
Physica D 292–293 (2015) 1–7
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Critical behavior for scalar nonlinear waves
Davide Masoero a,∗, Andrea Raimondo b, Pedro R.S. Antunes a,c

a Grupo de Física Matemática da Universidade de Lisboa, Portugal
b Università degli Studi di Milano-Bicocca, Dipartimento di Matematica e Applicazioni, Italy
c Departamento de Matemática, Universidade Lusófona de Humanidades e Tecnologias, Portugal

a r t i c l e i n f o

Article history:
Received 30 May 2014
Received in revised form
18 September 2014
Accepted 19 September 2014
Available online 24 October 2014
Communicated by P.D. Miller

Keywords:
Benjamin–Ono equation
Dispersive shock
Korteweg–de Vries equation
Phase transition
String equation
Tricritical point

a b s t r a c t

In the long wave regime, nonlinear waves may undergo a phase transition from a smooth behavior
to a fast oscillatory behavior. In this study, we consider this phenomenon, which is commonly known
as dispersive shock, in the light of Dubrovin’s universality conjecture (Dubrovin, 2006; Dubrovin and
Elaeva, 2012) and we argue that the transition can be described by a special solution of a model universal
partial differential equation. This universal solution is constructed using the string equation. We provide
a classification of universality classes and an explicit description of the transition with special functions,
thereby extending Dubrovin’s universality conjecture to a wider class of equations. In particular, we
show that the Benjamin–Ono equation belongs to a novel universality class with respect to those known
previously, and we compute its string equation exactly. We describe our results using the language of
statistical mechanics, where we show that dispersive shocks share many of the features of the tricritical
point in statistical systems, and we also build a dictionary of the relations between nonlinear waves and
statistical mechanics.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Dispersive shock waves in 1 + 1 dimensions comprise a class
of shock waves, which have been observed recently in a variety of
physical situations where the media are dispersive or not strictly
diffusive, e.g., plasma physics [1], Bose–Einstein condensates [2],
nonlinear optics [3,4] and hydrodynamics [5–8]. Following the
shock, thewaves experience an abrupt phase transition from a reg-
ular behavior to a rapid oscillatory behavior, and this transition has
been conjectured to be universal, where it depends only on some
general properties of the underlying model as a partial differential
equation (PDE). The universality classes observed previously cor-
respond to the class of scalar dispersive waves (Korteweg–de Vries
universality class, [9]) and the class of two components focused
on dispersive waves (the class of a focusing nonlinear Schrödinger
equation, [10]). A similar universality property has also been ob-
served in the case of classical dissipative shock (Burgers universal-
ity class, [11,12]).

In the present study, we consider a fairly general model equa-
tion for 1-dimensional scalar unidirectional waves in a fluid of the
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form

ut + a(u)ux + N[u] = 0, (1)

where a(u) is a non-constant function (in most relevant cases
a(u) = u) andN is a (pseudo) differential operator, which is gener-
ally nonlinear. Note that N can be a local operator as well as a non-
local operator, such as the Hilbert transform. Although our primary
interest is the study of dispersive shocks, this class of equations
includes diffusive and mixed dispersive-diffusive models, which
can be selected based on different choices of the operator N . More
precisely, N models the phenomena under examination by con-
sidering relevant physical effects, such as dispersion, dissipation,
pressure, or the interfacial interaction between two different flu-
ids. Notable examples of equations that belong to this class include
generalized Korteweg–de Vries (KdV) and Burgers equations, the
intermediate-long wave and Benjamin–Ono (B–O) equations, and
the Benjamin–Bona–Mahony and Camassa–Holm equations. The
operators N that correspond to these equations are listed in Ta-
ble 1.

The critical behavior arises when we consider solutions that
vary on a large scale (compared with the natural scale of the
system) at time t = 0, such as 1/ε with ε small, and we study
whether fluctuations on a smaller scale arise at a later time. We
assume that the nonlinear operator admits a long wave expansion,
i.e., we assume that a real number β > 0 and an operator N exist
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Table 1
Notable examples of equations of the form ut + a(u)ux + N[u] = 0. For every equation in the list, we give a(u), N[u], N̄[u], and the coefficients β , κ , θ for the corresponding
universal Eq. (11).

Equation a(u) N[u] N̄[u] β κ θ

Generalized Burgers un, n > 0 −uxx −uxx 1 1 0
Generalized Korteweg–de Vries un, n > 0 uxxx uxxx 2 0 1
Benjamin–Ono u −H[uxx], H[u](x) =

1
π

−

 u(y)
x−y dy −H[uxx] 1 0 1

Intermediate Long Wave u −
1
2δ ∂

2
x −


R coth


π(x−y)

2δ


u(y)dy +

1
δ
ux

δ
3 uxxx 2 0 δ

3

Camassa–Holm u (1 − ∂2x )
−1

−uux +

2
3 uxuxx +

1
3 uuxxx


+ uux −

7
3 uxuxx −

2
3 uuxxx 2 0 −

2
3 uc

Benjamin–Bona–Mahony u (1 − ∂2x )
−1 (−uux)+ uux −3uxuxx − uuxxx 2 0 −uc
such that for any sufficiently smooth function u,

NSε[u] = εβ+1SεN[u] + o(εβ+1), β > 0, (2)

where Sε, ε > 0 is the dilation operator

Sε[u](x) = u(εx). (3)

Table 1 shows that assumption (2) holds for any of the specific
equations listed above. From (2), it follows that in the long wave
regime, by applying the change of variables (x, t) → (xε, tε), the
wave satisfies the rescaled equation

ut + a(u)ux + εβN[u(x)] + o(εβ) = 0, ε → 0,

where the initial data are independent of ε. If the latter equation
is well-posed, then in this regime, (1) is a small perturbation of
the scalar conservation law (or Hopf equation) ut + a(u)ux =

0, provided that the wave remains smooth. However, when the
solution of the Hopf equation develops a shock, i.e., a point with
a vertical derivative, the term N[u] is no longer negligible and it
makes the wave fluctuate on a smaller scale, provided that the
perturbation is not strictly dissipative.

In this study, we use some heuristic techniques, which are
reminiscent of [9], to analyze the behavior ofwaves that are similar
to shock for equations of type (1), and we study their universal
behavior. We show that there is an emerging meso-scale where
the shock is indeed universal, which is described by a particular
solution of the universal PDE

UT + UUX +


+∞

−∞

eipX (κ + iθ sign(p)) |p|β+1Û(p, T ) dp = 0,

where Û(p, T ) is the Fourier transform of U(X, T ) and κ, θ, β
are specific scalar parameters that can be computed explicitly
from the operator N . The universality classes are parameterized by
pairs of the form ( κ

θ
, β), where different parameter choices yield

different universality classes. Based on this classification, we can
answer the question posed by [13]: the B–O equation, although it
is a Hamiltonian (conservative) PDE, does not belong to the KdV
universality class (κ = 0, β = 2), but instead it represents a new
universality class (κ = 0, β = 1).

The second part of this study characterizes the particular solu-
tion of the universal PDE that describes the wave at the shock. Our
construction is based on the concept of the string equation [9,14],
which is a perturbative deformation of the algebraic equation that
describes the shock of the Hopf equation. Each universality class is
characterized by a particular string equation and the universal so-
lution is a specific solution of a boundary value problem for the cor-
responding string equation. Using this approach,we can compute a
quantitywith perturbative techniques, which is beyond all order in
the standardperturbative expansion of solutions to (1) in powers of
ε. In a fewparticular cases, the string equation can be computed ex-
actly. For instance,we recover the string equations obtained for the
KdV and Burgers classes (an ordinary differential equation (ODE) of
Painlevé type and the Pearcey equation, respectively), andwe com-
pute the string equation for B–O, which was previously unknown.
Therefore, we conjecture that the critical behavior of solutions to
Table 2
Dictionary: nonlinear waves and statistical mechanics.

Wave equation in 1 + 1 dimensions Statistical model

Long wave limit Thermodynamic limit
Critical point of gradient catastrophe Tricritical point
Wave amplitude in the Whitham
zone

Order parameter

Unfolding of cubic singularity Mean field of ϕ6 model
Meso-scale at the critical point Renormalization group flow
Scaling linear perturbations of Hopf Fixed point of renormalization group

the Benjamin–Ono equation can be described by a particular solu-
tion of the singular integro-differential equation

X − UT + U3
− 3UH[UX ] − 3H[UUX ] − 4UXX = 0,

where H is the Hilbert transform on the line. We study the above
equation numerically and we compare our results with the uni-
versal behavior of KdV and Burgers classes. The numerical solution
of the B–O string equation requires an effective scheme for a
non-local boundary value problem with an irregular boundary be-
havior, but no suitable method has been described in previous
studies. Thus, our algorithm uses a novel numerical scheme, which
was developed ad-hoc by [15], to effectively evaluate the Hilbert
transform for functions that are slowly decaying at infinity.

Before obtaining a precise description of the behavior of waves
at the critical points, the next section presents some known results
related to the theory of dispersive shocks. We describe these
phenomena and the new results obtained in the present study
using the language of statisticalmechanics, thereby illustrating the
strong analogy between the critical behavior of nonlinear waves
and the theory of phase-transitions in statisticalmechanics, aswell
as making the dispersive-shock phenomenon easy to understand
by any scientist familiar with the latter theory. Furthermore, we
build a dictionary based on the relationship between the critical
behavior of nonlinear waves and the phase transitions of statistical
mechanics, which is summarized in Table 2.1

2. Dispersive shock as a tricritical phase transition

To understand the dispersive-shock phase transition, we con-
sider the well-known case of the dispersionless (or semiclassical)
limit of KdV [17–19]

ut + uux − ε2uxxx = 0, ε → 0, u(x, t = 0, ε) = ϕ(x).

We assume that the initial data are smooth, positive, rapidly
decaying, and they have a single hump. The formal ε = 0 limit,
known as theHopf equation, describes awavewhere every particle
on the profile travels with constant velocity u, i.e., the solution is
constant along the characteristic lines

x(t; x0) = x0 + ϕ(x0)t, u(x(t; x0), t) = ϕ(x0). (4)

1 It is interesting to compare our table with Table 1 provided by [16], who
considered dissipative shock.
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Up to the critical time tc , all lines are distinct and the solution is
uniquely determined,whereas the lines start to intersect afterward
and the wave develops a shock, i.e., a point with a vertical deriva-
tive, where the contribution ε2uxxx is not negligible, irrespective of
how small ε might be. Lax and Levermore [18] showed that in the
semiclassical regime, the (x, t)-plane is divided into two zones (see
Fig. 3). In the first, which is known as the semiclassical zone and that
contains the strip R × [0, tc), the limit limε→0 u(x, t, ε) = u(x, t)
exists and it corresponds to the solution of the Hopf equation, or
one of its branches if it is multi-valued. In the second zone, which
is known as theWhitham zone, u(x, t, ε) develops oscillations with
a vanishing wavelength O(ε) (see Fig. 1) and the limit exists only
in a weak sense, i.e., a function u(x, t) exists that averages the os-
cillations, which are uniquely defined by the weak limit

lim
ε→0


ψ(x)u(x, t, ε)dx =


ψ(x)ū(x, t)dx,

for any test function ψ(x).2
The boundary of the Whitham zone depends only on the initial

data, i.e., an approximate expression of the boundary up to a
certain time beyond the critical time and for certain classes of
initial data was described by Grava and Klein [20]. To better
understand the transition of the solution froma regular behavior to
an oscillatory behavior, we introduce an order parameterW (x, t),
which measures the amplitude of the oscillations in the Whitham
zone:

W (x, t) = lim
ε→0

sup |u(x, t, ε)− u(x, t)|. (5)

In the KdV case, the function W , as shown in Fig. 2, can be com-
puted exactly from the formulae for u and ū, which were obtained
in [20]. Let us fix t at a value higher than tc . Then, the Whitham
zone is an interval (x−(t), x+(t)) of the real line. The order parame-
terW (x, t) is zero outside this interval, where it behaves similar to
W (x, t) ∼ 1/ log(x+(t)−x) close to the right boundary, whereas it
is discontinuous at the left boundary: limx↓x− W (x, t) > 0. There-
fore, the solution undergoes a second order phase transition at
x = x+, where the order parameter is continuous but not differen-
tiable, and a first order phase transition at x = x−, where the order
parameter is discontinuous. The boundary of the Whitham zone
comprises a curve with second order phase transitions and a curve
with first order phase transitions, which meet at a point (xc, tc);
therefore, this is a tricritical point according to the standard the-
ory of phase transitions in statistical mechanics [21] (see Fig. 3).3

In the following, we investigate the local behavior of solutions
close to the tricritical point for a general PDE (1), where we argue
that it is universal and we characterize the universality classes.
To avoid cumbersome notations and because the final result is
independent of a, we employ a(u) = u.4 For the Hopf equation,
the critical point xc, tc is the point where the wave breaks and
the solution becomes multivalued, which is a singular behavior
known as a gradient catastrophe. It is well known that the generic
singularity is a cubic one. Indeed, it follows from (4), that the
solutions can be expressed locally by the implicit formula

u(x − ϕ(x)t) = ϕ(x) or x − u t = f (u), f = ϕ−1.

2 For times that are sufficiently long after the time of the shock tc , the solution
inside the Whitham zone may undergo further shocks and thus the Whitham zone
is divided into subregions with different ‘‘genera’’ [18]. These additional shocks are
outside the scope of the present study, where we focus on the behavior of solutions
for t ∼ tc .
3 In the case of B–O, the Whitham zone coincides with the region of the (x, t)

plane where the solution of Hopf is multi-valued [13]. In the general case, e.g., for
KdV, this is no longer true.
4 The few modifications required in formulae (6) and (8) can be found in [9].
Fig. 1. Profile of the typical solution of KdV in the semiclassical regime (where
ε = 10−2) after the critical time.
Source: Figure from the arXiv version of [20].

Fig. 2. Profile of the amplitude of oscillations W for a typical solution of KdV and
its mean field approximation WMF . W is discontinuous at the left boundary of the
shock region and continuous but not differentiable at the right boundary.

Fig. 3. Phase portrait of the typical solution in the (x, t) plane. The straight lines
are characteristics. The thick line is the boundary of the shock region W > 0 (or
Whitham zone). In general, this does not coincide with the region where the lines
of the characteristics intersect.

If we let uc = u(xc, tc) and suppose that f ′′′(uc) ≠ 0, then we can
introduce the scale variables

X =
x − xc − uc(t − tc)

λ
, U =

γ
6

1/3 u − uc

λ
1
3
,

T =


6
γ

1/3
(t − tc)
λ2/3

, (6)

with γ = −f ′′′(uc) > 0 and λ, a small parameter, and thus for
small λ → 0+, we obtain

X − U T + U3
= 0, (7)

which is the miniversal unfolding of the cubic singularity. A good
illustration of the transition can be derived from (7). If β1 ≥

β2 ≥ β3 are the three roots of U for T > 0, then WMF (x, t) =

2(β1(x, t) − β2(x, t)) measures the envelope of the solution. This
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has the same phase diagram and qualitative behavior as the exact
order parameter KdV, but a different exponent WMF ∼ (x̃+(t) −

x)1/2. Thismean field description of the phase transition obtains the
correct behavior but it omits the true nature of the oscillations. It
has the same structure as the ϕ6 mean field theory [21].

3. Universal model PDE at the tricritical point

By generalizing the procedure described in [9], for a quite
general perturbation N , we can give a much finer description of
the tricritical phase transition, which considers the precise nature
of the oscillations and it is remarkably universal. In fact, we argue
that the local behavior of u around the tricritical point is uniquely
characterized by the linearization of N̄ at the constant function
u ≡ uc :

N[uc + δu] = Luc [δu] + O((δu)2),

where N[uc] = 0 because of (2). More precisely, at an appropriate
scale, the idea is that the wave u satisfies a distinguished universal
solution for a model PDE, which is uniquely determined by L.

In this section, we derive and classify the universal PDEs.
In Section 4, we consider the characterization of the particular
solution. To set an appropriate scale around the tricritical point,
let us change the variables as in (6), but with the scaling parameter
λ = ε

1
α , which depends on ε. A simple computation shows that

the wave equation (1) reduces to

UT + UUX + ε
β(α−1)−1/3

α L̄uc [U] + higher order terms = 0.

The balance of the intrinsic and extrinsic scales ε, λ is achieved
when α = 1 +

1
3β , or equivalently if u admits the expansion

u(x, t, ε) ≃ uc + ε
β

3β+1 U


x − xc − uc(t − tc)

ε
3β

3β+1

,
t − tc

ε
2β

3β+1



+O(ε
2β

3β+1 ), (8)

and the leading term U of (8) is a solution of the linearized
perturbation

UT + UUX + L̄uc [U] = 0. (9)

The universal behavior emerges close to the tricritical point, and
thus on a meso-scale ε1/α between the microscopic O(ε) scale
and the macroscopic one O(ε0). The reader should compare this
situation with the case of a renormalization group in statistical
mechanics, where universality arises by magnifying the theory at
the meso-scale when block spin or phase-space renormalization is
performed [22].

Before describing the distinguished solution U(X, T ) of (9),
which gives the universal correction at the tricritical point, we
consider the classification of universality classes. Since anypositive
constant in front of L̄uc can be factored out trivially, we say that
two nonlinear PDEs N,N ′ belong to the same universality class if
L̄uc = L̄′

uc up to a (positive) scalar multiple.
The classification of universality classes agrees with the clas-

sification of linear operators L̄c[U], which comprises the lineariza-
tion of an operator N that admits the long wave expansion (2).
By assumption, on N , L̄c is a linear pseudo-differential opera-
tor. If we also assume that Lc is translationally invariant,5 then
it admits the representation L[U](x) :=


+∞

−∞
eipxm(p)Û(p) dp for

5 Theoretically, the case of a non-translationally invariant N̄ can be dealt with
using our methods, but it appears to be less relevant for studying the long wave
limit of unidirectional waves.
some sufficiently regular Fourier multiplier m(p) [23], where
Û(p) denotes the Fourier transform of U . To allow the opera-
tor to define a meaningful evolution, it must map real functions
onto real functions and it must be either conservative or dissipa-
tive, i.e.,


U(X)L[U(X)]dX ≥ 0, where the two conditions read

m(−p) = m∗(p), Re(m(p)) ≥ 0. A complete characterization of
the admissible operators L̄ is achieved based on the following fact,
which is proved in the Appendix: the scaling assumption (2) on N
implies that

N̄Sε[u] = εβ+1SεN̄[u], (10)

for any sufficiently smooth function u, where Sε is the dilation op-
erator defined in (3). Due to (10), L̄ satisfies the same scaling law

L̄uc ◦ Sε = εβ+1Sε ◦ L̄uc ,

and this further constrains the Fourier multiplier to the form
m(p) = κ|p|β+1

+ iθ p |p|β , for some (κ, θ) ∈ R2
\ {0}, κ ≥ 0,

and β > 0. Explicitly, we have:

UT + UUX +


+∞

−∞

eipX (κ + iθ sign(p)) |p|β+1Û(p) dp = 0. (11)

Thus, critical universality classes are characterized by a pair of pa-
rameters ( κ

θ
, β). Since the transformation U(X, T ) → −U(−X, T )

sends θ to −θ , we can assume that θ ≥ 0. Note that if θ = 0, then
the perturbation is purely dissipative,whereas if κ = 0, it is disper-
sive and possesses theHamiltonianH[U] =


+∞

−∞
U3

−θ U K [U]dX ,
where K [U] =


eipX |p|β Û(p) dp.

Example 1. The conservation laws ut + ∂xf (u, ux, . . .) = 0, with
some smooth function f , admit a longwave regimewith N̄[u(x)] =

∂x(n(u)ux), where n(u) =
∂ f

∂ux(x) |ux=uxx=···=0
. Provided that n(uc) ≠

0, then β = 1 and L̄uc = n(uc) uxx. Thus, the universal model for
these equations is the Burgers equation:

Ut + U Ux + n(uc)Uxx = 0.

The critical behavior of these conservation laws is typical for
dissipative shocks and it was considered previously by [12,24].

Example 2. LocalHamiltonian PDEs are equations in the formut =
δ
δu


h(u, ux, . . .)dx, for a smooth function h s.t. h(0, 0, . . .) = 0.

They admit long wave expansions with N̄[u] = ∂x(b′(u) u2
x +

2b(u) uxx), b(u) =
∂h

∂ux(x) |ux=uxx=···=0
. Provided that b(uc) ≠ 0, then

β = 2 and L̄uc = b(uc) uxxx. Therefore, the universal model for
these equations is KdV:

Ut + U Ux + b(uc)Uxxx = 0.

The critical behavior of this class was considered by [9].

Example 3. The B–O equation [25,26]

ut + u ux − H[uxx] = 0,

where H is the Hilbert transform: H[u](x) =
1
π

−

 u(y)
x−ydy, is an in-

tegrable Hamiltonian equation such as KdV, but it is non-local. The
operator H[uxx] is a translationally-invariant pseudo-differential
operator with the Fourier multiplierm(p) = i sign(p)p2 [23]. Thus,
in this case,N = L̄ = H[uxx]. Therefore the B–O equation is already
in the longwave form (11),withβ = 1, κ = 0, and θ = 1. It has the
same exponent as Burgers but because it is Hamiltonian similar to
KdV, its solutions undergo a dispersive shock [13]. Therefore, it cor-
responds to a novel universality class, which we designate as the
B–O universality class. All equations of the B–O hierarchy (see [27]
for a definition) belong to the B–O universality class.
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Example 4. The intermediate long wave equation [28]

ut + u ux +
1
δ
ux + Tδ[uxx] = 0,

where

Tδ[u(x)] = −
1
2δ

−


R
coth


π(x − ξ)

2δ


u(ξ)dξ,

and δ ∈ R, is an integrable equation that models nonlinear waves
in a fluid of finite depth. Moreover, in the limit δ → 0, we for-
mally obtain the KdV equation, whereas the limit δ → ∞ gives
the B–O equation. Therefore, it is interesting to check whether this
equation belongs to one of the aforementioneduniversality classes,
or possibly to a new one. From the representation Tδ[u(x)] =

i


+∞

−∞
eipx coth(δp)û(p) dp (see [29]), together with the expansion

coth(δp) =
1
δp +

δ
3p + O(p3), it follows that, provided that δ re-

mains finite, the intermediate long wave equation belongs to the
KdV universality class.

Example 5. The Camassa–Holm equation [30]:

ut − uxxt + uux =
2
3
uxuxx +

1
3
uuxxx,

and the Benjamin–Bona–Mahony equation [31]

ut − uxxt + uux = 0

canbewritten in the standard form (1) by inverting 1−∂2x . Provided
that uc ≠ 0, they also belong to the KdV universality class [9].

We note that the universal PDE (11) is again of the form of Eq. (1).
Inmany important special cases, such as KdV, Burgers, andB–O, the
procedure for rescaling at the tricritical point simply reproduces
the original equation. Thus, the special case where a(u) = u,
N = L̄uc is invariant under rescaling. This explains the naming
convention for the universality classes in the examples given
above. A comparison between the different universality classes for
the examples considered above is given in Table 1

4. Universal correction as a solution of the string equation

In this section, we show how to compute the universal cor-
rection U(X, T ), which is defined by the multiscale expansion (8)
of u at the tricritical point, as a particular solution of the uni-
versal model Eq. (9). We argue that U is the solution of a (pos-
sibly infinite) deformation of the cubic equation (7), which is
known as the string equation. Our approach generalizes and sim-
plifies that proposed originally by [9] for the Hamiltonian case and
developedmathematically by [32,14] (see [24] for the Burgers uni-
versality class). We derive the string equation using a simple prin-
ciple, which was proved rigorously by [14] with some generality:
in the long wave regime, any solution of Eq. (1), and particularly of
Eq. (9), can be uniquely characterized as the fixed point of a sym-
metry. This symmetry arises as the deformation of a symmetry of the
Hopf equation. This principle can be applied to characterize the uni-
versal correction U(X, T ). First, we note that the rescaled function
Uµ(X, T ) = µ3β+1U(X/µ9β+3, T/µ

6β+2
3 ) satisfies the long wave

limit of (9), i.e.,

UµT = UµUµX + µ L̄uc [U
µ
]. (12)

The limit µ → 0 is well defined because U0(X, T ) coincides with
the solution of the cubic equation (7). In addition, the latter is a so-
lution of the Hopf equation that can be characterized as the unique
stationary solution (vanishing at X = T = 0) of the flow (see Fig. 4)

U0
S = ∂X (X − U0T + (U0)3), (13)
Fig. 4. Solution of the cubic equation, showing solutions of the Hopf equation close
to the shock. After the shock T > 0, the solution is multi-valued because the Hopf
equation is no longer a good model.

which commuteswith Hopf. In otherwords,U0 is the fixed point of
the symmetry generated by the flow (13). Next, we follow the gen-
eral principle stated above to characterize Uµ(X, T ) as the fixed
point of the flow

UµS = ∂X (X − Uµ T + (Uµ)3 + µα1[Uµ] + µ2α2[Uµ] + · · ·), (14)

obtained as the (unique) power series in µ commuting order by
order with (12).6 By definition, the string equation is the equa-
tion for the vanishing of the right-hand side of (14). In general, we
expect the symmetry to be an infinite (possibly not converging)
power series inµ. In this case, the string equationwill be valid only
asymptotically for small values of µ, or equivalently for X ≫ 0.
However, if the string equation truncates, we can safely useµ = 1
to obtain the exact form of U ≡ U1. Then, we conjecture that the
function U(X, T ) is uniquely characterized as the solution of the
string equation that satisfies the boundary behavior

U(X, T ) ∼ − sign(X)|X |
1
3 as |X | → ∞, ∀T , (15)

which ensures the correct long wave (µ → 0) limit. The string
equation is finite for at least three universality classes: Burgers,
B–O, and KdV. We note that the string equation method is a valid
alternative to the classical approach to shock based on a step-
function with the initial data [17] because it contains all of the uni-
versal information.

Example 6. Burgers universality class. The equation

US = ∂X (X − UT + U3
− 6UUX + 4UXX ),

is a symmetry of Burgers (see [24]) and thus the string equation is

X − UT + U3
− 6UUX + 4UXX = 0. (16)

The unique solution that satisfies (15) can be written explicitly
in terms of the Pearcey integral [12,24] and it is plotted in Fig. 5.
It has been proved [11] that sufficiently regular solutions of the
Burgers equation admit an expansion (8), where U(X, T ) is the
exact solution of (16).

Example 7. The KdV universality class. The equation

US = ∂X


X − U T + U3

− 3U2
X − 6U UXX +

18
5

UXXXX


is a symmetry of the KdV equation [9], and the string equation
satisfied by U(X, T ) is

X − U T + U3
− 3U2

X − 6U UXX +
18
5

UXXXX = 0. (17)

6 The existence of such a deformation can be established when L is a differential
operator using the method of [33].
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Fig. 5. Solution of Eq. (16), which represents the universal transition from a regular
wave (T < 0) to a classical shock wave (T > 0). As expected, the wave becomes
steeper but no oscillations emerge.

Fig. 6. Solution of the KdV string equation, which represents solutions of equations
in the KdV class close to the shock. For T > 0, the wave oscillates and exhibits the
typical pattern of a dispersive-shock.

The unique solution that satisfies the boundary condition (15) [34]
is plotted in Fig. 6. This ODE is known to be the second equation of
the Painlevé I hierarchy and it is used in the context of random
matrix theory [35,36]. It is known that Painlevé equations can
be linearized using an isomonodromy system [37]. It was proved
in [38,39] that sufficiently regular solutions of any equation of
the KdV hierarchy admit an expansion (8), where U(X, T ) is the
exact solution of (17). The extension of this result to other local
Hamiltonian PDEs, which have yet to be proved, is known as
Dubrovin’s universality conjecture [9].

Example 8. The B–O string equation for U is finite and it is given
by the formula

X − UT + U3
− 3UH[UX ] − 3H[UUX ] − 4UXX = 0, (18)

because both ∂X (X − UT ) and ∂X (U3
− 3UH[UX ] − 3H[UUX ] −

4UXX ) are symmetries of B–O [27].

A new Painlevé equation?

Eq. (18) is particularly important because this is the first time
that a nonlocal ODE resembling a Painlevé equation has been
reported. We investigated Eq. (18) numerically using a spectral
methodwhere theHilbert transformwas computed following [15].
According to our numerical results (Fig. 7), for any real T , Eq. (18)
admits a unique solution that satisfies (15) and thus U solves B–O.
We note that Eq. (18) is a candidate for a new class of Painlevé
equations. In fact, both (16) and (17) can be linearized, and they
satisfy the Painlevé property [37], for any solution that extends
to a meromorphic function in the complex plane. Thus, various
important questions are raised, as follows. Does the unique so-
lution of (18) that satisfies (15) expand to a meromorphic func-
tion? Does (18) admit a linearization using an isomonodromic
Fig. 7. Solution of the Benjamin–Ono string equation. The shock is again dispersive
but the oscillations appear to have shorter a wavelength and a larger amplitude
compared with the KdV case.

system? In many cases, we note that the isomondromic system
for a string equation that arises from an integrable hierarchy
can be constructed from the zero-curvature representation of the
latter [40,41]. However, to the best of our knowledge, no zero-
curvature representation of B–O has been discovered.

We conclude this letter by summarizing our results. By in-
troducing an order parameter, i.e., the wave amplitude in the
Whitham zone, we analyzed the dispersive-shock-transition based
on statistical physics and we showed that it corresponds to a tri-
critical point. By generalizing an argument of Dubrovin [9],we then
refined the coarse description of the transition using the ampli-
tude of the oscillations in the Whitham zone and we determined
the precise local behavior of the wave close to the shock with the
string equation, which encodes all universal features of the transi-
tion. In particular, we obtained an explicit description of the criti-
cal behavior of solutions to the B–O equation andwe demonstrated
that it is amodel equation for a new universality class of dispersive
shock waves. Although our main focus is the dispersive-shock, our
classification of universality classes also helps to understand dis-
sipative and dispersive-dissipative equations, by modeling media
where dispersion and diffusion are balanced. Interestingly, their
universal classes are PDEs with non-local interactions, similar to
those used in experimental analyses of dispersive shocks [4]. At
present,we are developing the necessarymathematical tools to ex-
plicitly compute the string equation for these more general cases.
It would be very interesting to rigorously prove the results claimed
in the present study, particularlywith respect to the critical behav-
ior of the B–O equation.
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Appendix

We prove formula (10). We suppose that N is a continuous
operator on the space of Schwartz functions, which can possibly be
extended to a larger space by continuity. We claim that if a β > 0
and a second operator N̄ exist such that N satisfies

Sε−1NSε = εβ+1N̄ + o(εβ),

for any Schwartz function u, then

Sε−1 N̄Sε = εβ+1N̄,
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which is precisely (10). The dilation operator Sε given above is
defined as in (3). To prove our claim, we note that the dilation
operator is a continuous operator on the space of Schwartz
functions. Therefore, it acts continuously by conjugation on the
space of the continuous operators on that space (embedded with a
weak topology). Therefore, the thesis emerges as follows.

Lemma 1. Let G(ε), ε > 0 be a group of continuous operators on a
vector space V . If G(ε)v = εα v̄ + o(εα), then G(ε)v̄ = εα v̄.

Proof. v̄ = limε→0
G(ε)v
εα

. Since G acts continuously, then for every
δ ∈ R+, G(δ)v̄ = limε→0

G(δε)v
εα

= δα v̄. �

References

[1] R.J. Taylor, D.R. Baker, H. Ikezi, Observation of collisionless electrostatic shocks,
Phys. Rev. Lett. 24 (1970) 206–209.

[2] J.J. Chang, P. Engels, M.A. Hoefer, Formation of dispersive shock waves by
merging and splitting Bose–Einstein condensates, Phys. Rev. Lett. 101 (2008)
170404.

[3] S. Jia,W.Wan, J.W. Fleischer, Dispersive shockwaves in nonlinear arrays, Phys.
Rev. Lett. 99 (2007) 223901.

[4] C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, S. Trillo, Observation of a
gradient catastrophe generating solitons, Phys. Rev. Lett. 102 (2009) 083902.

[5] R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water
Waves, in: Cambridge Texts in Applied Mathematics, Cambridge University
Press, 1997.

[6] D. Zachary, M. Budde, L. Slowe, H. Vestergaard, Singularities of the Hele-Shaw
flow and shock waves in dispersive media, Science 293 (2001) 663–688.

[7] E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann, Singularities of the Hele-
Shaw flow and shock waves in dispersive media, Phys. Rev. Lett. 95 (2005)
244504.

[8] B. Konopelchenko, G. Ortenzi, Quasi-classical approximation in vortex
filament dynamics. Integrable systems, gradient catastrophe, and flutter, Stud.
Appl. Math. 130 (2) (2013) 167–199.

[9] B. Dubrovin, On Hamiltonian perturbations of hyperbolic systems of
conservation laws. II. Universality of critical behaviour, Comm.Math. Phys. 267
(1) (2006) 117–139.

[10] B. Dubrovin, T. Grava, C. Klein, On universality of critical behavior in the
focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the
tritronquée solution to the Painlevé-I equation, J. Nonlinear Sci. 19 (1) (2009)
57–94.

[11] A.M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value
Problems, AMS, 1992.

[12] B. Dubrovin,M. Elaeva, On the critical behavior in nonlinear evolutionary PDEs
with small viscosity, Russ. J. Math. Phys. 19 (4) (2012) 449–460.

[13] P.D. Miller, Z. Xu, On the zero-dispersion limit of the Benjamin-Ono Cauchy
problem for positive initial data, Comm. Pure Appl. Math. 64 (2) (2011)
205–270.

[14] D. Masoero, A. Raimondo, A deformation of the method of characteristics and
the Cauchy problem for Hamiltonian PDEs in the small dispersion limit. IMRN,
http://dx.doi.org/10.1093/imrn/rnt223, 2013.

[15] S. Olver, Change of variable formulæfor regularizing slowly decaying and
oscillatory cauchy and Hilbert transforms, Anal. App. 12 (2014) 369–384.

[16] A. Moro, Shock dynamics of phase diagrams. arXiv:1307.7512, 2013.
[17] A.G. Gurevich, L.P. Pitaevskii, Nonstationary structure of a collisionless shock
waves, JEPT Lett. 17 (1973) 193–195.

[18] P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg–de Vries
equation. I, II, III, Comm. PureAppl.Math. 36 (3, 5, 6) (1983) 253–290, 571–593,
809–829.

[19] P. Deift, S. Venakides, X. Zhou, An extension of the steepest descent method
for Riemann–Hilbert problems: the small dispersion limit of the Korteweg–de
Vries (KdV) equation, Proc. Natl. Acad. Sci. USA 95 (2) (1998) 450–454
(electronic).

[20] T. Grava, C. Klein, Numerical solution of the small dispersion limit of
Korteweg–de Vries and Whitham equations, Comm. Pure Appl. Math. 60 (11)
(2007) 1623–1664.

[21] L.D. Landau, E.M. Lifshitz, Statistical Physics, in: Course of Theoretical Physics,
vol. 5, Pergamon Press Ltd, London-Paris, 1958.

[22] K.G. Wilson, Renormalization group and critical phenomena. i. Renormaliza-
tion group and the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174–3183.

[23] E. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and
Oscillatory Integrals, in: Princeton Mathematical Series, vol. 43, Princeton
University Press, Princeton, NJ, 1993.

[24] A. Arsie, P. Lorenzoni, A. Moro, Integrable viscous conservation laws, 2013.
arXiv:1301.0950.

[25] T.B. Benjamin, Internal waves of permanent form in fluids of great depth.,
J. Fluid Mech. 29 (1967) 559–592.

[26] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (4)
(1975) 1082–1091.

[27] Peter D. Miller, Zhengjie Xu, The Benjamin-Ono hierarchy with asymptotically
reflectionless initial data in the zero-dispersion limit, Commun. Math. Sci. 10
(1) (2012) 117–130.

[28] R.I. Joseph, Solitary waves in a finite depth fluid, J. Phys. A 10 (12) (1977)
225–227.

[29] A.N.W. Hone, V.S. Novikov, On a functional equation related to the
intermediate long wave equation, J. Phys. A 37 (32) (2004) L399–L406.

[30] R. Camassa, D.D. Holm, An integrable shallow water equation with peaked
solitons, Phys. Rev. Lett. 71 (11) (1993) 1661–1664.

[31] T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in
nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A 272 (1972)
47–78.

[32] D. Masoero, A. Raimondo, Semiclassical limit for generalized KdV equations
before the gradient catastrophe, Lett. Math. Phys. 103 (5) (2013) 559–583.

[33] Si-Qi Liu, Y. Zhang, On quasi-triviality and integrability of a class of scalar
evolutionary PDEs, J. Geom. Phys. 57 (1) (2006) 101–119.

[34] T. Claeys, M. Vanlessen, The existence of a real pole-free solution of the
fourth order analogue of the Painlevé I equation, Nonlinearity 20 (5) (2007)
1163–1184.

[35] M. Douglas, Strings in less than one dimension and the generalized KdV
hierarchies, Phys. Lett. B 238 (2–4) (1990) 176–180.

[36] É Brézin, V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett.
B 236 (2) (1990) 144–150.

[37] A.S. Fokas, A.R. Its, A.A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents.
The Riemann–Hilbert Approach, AMS, 2006.

[38] T. Claeys, T. Grava, Universality of the break-up profile for the KdV equation in
the small dispersion limit using the Riemann–Hilbert approach, Comm. Math.
Phys. 286 (3) (2009) 979–1009.

[39] T. Claeys, T. Grava, The Kdv Hierarchy: Universality and a Painlevé
Transcendent, Int. Math. Res. Not. 220 (2011).

[40] H. Flaschka, A. Newell, Monodromy- and spectrum-preserving deformations.
I, Comm. Math. Phys. 76 (1) (1980) 65–116.

[41] G. Moore, Geometry of the string equations, Comm.Math. Phys. 133 (2) (1990)
261–304.

http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref1
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref2
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref3
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref4
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref5
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref6
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref7
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref8
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref9
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref10
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref11
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref12
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref13
http://dx.doi.org/10.1093/imrn/rnt223
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref15
http://arxiv.org/1307.7512
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref17
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref18
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref19
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref20
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref21
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref22
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref23
http://arxiv.org/1301.0950
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref25
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref26
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref27
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref28
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref29
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref30
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref31
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref32
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref33
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref34
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref35
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref36
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref37
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref38
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref39
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref40
http://refhub.elsevier.com/S0167-2789(14)00189-4/sbref41

	Critical behavior for scalar nonlinear waves
	Introduction
	Dispersive shock as a tricritical phase transition
	Universal model PDE at the tricritical point
	Universal correction as a solution of the string equation
	Acknowledgments
	Appendix
	References


