H2}
[0]
1 + ϵ2

{H1,H2}
[1]
1 + · · ·

1 A solution of the WDVV equation is called semisimple, if for any point v of the
associated Frobenius manifold M , the associative algebra defined on TvM by the
structure constants cγ

αβ (v) is semisimple. This notion is not explicitly used in the
present paper.
and the deformed Hamiltonians

Hα,p =


hα,p+1 dx = H [0]

α,p + ϵ2 H [1]
α,p + · · · .

In particular, the densities hα,0 are given by (c.f. (2.3))

hα,0 = ηαγ wγ , α, = 1, . . . , n.

Then the deformed hierarchy (6.1) has the expression

∂wβ

∂tα,p
=

wβ ,Hα,p


1 = Pβγ

1
δHα,p

δwγ
, α, β = 1, . . . , n, p ≥ 0.

We also denote ∂α,p =
∂

∂tα,p . This hierarchy has the following
properties:

(i) ∂1,0 = ∂x;
(ii) {Hα,p,Hβ,q}1 = 0, {Hα,−1, ·}1 = 0, ∂α,pHβ,q = 0, [∂α,p, ∂β,q] =

0;
(iii) ∂α,phβ,q = ∂β,qhα,p.

The property (iii), which is called the tau symmetry condition,
implies that for any pair of indices (α, p), (β, q) there exists a
differential polynomial Ωα,p;β,q such that

Ωα,p;β,q = Ω
[0]
α,p;β,q + ϵ2Ω

[1]
α,p;β,q + · · · ,

∂xΩα,p;β,q = ∂α,phβ,q.

They are related to the tau function of the topological deformation
of the principal hierarchy by

Ωα,p;β,q(w(t), wx(t), . . .) = ϵ2∂α,p∂β,q log τ(t),

where wα(t) = ϵ2 ηαβ∂1,0∂β,0 log τ(t). It follows from the defini-
tion of the tau function τ [0](t) for the principal hierarchy that

F (t) = ϵ−2F0(t) + F1(t) + ϵ2F2(t) + · · · , (6.3)

where the free energy F (t) = log τ(t), F0(t) = log τ [0](t).
The topological deformation of the principal hierarchy is

constructed in [8] by using the fact that the free energyF (t) can be
determined by the requirement of the linearization of the Virasoro
symmetries via the genus zero free energy F0. Namely, it can be
represented in the form

F (t) = log τ = ϵ−2F0(t) + ∆F(v, vx, . . .)|vα=vα(t). (6.4)

Here

∆F = F1(v, vx) + ϵ2F2(v, . . . , v(4))

+ · · · + ϵ2g−2Fg(v, . . . , v(3g−2)) + · · · ,

with the functions Fg determined by the loop equation given in [8],
and

vα(t) = ηαγ ∂2F0(t)
∂x∂tγ ,0

, α = 1, . . . , n

satisfy the principal hierarchy. The topological deformation of the
principal hierarchy is then obtained by the following coordinate
transformation

wα
= vα

+ ϵ2ηαβ∂1,0∂β,0∆F . (6.5)

This transformation is a particular quasi-Miura transformation. In
general, a quasi-Miura transformationwill transform objects (such
as Hamiltonians, vector fields, Hamiltonian structures,. . . ) with
differential polynomial coefficients to objects with coefficients
being rational functions of the jet variables. In [8], the above-
mentioned Hamiltonian structure of the deformed hierarchy is
obtained from the first Hamiltonian structure of the principal
hierarchy via the quasi-Miura transformation (6.5). A proof of
the polynomiality of the topological deformation of the principal
hierarchy and of the Hamiltonian operator P1 are given in [23,24].
For the second Hamiltonian structure of the principal hierarchy,
the following conjecture is given in [8].
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Conjecture 6.1 ([8]). The quasi-Miura transformation (6.5) trans-
forms the second Hamiltonian structure P [0]

2 of the principal hierarchy
to aHamiltonian structure P2 with differential polynomial coefficients.

We assume its validity in the remaining part of the present section,
and call the bi-Hamiltonian structure (P1, P2) that is induced from
(P [0]

1 , P [0]
2 ) via the quasi-Miura transformation (6.5) the topological

deformation of the bi-Hamiltonian structure (P [0]
1 , P [0]

2 ).
Let (F(v), {θα,p(v)}) and (F̂(v̂), {θ̂α,p(v̂)}) be two fixed cali-

brated conformal solutions of the WDVV equations which are
related by the inversion symmetry, and denote the topological de-
formations of the corresponding principal hierarchies by

∂α,pw
β

= Pαβ

1


δHα,p

δwβ


, ∂̂α,pŵ

β
= P̂αβ

1


δĤα,p

δŵβ


respectively. Introduce the following reciprocal transformation Φ:

dx̃ =

n
α=1


p≥0

hα,pdtα,p, (6.6)

t̃1,0 = x̃, t̃1,p = −tn,p−1, p ≥ 1,

t̃n,p = t1,p+1 (p ≥ 0), t̃ i,p = t i,p, 2 ≤ i ≤ n, p ≥ 0,
(6.7)

and the new coordinates w̃α
= ηαβ h̃β,0, where

h̃1,0 = −
1

h1,0
, h̃1,p = −

hn,p−1

h1,0
, p ≥ 1,

h̃α,p =
hα,p

h1,0
, 2 ≤ α ≤ n − 1, p ≥ 0, (6.8)

h̃n,p =
h1,p+1

h1,0
, p ≥ 0.

Here the densities hα,p = hα,p(w, wx, . . .) are chosen as [8]

hα,p(w, wx, . . .) = θα,p+1(v) +
∂2∆F(v, vx, . . .)

∂x∂tα,p+1
.

The variables v, vx, . . . that appear on the right hand side of
the above equation can be represented in terms of the variables
w, wx, . . . by using the quasi-Miura transformation (6.5).

Denote the components of Φ(P1) in the coordinate system
(w̃1, . . . , w̃n) by P̃αβ

1 , then we have (see [19])

∂̃α,pw̃
β

= P̃αβ

1


δH̃α,p

δw̃β


, ∂̃α,p =

∂

∂ t̃α,p
. (6.9)

It is easy to see that P̃1, {H̃α,p} have the same leading terms as
P̂1, {Ĥα,p} respectively but their deformed parts are different.

Theorem 6.2. There exists a Miura-type transformation such that
the hierarchy (6.9) is transformed to the topological deformation
{∂̂α,pŵ

β
} of the principal hierarchy for F̂(v̂).

Lemma 6.3. Under the reciprocal transformation (6.6) and (6.7) the
bi-Hamiltonian structure (P1, P2) of the topological deformation of the
principal hierarchy is transformed to a local bi-Hamiltonian structure
of (6.9).

Proof. We are to use Theorem 4.7 again. DenoteΛ =

h1,0 dx, we

need to show that

[Pi, Λ] = 0, z(Pi, h1,0) = 0.

Here the function z is defined as in (4.9). The first equality is a
consequence of the quasi-triviality of the bi-Hamiltonian structure
(P1, P2) (see [25]), since we have proved [P [0]

i , Λ[0]
] = 0. The

second equality is verified in the proof of Proposition 4.6. The
lemma is proved. �
Proof of Theorem 6.2. From the above lemma it follows that both
the hierarchy (6.9) and the topological deformation {∂̂α,pŵ

β
}

of the principal hierarchy for F̂(v̂) possess local bi-Hamiltonian
structures, these bihamiltonian structures have the same leading
terms, which form a semisimple2 bi-Hamiltonian structure of
hydrodynamic type.

From Theorem 2.5.7 of [19] it follows that Miura-type trans-
formations preserve Schouten–Nijenhuis brackets, so if two
bi-Hamiltonian structures are related by aMiura-type transforma-
tion, then this transformation transforms a bi-Hamiltonian vec-
tor field to a bi-Hamiltonian vector field. By using this fact and
the result of Corollary 1.9 of [25] we know that in order to prove
the equivalence of two hierarchies under Miura-type transforma-
tions, we only need to show that their bi-Hamiltonian structures
are equivalent. According to the general results of [25,26], two
bi-Hamiltonian structures of the type considered here with same
leading terms are equivalent if and only if their central invariants3

coincide. It is proved in [27] that the topological deformation of
the bi-Hamiltonian structure of a principal hierarchy has central
invariants 1

24 , so we have

ci(P1, P2) =
1
24

, ci(P̂1, P̂2) =
1
24

, i = 1, . . . , n.

On the other hand, it is shown in [19] that if a reciprocal
transformation transforms a local bi-Jacobi (i.e. bi-Hamiltonian)
structure to a local one, then it preserves the central invariants,
which implies

ci(P1, P2) = ci(P̃1, P̃2), i = 1, . . . , n,

so ci(P̃1, P̃2) = ci(P̂1, P̂2), i = 1, . . . , n. The theorem is proved. �

The above theorem only ensures the existence of the Miura-
type transformation relating the two integrable hierarchies. We
now consider the explicit form of this transformation.

Note that the reciprocal transformation (6.6)–(6.8) is defined
in the same way as in the dispersionless case, so we have the
following proposition.

Proposition 6.4. Let τ(t) be a tau function of the topological
deformation (6.2) of the principal hierarchy associated to a calibration
{θα,p(v)} of F(v). Define

log τ̃ (t̃) = log τ(t) − x
∂ log τ(t)

∂x
, (6.10)

then τ̃ (t̃) is a tau function of the hierarchy (6.9). It satisfies

Ω̃α,p;β,q(w̃(t̃)) = ϵ2∂̃α,p∂̃β,q log τ̃ (t̃),

where w̃α(t̃) = ηαβ ∂̃1,0∂̃β,0 log τ̃ (t̃), and Ω̃α,p;β,q(w) are defined as
in (3.7) with θα,p(v) replaced by hα,p(w).

2 A bi-Hamiltonian structure of hydrodynamic type is semisimple if the
eigenvalues of the (1, 1) tensor r ij = (g2)ik(g1)kj are non-constant and distinct,
where g1, g2 are the metrics associated to the hydrodynamic bi-Hamiltonian
structures. The bi-Hamiltonian structures obtained from a semisimple conformal
solution of the WDVV equation is always semisimple. This notion is not explicitly
used in the present paper either.
3 The notion of central invariants is introduced in [25,26] to characterize

infinitesimal deformations of a bi-Hamiltonian structure of hydrodynamic type.
They are defined by certain tensor coefficients that appear in the first six terms of
the deformed bi-Hamiltonian structure. Since their explicit definition will occupy
too much space and we never use it in the present paper, we omit it. In fact, all
deformations considered in this paper have central invariants 1

24 .
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We denote F̃ (t̃) = log τ̃ (t̃), and

F̃ (t̃) = ϵ−2F̃0(t̃) + F̃1(t̃) + ϵ2F̃2(t̃) + · · · .

It is easy to see that F̃0 = log τ̂ [0], which is the tau function of
the principal hierarchy {∂̂α,pv̂

β
} given in Proposition 3.3. In what

follows, we are to show that the functions F̃g (g ≥ 1) can be
obtained from Fg (g ≥ 1), and they are in fact differential rational
functions4 of v̂1, . . . , v̂n.

We regard the two sides of (6.10) as power series in
ϵ with coefficients being functions of t , then compare their
Laurent coefficients. By using (6.4) we know that the reciprocal
transformation (6.6) can be represented in terms of a tau function
by

x̃ = ϵ2 ∂ log τ(t)
∂x

=
∂F0(t)

∂x
+ ϵ2 ∂∆F (t)

∂x

= x̂ + ϵ2 ∂∆F (t)
∂x

, (6.11)

where ∆F (t) =


g≥1 ϵ2g−2Fg(t), so we have

F̃g(t̃) = eϵ2 ∂∆F (t)
∂x

∂
∂ x̂ F̃g(t̂)

=


k≥0

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃g(t̂)

∂ x̂k
. (6.12)

In particular, by using the Legendre transformations (3.6) and
(6.10) and the fact that F̃0(t̂) = F̂0(t̂) we have

ϵ−2F̃0(t̃)

= ϵ−2eϵ2 ∂∆F (t)
∂x

∂
∂ x̂ F̃0(t̂)

= ϵ−2F̃0(t̂) +
∂∆F (t)

∂x
∂F̃0(t̂)

∂ x̂

+ ϵ−2

k≥2

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃0(t̂)

∂ x̂k

= ϵ−2


F0(t) − x
∂F0(t)

∂x


− x

∂∆F (t)
∂x

+ ϵ−2

k≥2

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃0(t̂)

∂ x̂k

= ϵ−2F0(t) − x
∂F (t)

∂x
+ ϵ−2


k≥2

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃0(t̂)

∂ x̂k

= log τ̃ (t̃) − ∆F (t) + ϵ−2

k≥2

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃0(t̂)

∂ x̂k
,

by using (6.12) again, we obtain
g≥1

ϵ2g−2

k≥0

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃g(t̂)

∂ x̂k

= ∆F (t) − ϵ−2

k≥2

1
k!


ϵ2 ∂∆F (t)

∂x

k
∂kF̃0(t̂)

∂ x̂k
. (6.13)

By comparing the coefficients of powers of ϵ on both sides of the
above equation we can represent F̃g in terms of F0, F1, . . . , Fg as

4 A differential rational function of v̂1, . . . , v̂n is a rational function in v̂i
x, v̂

i
xx, . . .

with coefficients being smooth functions of v̂1, . . . , v̂n .
follows:

F̃1(t̂) = F1(t), (6.14)

F̃2(t̂) = F2(t) −
∂F̃1(t̂)

∂ x̂
∂F1(t)

∂x
−

1
2

∂2F̃0(t̂)
∂ x̂2


∂F1(t)

∂x

2

= F2(t) −
1

2vn


∂F1(t)

∂x

2

, . . . . (6.15)

Here we used the relations

∂F̃1(t̂)
∂ x̂

=
∂F1(t)

∂x
∂x
∂ x̂

= −
∂F1(t)

∂x
∂2F̃0(t̂)

∂ x̂2

and

∂2F̃0(t̂)
∂ x̂2

= v̂n
= −

1
vn

.

Note that the summation on the left hand side of (6.13) starts from
k = 2, so we can use the fact that

∂kF̃0(t̂)
∂ x̂k

=
∂k−2v̂n(t̂)

∂ x̂k−2
,

then every F̃g(t̂) is a differential polynomial of vn, F1, . . . , Fg .
Note that F1, . . . , Fg are differential rational functions of v1, . . . ,

vn, and v̂1, . . . , v̂n are rational functions of v1, . . . , vn, so we see
that F̃g is a differential rational function of v̂1, . . . , v̂n.

Now let us denote by

log τ̂ (t̂) = F̂ (t̂) = ϵ−2F̂0(t̂) +


g≥0

ϵ2g−2F̂g(t̂)

the free energy of the topological deformation of the principal
hierarchy associated to F̂(v̂). Then as in (6.4) we can represent
F̂g(t̂) in the form

F̂g(t̂) = F̂g(v̂(t̂), . . . , ∂3g−2
x̂ v̂(t̂)),

where v̂(t̂) = (v̂1(t̂), . . . v̂n(t̂)) is a solution of the principal
hierarchy of F̂(v̂).

Now let us compare F̂g and F̃g (g ≥ 1). When g = 1, from
(6.14) and the expression of the genus one free energy [7] it follows
that

F̃1(t̂) = F1(t) =
1
24

det

cαβγ (v(t))vγ

x (t)

+ G(v(t)).

Here G(v) is the G-function associated to F(v), see [7]. By using
the following relation between the G-functions for F(v) and its
inversion F̂(v̂) given in [28]:

Ĝ(v̂) = G(v) +


n
24

−
1
2


log vn

and the identity

1
24

log det(ĉαβγ (v̂)v̂
γ

x̂ ) =
1
24

log det(cαβγ (v)vγ
x ) −

n
24

log vn,

we have

F̃1(t̂) = F̂1(t̂) −
1
2
log v̂n(t̂) +

1
2
log(−1).

For higher genera, we present the following conjecture.

Conjecture 6.5. The difference G =


g≥1 ϵ2g−2

F̃g − F̂g


can be

represented as

G(ŵ) = G1(ŵ
n) + ϵ2G2(ŵ

n) + ϵ4G3(ŵ
n) + · · · ,

where Gg(ŵ
n) are differential polynomials of ŵn. Moreover, the

differential polynomials Gg do not depend on the particular solution
F(v) of the WDVV equations.
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We have shown above that the conjecture holds true at the
genus one approximation with

G1(ŵ
n) = −

1
2
log ŵn

+
1
2
log(−1).

At the genus two approximation, we have verified the validity
of the conjecture for solutions of the WDVV equations that are
associated to the Coxeter groups of type I2(k) and A3 with

G2(ŵ
n) =

ŵn
x̂x̂

8(ŵn)2
−

(ŵn
x̂ )

2

12(ŵn)3
.

For the higher genera corrections Gg (g ≥ 3) we do not know
their explicit expressions at the moment. It is interesting to give
an interpretation for the expressions of these functions.

Under the assumption of validity of the above conjecture, the
Miura-type transformation between the hierarchy (6.9) and the
topological deformation {

∂ŵα

∂ t̂β,q } of the principal hierarchy for F̂(v̂)

is given by

w̃α
= ŵα

+ ηαβ∂x̂∂t̂β,0

×


−

ϵ2

2
log ŵn

+ ϵ4


ŵn

x̂x̂

8(ŵn)2
−

(ŵn
x̂ )

2

12(ŵn)3


+ · · · .

Here ηαβ∂t̂β,0ŵn
= ŵα

x̂ . We note that after the above Miura-type
transformation the flows ∂ŵα

∂ t̂β,q are transformed to the evolutionary
PDEs
∂w̃α

∂ t̂β,q
= Kα

β,q(w̃, w̃x̂, w̃x̂x̂, . . .), α, β = 1, . . . .n, q ≥ 0,

then the hierarchy (6.9) is obtained by redenoting the spatial
variable x̂ and the time variables t̂β,q by x̃ and t̃β,q respectively.
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