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found so far.

In the present paper, we are concerned with the general analytic solutions to the complex short pulse
(CSP) equation including soliton, breather and rogue wave solutions. With the aid of a generalized Darboux
transformation, we construct the N-bright soliton solution in a compact determinant form, the N-breather
solution including the Akhmediev breather and a general higher order rogue wave solution. The first and
second order rogue wave solutions are given explicitly and analyzed. The asymptotic analysis is performed
rigorously for both the N-soliton and the N-breather solutions. All three forms of the analytical solutions
admit either smoothed-, cusped- or looped-type ones for the CSP equation depending on the parameters.
It is noted that, due to the reciprocal (hodograph) transformation, the rogue wave solution to the CSP
equation can be a smoothed, cusponed or a looped one, which is different from the rogue wave solution

Published by Elsevier B.V.

1. Introduction

The nonlinear Schrédinger (NLS) equation, as one of the uni-
versal models that describe the evolution of slowly varying pack-
ets of quasi-monochromatic waves in weakly nonlinear dispersive
media, plays a key role in nonlinear optics [1,2]. Recently, several
reported experiments were related to the modulational instabil-
ity (MI) and the breather solution of the NLS equation in nonlinear
optics [3,4]. The Akhmediev breather (periodic in space but local-
ized in time) [5], the Peregrine soliton or rogue wave (RW) solution
(time and space homoclinic) [6] and the Kuznetsov-Ma soliton (pe-
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riodic in time but localized in space) [7] have recently been exper-
imentally observed in optical fibers [8-10] in succession. Besides
the experimental observation in optical fibers, the RWs have also
been observed in water-wave tanks [11] and plasmas [12].

However, in the regime of ultra-short pulses where the width
of optical pulse is in the order of femtosecond (10~ s), the quasi-
monochromatic assumption to derive the NLS equation is not
valid anymore [13]. Description of ultra-short processes requires
a modification of standard slow varying envelope models based
on the NLS equation. There are usually two ways to satisfy this
requirement in the literature. The first one is to add several higher-
order dispersive terms to yield higher-order NLS equation [2].
The second one is to construct a suitable fit to the frequency-
dependent dielectric constant €(w) in the desired spectral range.
Several models have been proposed by the latter approach such as
the short-pulse (SP) equation [ 14-16].
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Recently, Schifer and Wayne derived a short pulse (SP)
equation [14]

1 5
uxt:u"f‘é(u xxs (1)

to describe the propagation of ultra-short optical pulses in nonlin-
ear media. Here, u = u(x, t) is a real-valued function, representing
the magnitude of the electric field. The SP equation (1) is shown
to be completely integrable [ 17-21]. The periodic and soliton solu-
tions of the SP equation (1) were found in [22-24]. The connection
between the SP equation (1) and the sine-Gordon equation through
the reciprocal transformation was firstly discovered in [19], then
was further clarified and used to find two-loop and breather solu-
tions in [22] by the same authors. The general N-soliton solution
including multi-loop and multi-breather ones was given in [25,26]
by using Hirota’s bilinear method [27]. The integrable discretiza-
tion and the geometric interpretation of the SP equation were given
in [28,29].

Most recently, one of the authors proposed a complex short
pulse (CSP) equation [30,31]

1
xe +q+ 5(|Q|ZQX)X =0, (2)
and a coupled complex short pulse (CCSP) equation [31]
1
qix +q1+ 5 ((gq:1* + |QZ|2)Q1,x)X =0, (3)
! 2 2 =0 4
Q2xt +q2 + 5 ((|Q1| + 192 )‘h,x)x =0, (4)

that govern the propagation of ultra short pulse packet along
optical fibers. There are several advantages in using complex
representation description of wave phenomenon, especially of
the optical waves [32]. Firstly, amplitude and phase are two
fundamental characteristics for a wave packet, the information of
these two factors are nicely combined into a single complex-valued
function. Secondly, the use of complex representation can make
a lot of manipulations including soliton interactions much easier.
Such advantages can be observed in many analytical results related
to the NLS equation, the complex short pulse equation and their
coupled models. As is shown in [30,31,33], in contrast with the fact
that one-soliton solution to the SP equation is always a loop soliton
without physical meaning (1), the one-soliton solution to the CSP
equation (2) is an envelope soliton with a few optical cycles. In
some sense, the CSP equation can be viewed as an analogue of the
NLS equation in ultra-short pulse regime.

As a matter of fact, a complex-valued short pulse equation,
slightly different from the CSP equation (2), has been studied
previously (see Eq. (8) in [34]). Whereas the integrability of
Eq. (8) in [34] remains unclear, the integrability and the general
N-soliton solution of the CSP and the CCSP equations were firstly
clarified in [31]. We note that the CSP equation (2) and its soli-
ton solution were also investigated recently in [35]. It should be
pointed out that the CSP equation is mathematically related to
a two-component short pulse (2-SP) equation proposed by Di-
makis and Miiller-Hoissen [36] and Matsuno [37] independently.
The bi-Hamiltonian structure of this 2-SP equation was formu-
lated by Brunelli and Sakovich [38]. If we take u = Re(q) and
v = Im(q), then the 2-SP equation in [36,37] becomes the CSP
equation. The breather solution found in [37] is actually the bright
soliton solution either in terms of pfaffian form [31] or in determi-
nant form [30,33]. As a counterpart of the NLS equation in ultra-
short pulse regime, it is natural to ask a question: are there also
breather and rogue wave solutions to the CSP equation (2) in ad-
dition to the bright soliton solution? It is the aim of the present
paper to investigate all kinds of solutions of the CSP equation by
generalized Darboux transformation.

Based on the previous study [30,33], it is known that the CSP
equation (2) is linked to a complex coupled dispersionless (CCD)
equation [39]

qu = pqs

1 (5)
Ps + 5(|q|2)y =0,

through the following reciprocal (hodograph) transformation

1
dx = pdy — E|q|2cis, dt = —ds. (6)

The CCD equation (5) is the first negative flow of the Landau-
Lifschitz hierarchy while the SP and the CSP equations being
the first negative flow of Wadati-Konno-Ichikawa (WKI) hierar-
chy [40,41]. By constructing a generalized Darboux transforma-
tion to the CCD equation and integrating the integrals exactly
involved in the reciprocal (hodograph) transformation, we are able
to construct the general analytical solutions to the CSP equation in-
cluding the N-bright soliton, N-breather solution and higher order
rogue wave solutions.

It should be pointed out that the compact formulas for these so-
lutions are more convenient for us to perform the asymptotic anal-
ysis. Recently the modulational instability has been also considered
as a wave breaking mechanism [42]. Indeed, if the initial steepness
of the monochromatic wave is large, during the process of modula-
tional instability, one wave will start growing and will soon reach
the limiting steepness, and break before becoming a rogue wave.
The NLS theory does not predict the breaking or overturning of the
waves [43]. Different from previous research regarding the rogue
wave solution to the NLS equation, we find that there exists the
wave breaking phenomenon in the rogue wave theory of the CSP
equation (2). These results could deepen our understanding about
the MI mechanism [44].

The outline of the present paper is organized as follows. In
Section 2, the generalized Darboux transformation [45-47] of the
CCD equation is derived through loop group method [48]. Based
on the generalized Darboux transformation, we obtain the general
soliton formulas for the CCD equation. Further, by integrating the
reciprocal transformation exactly, we construct the general soliton
formulas for the CSP equation. In Section 3, the N-bright soliton
solution and the N-breather solution are constructed, and their
asymptotic analyses are performed. In Section 4, we construct the
rogue wave solution including the first order and general higher
order rogue wave solutions. Section 4 is devoted to conclusions
and some discussions. In Appendices, we give the details involving
the proofs of asymptotic analysis and the modulational instability
analysis.

2. Generalized Darboux transformation for the CSP equation

Prior to giving the Darboux transformation (DT) for the CSP
equation (2), we briefly review the link between the CSP equation
and the CCD equation. It is known that the CCD equation (5) admits
the following Lax pair

v, =U(p, q; M)V,
'y (p,q; L) 7

U = V(g; MV,
where
_ip 4
Up.gn=| *» *
r,q 4 i
A A

i i
V(g ») = (Z)\(ﬁ + fQ) , o3 = diag(1, —1),

2
_|0
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and * represents the complex conjugate. Through the reciprocal
transformation (6), one can obtain the CSP equation (2) and its Lax
pair:

%
A L2

9 1

Lx A

2 CrS 2 % (9)

i dlgl® _ig lq|”qx
w—| 4 2\ 2 20 |y
t = . 2 . ) .

_lg_lgFq. 1, ilgl

L 2 2x 4 2

On the contrary, the CSP equation (2) can be transformed into the
CCD equation (5). Note that the CSP equation (2) can be rewritten
as the following conservative form

(Vi+iap) + % (Ia?V1+1a2) =0, (10)

thus, by letting p~! = /1 + |q,|? and defining an inverse recipro-
cal transformation
dy = p~ldx — —p~Yg|*dt, ds= —dt, (11)
we can convert system (9) into system (7). The equivalence be-
tween the CSP and the CCD equations is kind of formal under
the reciprocal and inverse reciprocal transformations. The rigor-
ous equivalence is valid only if p # 0 for (y, s) € R?, or | gyl # 00
for (x, t) € R

To construct the soliton and rogue wave solutions for the CSP
equation (2), we give the following proposition

Proposition 1. The Darboux matrix

Al —Aq [y1) (1l
T=1+21 , P = : = ly1)',
+ Ao =y W1l = ly1)
Y1y, 85 A1)
|yl> |:¢](V s; X])] (12)

where |y1) is a special solution for linear system (7) with . = A1, can
convert system (7) into a new system

(1], = U(p[1], q[1]; M¥[1],
Y[1]s = V(pl1l], q[1]: H¥[1].

The Bicklund transformations between (p[1], q[1]) and (p, q) are
given through

(13)

o ly)
pl1] = p — 21n W s
(A —k1)1ﬁ1¢1
1] = N ML L4 L 14
q1] = g+ <.Vl|.)/1%y| | (14)
2 2 11Y1
lql111" = Iql +4lnss<k,{_h).

Proof. The Darboux transformation for the system (7)is a standard
one for the AKNS system with SU(2) symmetry. The rest of the
proposition is to prove the formulas (14), which carry on some
ideas from the classical monograph [49].

Suppose there is a holomorphic solution for Lax pair equation
(7) in some punctured neighborhood of infinity on the Riemann
surface, smoothing depending on y and s. Thus, we may assume
the following asymptotical expansion as A — oo.

L[ g ) o

for the wave function ¥ and
0 - .
T=1+) T, (16)

for the Darboux matrix T. Since T is the Darboux matrix, it satisfies
the following relation

T, + TU = U[1]T. (17)
By comparing the entries of the matrices, we get
qy[l] = qy + (T2[11]) s

(o] Y (18)
olll = p+i (TlJ)y'

Integrating the first equation with respect to y, we have the second
equation in (14). Let

H=gq ZHA—

we then have

d)l.s wl.s %
(InH); = — — —— + (Inq")
Yo Y *
= —ix - iH + i| I?H™! + (Inq*)
=3 2 > q a’)s

from the first equation of (7). Thus

_l| |2 i)»H
TS

Then the coefficient H; can be determined as follows:

%Hz + (Ing*);H

=1q>, H, =2iqq",

,+1—21q( ) ZHH_], i>2

On the one hand, the first equation of (7) can be rewritten as

i i & .
Y5 = (A + = ZW»") ¥
4 2 =

Substituting the asymptotical expansion (15)

= (l + Z lIIi“JA') exp (Z)Ls>
i=1

into above equation, where superscript [!! represents the first
component of the vector, we then have

[1] i i 2
v ' =—-H; = . 19
1,5 2 1 2|Q| ( )

Similarly, by assuming an asymptotical expansion

] = [} oo (). e

we have

w1l = |q[1]|2 (21)
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Moreover, by Darboux transformation

[qb][l]] (“FZT“J% )H] Zw, :|exp< m)

one can obtain

(1i), + i = Jjaini, (22)

where the element T[]” denotes the (i, j)th entry of matrix T,

Together with (19), we can obtain
a1 = g —2i (11]]) . (23)

Next, we proceed to the calculation of <T1“1]> and (TH) . Since
1) 1),
i i
ly1)s = Z)»103 + EQ ly1),

i i
—¥1lso3 = (y1lo3 (ZKT@ + §Q> ,

which originates from the Lax pair of the CSP equation (2), we then
have

<O’1|J’1)
=

) = i(—|w1|2+|¢1|2). (24)

On the other hand,
Wilya) = 1Yl + |12,

which implies

( | )= ( 215 )
iloslya) /, 1losly1)

Thus, we have

(i), = lal? \ [P =leal> ) 2iln y1ly1)
LY =\ il - (Yﬂyl - B\~ )
Py 2555, 1 1
1T )y 1 y
Similarly, we could derive
) W1ly1)
T, = 2iln . 25
( 1,1)5 ss )\T Y (25)

Finally, combining (23) and (18), we obtain the last two formulas
in (14). This completes the proof. O

To construct a general Darboux matrix, the following identities
will be used. Suppose M is a N x N matrix, ¢, ¥ are 1 x N column
vectors, then we have the following identities

%
—¢ 0
Myt = ,
M~ Y M|
(26)
5

_ —¢ 1| detM+y'¢)

1.1 —
THoM=yt = M|~ dett(M)

where ' represents the Hermite conjugate. Then we have the fol-
lowing proposition which gives the N-fold Darboux transforma-
tion and the generalized N-fold Darboux transformation for the CSP
equation

Proposition 2. The N-fold Darboux transformation for the CCD
equation can be represented as

Ty =14+ YM™ID7lYT, (27)
where Y = [|y1), ly2), ..., lyn)] and

o Wil

N <A—AJ>1
D=diag (A — A5, A — 25, ..., A —1}).

Moreover, the general Darboux matrix is

Ty =1+ YM™'D7'YT, (28)
where
0 -1 —
Vo= [ A AT
My My .-+ My
y M1 Mp -+ My
My My - My
Mf51 1] Migl,z] M%l,an
[2,1] [2,2] 2,nj]
Mij Mij Mij J
M = . ’
M[n, Mignl 21 My[ﬁiv”j]
[0] [ni—1]
Di o Dl x
D = diag (D1, D;, ..., D;), D; = 0
[0]
0 0 D;
and
nj—1
lyi(Ai + ai€i)) = Z ViDel + 0™,
1 nj—1
[ D[-kle-*k—l—O &M ,
A—k;‘—a,-ei* ; ! ! (l )

Vi + @iy (A + aj€)))
Af — A+ of € — aje

ZZZM[M] el 4 oe™, €.

The general Bécklund transformations are

pIN] = p — 2Inys(det(M)),
N = det(G) (29)
A= 97 qerm)”
lgIN1I> = lqI* + 4Ing(det(M)),

where G = [_M

:
Y, Y(; ] Y, represents the kth row of matrix Y.

Proof. Through the standard iterated step for DT [47], we can
obtain the N-fold DT. Next, by using the following equalities

(rih, = (Y1M-lyj)y - (_Y2M—1Y§)y

yiM~lY! — v,MY)
= > = 2ilny, (det(M)),

y

(Ti!)s = 2iln (det(M)),
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we can obtain the formula (29) from the above N-fold DT (27). To
complete the generalized DT, we set

A1 = A+ aiert, [Yre1) = V1Qrr))s -5 Argng -1
=Mt ain -1 Wran-1) = Y1 Qrgn—1));
Argny = A2 @221, [Yrgny) = [V2(hrgny))s oo oy Argny4my—2

= Ay + @282y 1, |_Vr+n1+n2—2> = |y20“r+n1+n272)>§

VrAN—n41)); -+ AN
[yr(An)).

Taking limit ¢;; — 0, we can obtain the generalized DT (28) and
formulas (29). O

AN—n4+1 = Ar + & 1, |‘VN7nr+l) =

= A+ UrEr -1, [YN) =

Recently the generalized DT for the AB system without the first
and third relation in (29) was given in Ref. [50] in a different form.
Actually, the first and third relations in (29) are the key procedures
to construct the exact solution for the CSP equation. In summary,
with the aid of reciprocal transformation (6), we obtain the general
expression for N-soliton solution of the CSP equation (2):

N — det(G)
q[N] = det(M)’
x= | pQy,s)dy (30)

—%/ lq(y, 5)|?ds — 2 Ing(det(M)), t = —s.

3. Multi-soliton and multi-breather solutions to the CSP
equation

In this section, we provide multi-soliton and multi-breather
solutions to the CSP equation by using formula (30).

3.1. Single soliton solution and N-soliton solution

We start with a seed solution
14

p[0]=—5, qlo] =0, y > 0. (31)
Solving the Lax pair equation (7) with (p, q; ) = (p[0], q[0]; A;),
we arrive at
o . .
el iy i
Y = |, 6=— —s+aj, 32
i [89’] i Z)Liy + 2 +a (32)

from which, we can obtain the single soliton solution through the
formula (30):

q[1] = A1ssech(20; pe 291177,
y (33)

X = —Ey + A1 tanh(20;r), t= —s,
where Ay = Ay g+irq, 61 = 91,R+i01,,. We comment here that A
isthe rec1procal of the wave number p; in [29]. As discussed in [29]
if A3 . > A%, one has the smooth soliton solution; if 13 ; = A7,

one has the cusponed soliton solution; 1fk1’R < )*1,1' one obtains
the loop soliton solution.

Furthermore, by using the N-fold DT, we could drive the N-
soliton solution through the formula (30):

det(G)
[N] = ,
det(M) (34)
X = —gy — 2Iny(det(M)), t= —s,

where
6548 | a0 —6 t
e 1 e 7
M = ()ﬁ) , G=[_My ﬂ,
i 1<ij<N 2 (35)
Y1 = [e, e, ..., e™],
Yo = [e7”, e, .o o],

the expressions 6;’s are given in (32). The dynamics for two soliton
is shown in Ref. [31]. Finally, to understand the dynamics of above
N-soliton solution (34), we give the following asymptotic analysis
and its proof.

Proposition 3. Suppose0 < v; < vy < --- < vy. Whens — to0,

we have
Z A isech(26;)e” 20,5 gt 0(e My, (36)
k=
where
+ YAk +
— — UrS + a + A ,
k,R 2Mk|2 (y k ) k,R k.R
=3 (Shz]- 3 =),
' 2 1 = Ak e | A=
A A G7)
Y AkR k,R
Qi = - —+ S+a A ,
kI 2|Avk|2y 4 qu: k1

k— N
A — Ak
$n(i22)
(Z ( ) I=k+1 A=k
2

and ¢ = min (’ﬁ )mini#(lvi —y]), vi= 5

The proof is given in Appendix A. Next we analyze the coordinates
transformation: as s — 400, along the line G,fR = 0, we have

= _Zy—zlns(M) — ——yﬂ: [Zx,, - Z )\j,]

i=1 Jj=k+1

It follows that

Proposition 4. When t — oo, along the trajectory G,fR =0, we
have

N
NI=>" hasech(0E)e 2% % 4 o(el),

k=1

where
A A
+ k,I kI
KR = |Ak|zx+ 4 t+ ar
)\kl = N Y LA
INE Z L Z Il k.R>
i=1 j=k+1
A A
+ k,R k,R
Qk’, |)»1<|2X 2 t+ ag
Ml k—1 N .
e 2t (= 3 ) v
k j=k+1
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3.2. Single breather and multi-breather solutions

To find a single breather solution, we depart from a seed
solution

14 B o 4
O:——7 0] = — s 0 = —S,
pl0] 5 q[0] 7€ y%—zs
y>0, Bg=>0. (38)

Then we have the solution for the Lax pair equation (7) with
(a, p; 1) = (q[0], p[O]; 29),

vi) =KL, K =diag (e 3%, e2"), a £ —y 418, (39)
where
1 1 o
L= B B , E=| o>
e 1
y+& v+
and

9.:i/ﬂ2+()\4+y)2<5+£y + q;
t 4 1 )Li is
=MtV +Mi+ty)? xi=h—VB+Oi+y)*

To avoid the inconvenience of involving the square root of a
complex number, we introduce the following transformation:

Ai+y = Bsinh(g), @i = @ir+ipi, (@ir, @i1) € £2,

where 2 = {(¢r, ¢1)|0 < ¢ < 7w, and0 < @ < 00, Or g =
0, and % < ¢ <}, then

§ity=pe"  xity=—pe

By some tedious calculations, the single breather solution can be
constructed from the formula (30) by using the technique [51]

al1] = B [ cosh(26, g — 2igy1) cosh(gy.p) + sin(261, + 2ipy r) sin(er,) ot
T2 cosh(261 &) cosh(gr z) — sin(261,1) sin(ey,1) ’
_ v B ‘ .
X=—oy- oS- 21n, [cosh(264 g) cosh(gs g) — sin(261,) sin(e1p)].
t=—s, (40)
where

2
O1,r = 61 (y - ;U15> — ¢1.r + A1,

2
011 = € <y - ;wﬁ) — @1 +ayy,

and

o — a1y sinh ((/)],R)
Ty (v sinh (¢1,r) + B cos (¢11))’
2
51 = 2sin (p11) (v sinh (1) + B cos (1)
1
w = —a1y cos(¢1,1)
4 (ﬂ sinh (‘/’1,R) -V COS(‘/’],I)) '

2
€1 = OTI? cosh(g1,r) (/3 sinh (‘PLR) -V COS(‘P],I)) )

ar = (Bsinh (p18) cos (¢1,1) — y)2 + B cosh® (¢1.r) sin® (¢1) -

If (p1r011) € $21 = {(gr, 0|0 =<
arccos(—% sinh(gg)) < ¢ < 7}, then the single breather |q[1]?

Or < arcsinh(f),

propagates with velocity %vl < 0.If (p1r,9011) € §2o =
{ (g, (p,)l% < g <, arcsinh(—% cos(¢;)) < ¢g}, then the sin-
gle breather |g[1]]? propagates with velocity %m > 0.An example
of this case is illustrated in Fig. 1(a). If y sinh (¢1,z) + 8 cos (¢1,) =
0, then we can obtain the so-called Akhmediev breather, which is
periodic in space and localized in time. Fig. 1(b) shows an example
of Akhmediev breather.

The bright soliton can be derived from the breather solution
by taking a limit 8 — 0 and setting ¥ = e¥1 = M% +

2
1+ (“%) — 00, but, as discussed previously, the bright

soliton solution can be constructed in an easier way. To analyze the
dynamics of the breather solution for the CSP equation (2), we need
to solve the relation between (x, t) and (y, s). Although it is not
possible in general, we can obtain the relation at special location
61r =0and 6y, = k7 + Z, thatis,s = —tandy = —%(x — %zt).
It follows that

% B’
O1r = —551 |:X - <U1 + §> f] — ¢1r + A1,

ﬂZ
611 = —gﬁ |:X — (wl + ) t)— @i tag.

The breather solution |q[1]|?> propagates with the velocity v, + %2
(Fig. 1(a)). If 64 = 0, we can obtain the Akhmediev breather

(Fig. 1(b)). The periodic in x-direction is % and the periodic in
t-direction is 27”2 The peak value of |g[1]]? is located at
V\€1\<w1+7)
2
1 2 (”1 + %) b1
X = - (* +xm + (Q11 — al,I))
v — Wy 143 4
2ag— 2
_ 2R P1.R (w1 n ,li) ’
Y (31 8
1 2 ym 2a1p—
t= |:_7 <*+Kﬂ+((pl,1_al,1))_7w]-
vi—wi | yer \4 14 41

Similar to three cases of the single soliton solution, we can classify
the single breather solution by defining

1 5. .
My = 5,33 sinh(2¢1 ) sin(2e1 1)

— v [(cosh(g1.r) — cos(¢p1,))*
+2 cosh(¢1.r) Sin(<P1,l)] B’

—2By?sinh(p1 p) cos(g1) + ¥°. (41)

It can be shown that if M; > 0, the breather solution is a smooth
one; if M; = 0, the breather becomes a cusponed one, in which
|gx] — oo at the peak point; if M; < 0, then we have a looped
breather, which is a multi-valued solution.

Generally, through the formula (30) we have the following N-
breather solution:

B[ det©@ ]
AN =73 |:det(M):|e ’

2
X = —%y - %s — 21n,(det(M)),

t=—s,
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where
0267 +6) 0207
M = +
‘E,’* - Sj g;‘* —Xj
20;
e ] e*@*”ﬂ) :
X =& X=X 1<i,j<N

o gi* + y e2(9;‘+9j) Si* + y 6291-*
§+v &-&§ xitvE&E —x

X+ e? Xty 1

: n . ] ef<ei*+ej>> .
G+y X' —&§ Xty x —Xx 1<ij<N

An example of two breather solution is shown in Fig. 1(c). The
dynamics for N-breather solution is a very interesting topic. It
is naturally to conjecture that the N-breather solution possesses
the same law as the N-bright soliton solution. To understand the
N-breather solution for the CSP equation (42), we first give the
following asymptotical analysis for the CCD equation (5):

Proposition 5. Suppose v < v, < ---
- < Vi41. When s — —oo, we have

<y <0<uvy<uvy_1 <

By _ _ i _
qINT = = [a7 + (g =110 ) + -+

+ (@ — L) + (g — e ey)

F G- Eey) +oo

+ (G — 110 ,) ] e + 0(e™ M, (43)
where c = % min(8;) min;(Jv; — vj|). When s — 400, we have

B .
qiNT = = [a7 + (a3 —e107) +-

+ (qf — e MOL) + (qy — e 0))

+ (@ — e M0]) o

+ (g, — e 21l )] e’ + o), (44)
where

qki _ (“)ki cosh(ZQ,fR — 2igy.1) cosh(gk r) + sin(ZO,f, ~+ 2igpk ) sin(gk)
cosh(26;5) cosh(g.r) — sin(26;;) sin(e.;)

and

0]:—R = ‘9k,R + AzRv

gn_Sk
& — &k

g: — Xk
En — Xk

X — Xk
Xn — Xk

Xn — &k

+4In
X — &k

1
A;R = 5 [* In

91:’ = Gk,l + A;p

‘l — * — * — * — *
A/T_[ _ 5 |:* arg()(n & Xk Xn ) +earg <Sn & Xk gn )] ’

X — & X[:k — Xn ";:,;k — & X):k — &
Or = Okr + Args (45)
1 - 5« _ .
Apg= |:* In En — & || &0 — Xk 4 oln| X i | | X0 — Xk i| ,
T2 Ex — &kl & — xk X — &k || Xn — Xk

9):’ :ek,l“l‘AE[a
Ai:1|:*arg<én_gkX!f_g:)+.arg<Xn_él<X;_X:)]
Kl 2 %}T — & X;f — & xXn — & X/f — Xn

O = exp (—*2ign; + $2ign,) .

@lj = exp (*2i(ﬂn,l - ’2i§0n,l) s

1k < Lthenk = (T +X00). ¢ = Lo

I<k<N,thenx=Y" "1 o=3N,  and

b — a;y sinh ((p,-,R)
" 4(y sinh (gig) + B cos (¢ir))

3= 2 sin (1) ( sinh (i) + 05 (4u1)

1
W — —aiy cos(¢i1)
' 4(Bsinh (gir) — ¥ cos(gin)’

2
€ = ;ﬁ.; cosh(g; r) (B sinh (¢ir) — ¥ cos(gi))
a; = (B sinh (gir) cos (@i) — 7/)2 + B* cosh?® (¢i ) sin® (¢i1) -

Based on the above proposition, we can obtain the dynamics of N-
breather solution for the CSP equation (2). In general, the dynamics
of N-breather solution for the CSP equation (2) cannot be solved
analytically. However, in some special location, we can analyze
them by the coordinate transformation. When s — =00, O,fR =0
and G,f, = % +«m, we have

y. B
x = —=y— —s — 2Ing(det(M

Y5 s(det(M))

y. B

- Y- s 21ng (exp [£2 (— Oz + #0nr)]

X exp [—29“] det(My))

=4 (* sin(gn,;) sinh(¢n r) —  sin(en 1) Sinh(ﬁan,R)) .

Proposition 6. When t — Foo, along the trajectory G,fR = 0 and
Q,f, = % +«m, we have

qIN] = gq;tew +0(e"),

where
ﬂz
QlfR = —gak |:X — (Uk + ? t:F Tk | — QiR + ay R + AI::R’
14 B?
Qki.,rl = _Efk |:X - (wk + §> tF Tki| — Q1+ Qg + A,f,.

4. General rogue wave solution to the CSP equation

In previous section, we solved the linear system (7) with plane
wave seed solution under the restriction A; # —y +ig. Itis natural
to ask what happens if A; = —y + if. Actually, we can obtain
the rogue wave solution and higher order rogue wave solutions
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(0 1gl.

Fig. 1. (Color online): Parameters 8 = 1, y = 5; (a) single breather solution, parameters: a; = 0, ¢; = In(2 + \/5) + %i; (b) Akhmediev breather solution, parameters:

a = 0, ©1

under this special condition. The general procedure
solutions was proposed in [46,47].

Starting from the linear system (7) with (g, p, A) =

—y + iB), where g[0] and p[0] are given in Eq. (

F1; (c) two breather solution, parameters: ¢; = In(2 + V5) + Jhgp =3l =a =0

to yield these

can firstly obtain the quasi-rational solution, from which the first

order rogue wave solution can be obtained through

However, the higher order RW solution cannot be constructed
in the same way. To find the general higher order rogue wave
solution, we need to solve the linear system (7) with (g, p, A) =

(qlo], p[O], —y +iB — %), where € is a small parameter.

To this end, we give the following lemma.
Lemma 1. Denote

€

) je? 2
)»1=—V+1,3—ﬁ, H1 =€ 1_<ﬁ>’

&1 = A1+,

then the following parameters can be expanded in terms of a small

parameter €

Furthermore we have

With the aid of above lemma, we have the following expansion

i gy \ "
(q[0], pl0], Xi1= s+ &y + Z(ai +ib)e? | + = 1n <m>
38), then one 4 Y - 5 5
o 1 .
e mstncted = i€ Z ﬂEZi Ke2) — jarcsin £
L 4 L 2
i=1 i—0
o0
= ie Z XLkl 2k
k=0
where
i 1
X2kt k lkmﬂgk—j] _ ﬂ =il
j=0 4 2k +1 K
(46) s w’ -
Kl — B2+y |
20 +iBy\ (o +ip) '
( 7/2+ﬂ2 ) (2/3(y2+’32)i> +ap +ib,, k> 1.

o0 o0
=y e, M=) "SsiXpe', Xy = (x{”,xlm, . ) XM =0, k=1,
n=0 i=0
1 00,00 where S;(X;) are elementary Schur polynomials
- Flidlg#igi ’
& —& Z < _ _ oyl o, 61?2
i=0,j=0 So(Xy) =1, S1(Xy) =X, S(Xy) =X7 + —
1 1 SR 11,3
= = Jie, B ylilyl2l . X3)
Ei+y  iB(1—e2 —ie)? ; S3(Xy) =X +XX +T
where (X1“])l1 (X][21)12 . (X}k])lk
SiXy) = .
1 1 !
w_ () (=Y (3) 2260 G N R
Ha n 4p2 ) - n n! ’ Since KE;(¢) satisfies the Lax equation (7), then KE;(—e¢) also
satisfies the Lax equation (7). To obtain the general higher order
- i giti €* rogue wave solution, we choose the general special solution
Fil = 77 5o | | exp | 2iarcsin | —— X,
ilj!B de*de 28 % 0 e
N ! 1) = % [Ei(e) —Ei(—e)] =K [ﬁ¢1i| , Er=| pet
+ exp | —2iarcsin ﬁ , Bty
lex=0.c=0 Finally, we have
1 i * k _Y¥ _Y¥_
o1 = E Jm = E e = 27/33 W1lyr) _ 1 XX ~ XX e X5+X1 N e~ Xi—%
200 =) 4| & & & -—x1 xf—& xI—x
i 1 2i
. - [ = 1 . 100
][21+1] — (/372) 2 (213) , ][21+2] =0,i>1. _ Z M[m,n]e*z(m—l)ez(n—l), (47)
1 m=1,

n=1
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where x; = §1(—e¢),

2m—12n—1

mimnl — Z Z FU ISy i1 (X1)Sam—j—1 (X]).

i=0 j=0

On the other hand, by using Lemma 1, we have the following
expansion

1 _
01 = 3 ( X1 Zw[n] 2(n— 1)
(48)
" 1 ( X1 X1 ) iw[n] 2(n—1)
1= = - = € 3
2\&+y xitvy =t
where
2n—1 B
Pl = Sy X, Y = Z SeXp)yP

Based on the expansion Egs. (47)-(48
we can obtain the general rogue wave solutions:

Proposition 7. The general higher order rogue wave solution for the
CSP equation (2) can be represented as

JIN] — g [ det(G) ] o

det(M
2( ) )
X = —%y — ﬁ—s — 2Ing(det(M)), t = —s,
where
M = (Mmm G = (M[m nl [n]) _
( )15'"’"5N ’ t e 1<m,n<N

Specifically, the first order rogue wave solution can be written
explicitly through formula (49)

B lG(iﬂZy - :32 - Vz) ] i0
11==11 )
a 2[ T p @ =y + B +ay? + 42|
_ v, B 50
X = —2y= g (50)

4P (s + B*s — 2yy)
B2 2y —ys) + B> + 4y? + 47

It can be shown that if 82 < v £, then one has the regular rogue

wave solution (Fig. 2); if 82 = ” , then one obtains the cusponed
rogue wave solution, in wh1ch |qx| — o0 at the peak point

(Fig. 3); if B2 > V; then we has the looped rogue wave solution
(Fig. 4). Although both the NLS and the CSP equations possess
the modulational instability (see the Appendix), the rogue wave
solution of the CSP equation (2) could yield the singularity which
is different from the one for the NLS equation. This solution may be
related to the wave breaking in the CSP equation. By the formula
(30), the second order rogue wave solution can be calculated as

az1="2 [1+] e,
2

y B

X = ——y — —s —2Ing(M3), t=—s,

), and formulas (29)-(30)-(26),

where
» = BOAY + [3B°A8 + 12° + 1088%y?] "
+ [—288y 85 — 96b,AB°] 5’
+ [38°45" + (—72B%y* + 2168°) &
—288a;8°AS + 4328 + 1584y° %] §?
+ [96y B°S® + 288Ab; B°5% — 1152y 73
+4608a;18°y + 1152b, 8° — 3456b, 8*y2] 9
+A[BS + 128" + 960, 8°5° + 4328°57
— 11520, 8% + 576 + 2304 (a;* + b?) ],
G, = ap*A(2304iB9 + 4068) § + A[1152ip° (7 — 8*)  (52)
+ 40688y — 4608iB°] b
— 24iAB°)° — 240B*AP*
+ [—48iAB°5 — 192iy”B* + 960ip°]
+ [—2888%A3% 4 2304iy B
— 34562 % + 11528%]
+ [—24iAB°8* + 576i (y* — B%) B°S°
+46088°y$ + 5760iy > + 1152i8°]

— A(488%* + 11528%5% — 2304)
and
. 2yy -~ —2By 2 2
S=s— —, =—, A= .
a1 y - B +vy

Here $ and y represent the amplitude and the angular frequency
of the background plane wave, respectively, a;, b; are two free
parameters which determine the distribution of peaks. The spatio-
temporal pattern of the second order RW solution for the CSP
equation is similar to the ones for the NLS equation [46] or for the
derivative NLS equation [47]. An example is shown in (Fig. 5(b)).
For the general case, it is extremely tedious and not feasible to
completely describe their dynamics analytically because of too
many parameters involved. However for the symmetric case of
a; = b; = 0 where the RW has maximum peak, we can show

that if 82 < (
(Fig. 5(a)); if B2 = (
rogue wave; if 82 > (1 2‘[) y <, one arrives at the looped rogue

wave (Fig. 6). On the other hand, for the case of a1 + b% > 1,
then it follows the same classification as first order RW solution.
In other words, if 52 32 one obtains the smoothed rogue
wave triplets [52] (see Fig. 5(b)); if 82 > $y2, one obtains the
looped rogue wave. The detailed analysis is too tedious to be
included. The expression for the higher order rogue wave solution
N > 3 becomes very complicated. Here, we only illustrate a third
order rogue wave solution (Fig. 7) without providing an analytical
expression.

‘[) y <, one obtains the smoothed rogue wave

2‘[) y <, one can obtain the cusponed

5. Conclusions and discussions

In the present paper, we study the general analytic solutions
to the complex short pulse (CSP) equation by the Darboux
transformation method. We firstly develop a generalized Darboux
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Fig. 2. (Color online): Parameters: 8 = 1, y = 2; (a) the spatio-temporal pattern for the regular first order RW; (b) the profile of |q[1]|? at different time.
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Fig. 3. (Color online): Parameters: 8 = 1, = +/3; (a) the spatio-temporal pattern for the first order cusponed RW; (b) the profile of |g[1]|? at different time.
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Fig. 4. (Color online): Parameters: 8 = 1,y = 1; (a) the spatio-temporal pattern for the first order loop RW; (b) the profile of |g[1]]? at different time.

transformation (DT) and associated Backlund transformation for
the complex coupled dispersionless (CCD) equation, which leads
to a general soliton formulas for the CCD equation. Then by
integrating the reciprocal transformation exactly, the N-bright
soliton solution in a compact determinant form to the CSP equation
is constructed. Furthermore, the N-breather solution and higher
order rogue wave solution to the CSP equation are constructed by
a delicate limiting process.

The N-bright soliton solution should be equivalent to the ones
found by one of the authors [31,33], the N-breather solution and
higher order rogue wave solution to the CSP equation are found for
the first time and deserve further study. Especially, this is the first
example for the existence of rogue wave solution in a nonlinear
wave equation possessing reciprocal (hodograph) transformation.
Due to this reciprocal transformation, the analytical solutions
including the bright, breather and rogue wave ones can be
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Fig. 5. (Color online): (a) Second order regular RW, parameters: § = 1,y = 4,a; = by = 0; (b) second order regular RW with triplet, parameters: § = 1,y = 2,

a; =20,b; =0.

[—t=-100—+t=-10—=0
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Fig. 6. (Color online): Parameters: 8 = 1, = 2,a; = b; = 0, (a) second order loop RW; (b) profile of |g[2]|? at different time.
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Fig. 7. (Color online): (a) Third order RW with pentagon arrangement, parameters: 8 = 1,y = 2,a, = 500, a; = 0, by = b, = 0; (b) third order RW with triangle

arrangement, 8 = 1,y = 2,a, =0,a; = 100,b; = b, = 0.

either smoothed, cusponed or looped ones. Based on the compact
determinant form of the solutions, we perform an asymptotic
analysis for the N-bright soliton and N-breather solutions. It should
be pointed out that the method for the asymptotical analysis can
be extended to other integrable equations as well. In compared to
the NLS equation, the rogue wave solution for the CSP equation
(2) could develop into wave-breaking. This illustrates that the
modulational instability for the CSP equation (2) is stronger than
the NLS equation.

Finally, the CSP equation could be of defocusing type, which
admits the dark soliton solution, same as the NLS equation. It
turns out that this is indeed the case. The complex short pulse
equation of both focusing and defocusing types can be derived from
the context of nonlinear optics. The results are summarized in a
separate work [53].
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Appendix A. Proof of Proposition 3

Proof. Fixed y — vys = const, and s — —oo, it follows that
01,63, ..., 60ke1 > —00; Okr1, Oky2, - - ., Oy — +00. On the other
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hand, gq[N] can be rewritten as

det(G)

qIN] = _det(lfvb s

where

200 +6))
—~ e J 1
v i ,
A — A B
! 1<ij<N

eZQN ] ,

~ ~t
6: M Yl s
Y, O

i/\12[629‘ 202 @:[1 1 - 1]

It follows that

det(M) = ek #0400 [det(My) + 0(e ™).

det(G) = €21+ +0) [det(Gy) + 0(e~P)]

where M, and Gy, are given in Box I. By direct calculation, we have

det(Gy)

1 1 1
AT — X A — Akt AT — Ak
_ (_1)I<+N+1 : . : :
1 1 1
)‘:—1 — M )‘7:—1 — Ak=1 )‘:—1 — Ak
1 cee 1 1
26 26
_er SRR,
A — Akt A — AN
1 1
Y o |
X )‘k+1 = Mt k+1 AN
1 1 1
AR — Ak Ay — AN

i) 16
=1 AL = Mk I=k+1 A=A

X C(}\‘*’ )‘142(5 ey )‘z_])c()"Z+]s )"Z+2, ey )\,;\})626;;
and det(My) is given in Box II,
det

* * * —
where C(aj, a3, ...,a;,) =

represents the determinant of a Cauchy matrix.
1<ij<m
Thus, along the trajectory y — vs = const, we have g[N] =
hisech(26, e %% 4 o(e=k).

For the general casey — vs = const,v # v, (k=1,2,...,N),
we have g[N] = 0(e~"!). Thus we obtain the asymptotic behavior
(36) whens — —oo.

By the same procedure as above, we can obtain the asymptotical
behavior (36) when s — 4-o0. Finally, we have obtained the N-
soliton’s asymptotic behavior (36). O

*_ .
(1'» ﬂj

Appendix B. Proof of Proposition 5

Proof. Fixed y — %vks = const,] < k < N,ands — +oo, it
follows that 0y, 6, ..., Ok—1 — —09; Okr1, Oks2, ..., Oy — —o00.
It follows that

N k
det(M) = exp |: Z 6+ 67 — Z(Qi + 9i*):|

i=k+1 i=1

x (det(My) + 0(e™))

N k
det(G) = exp |: Z 6 +6") — Z(Qi + Qi*)j|

i=k+1 i=1
x (det(Gy) + 0(e™F))

. i ez(e,j +6) eze,j
where My and Gy, are given in Box Ill, and my, = 5 TEoa
k K k

+

20k 1 5= Q2O +00 gty 20 gty ek xpt+y T
Xp —&k Xi—xk’ O T TE & &ty &5 —Xk XKty Xp —&k &ty
*
+ . .
iy By direct calculation, we have
Xp —Xk Xk+Vy
[11\ 2207 +6 [2]\ .20
det(My) = det(M,'e* %+ 4 det(M,*)e%
3 4
+ det(M)e? + det(m;™)
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M
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MY Similarly, we have
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-1 X[ Xk Sk — X
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On the other hand, we have det(M,E”) which is given in Box IV,

moreover A,E” is given in Box V, where C(-, -, ..., -) represents
the determinant of a Cauchy matrix. Thus, we have

d I o —EE - X
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k < =1

X1 — & Sk — X

NoE g g —s,*)
* (,ﬂ] 5 & & &
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I L R O e T
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Xk X

XCOUs Xas s XieDC s Sicyas -+ En)-

Moreover, we have

det(Mi) = C(X1s X3 - -+ X DCEirs s -+ ER)
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Box II.
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x < TT 12221
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Similar procedure as above, we have

k—1 _ % N *
Xty §+y
det(Gy) = A7
‘ (D x:+y> (,_11 &+vy

. + * .+ *
% |:Sk |4 det(Mil])ez(H"+9k) + gk 14 det(M,Ez])eZQk
&+vy Xk +y
+ 2T Ger(mPe 4 e TV det(M,E‘”)} .
&+vy Xty
Finally, as s — +o0, along the trajectory y — vis = const, we have
qIN] = gq:eia +0(e™ ),
where 67, 6, are given in Egs. (45).
For the general casey — vs = const, v Z v, (k=1,2,...,N),

if v < v; then g[N] = g@re”*”“’lv' +0(e By ifvg_ < v <
um (m = 2,3,...,0), then g[N] = £o/}e?~2¢mi 4 0(e~cl); if
vy < v < vy theng[N] = é(~)+ 0+2ig11 4 0(e=Fly; if vy < v <
Um (M =14+ 1,1+2,...,N — 1), then q[N] = £@;el?+2¢mi 4
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Box III.

0(e~Fly;if v,y < vtheng[N] = g@,frlei‘"z“"‘HJ +0(e~M). Thus
we have the asymptotic behavior (44). By the same procedure as
above, we can obtain the asymptotic behavior (43) whens — —o0.
So we complete the proof. O

Appendix C. Modulational instability analysis for plane wave
solution

The simplest exact solution to the CSP equation (2) is the plane
wave—a constant amplitude, exponential wavetrain,

,B —i( Z2x—ot 1 52
pe ) o=y (G 2)y

where B, y are real constants. The linearized stability of the
plane wave is easily obtained from Fourier analysis [54]. It proves

qo = (54)

most convenient to introduce the disturbance quantities q as
multiplicative perturbations to the plane wave

. (g . a) oi(3mon)

since this results in a convenient simplification upon linearization.
Keeping only terms linear in ¢ after direct substitution of (55) into
the CSP (2), the linearized disturbance equations become

(55)

. B, 1 iy
ac + %q;‘ + 5 (B ) a+ gqm

iyg. B, .

L G — —— =0. 56
MR iy @ +a) (56)
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Because of the conjugates in (56), the eige

Box V.

nfunctions are most

conveniently expressed as linear combinations of pure Fourier

modes,

a =f+ei/((x+52t) _’_f*efik(xjug*t).
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8IPY* 2 4 (44 12y*) B2 — 4y (42 + v + B)
—28*2 +yK)

—8Ky?2 — (4 +Ky?) B2 —dyx (42 +77 + )

2822 — yk) ]
J[F]-0 o

Box VI.

These eigenmodes are parameterized by the real wavenumber «
of the disturbance and the complex phase velocity §2, where a
positive imaginary part indicates a pure temporal growth mode
of instability in positive time. Substitution into the linearized
PDEs (55) and collection of resonant terms results in four linear
homogeneous equations for the Fourier amplitudes f., Eq. (58)
is given in Box VI. Solvability for this system requires that
the determinant of the matrix of coefficients vanishes—this
determines the dispersion relation for linearized disturbances

162 (42 + 17 + 2 + 16 8* — [8*202
2
+ (4+K2)/2) ,82] —4y28%2 = 0.
Ones can readily obtain that two roots for above square equation:

(8 — B2cD)y? + 4 8% £ 4y /y2k2(B* + y?) — 4B2
8(k2y2 — 4) ’

2 =

So when «? < )/2(/;l+iyz)' those roots with nonzero imaginary
part correspond to linearly unstable modes, with growth rate
k|Im(2)| = y/c\/4ﬁ2 — ¥2k2(B% + y2)/[2|«%y? — 4]]. Then the
baseband Ml yields the rogue wave solution [55].
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