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Abstract

We study a model derived by Fei et al. [Phys. Rev. A 45 (1992) 6019] of a kink solution to the sine-Gordon equation
interacting with an impurity mode. The model is a two degree of freedom Hamiltonian system. We investigate this model using
the tools of dynamical systems, and show that it exhibits a variety of interesting behaviors including transverse heteroclinic
orbits to degenerate equilibria at infinity, chaotic dynamics, and an extremely complex and delicate structure describing the
interaction of the kink with the defect. We interpret this in terms of phase space transport theory. © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction and motivation

There has been much recent interest in the propagation of nonlinear waves through variable or noisy media.
Perhaps the simplest problem to study is the interaction of a nonlinear wave with a localized defect in an otherwise
homogeneous medium. Such a defect may do many things to a traveling wave. It may speed the wave up, slow it down,
or break it apart altogether. In a particular application, we have performed numerical studies [14] showing the possi-
bility of trapping light by the introduction of specially engineered defects into optical fiber waveguides with periodic
structure (Bragg grating fibers). Nonlinear propagation in such structures is described by the nonlinear coupled mode
equations (NLCME) [9,15], which possess a family of traveling wave solutions known asgap solitons. This trapping
may be modeled as the interaction of a such a gap soliton with bound states arising due to the localized defect.

Several studies have been undertaken to try to understand these soliton–defect interactions. The first approach is
numerical experimentation using direct simulation of the initial value problem for the evolution equations. In our
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Fig. 1. Space–time tracks of the peaks of gap solitons that are captured and transmitted by a defect.

experiments for the NLCME, we found a rich variety of behaviors. In all experiments, a gap soliton was initialized
propagating toward the defect with no energy in the defect mode. We found different scenarios resulting from the
interaction: trapping, reflection, transmission, or some combination thereof. Similar behavior was observed by Cao
and Malomed [7] in numerical studies of nonlinear Schrödinger solitons.

Fig. 1 shows the paths, in the space–time plane, of the peaks of two gap solitons exhibiting transmission and
capture. We observed that, in the case of trapping, the energy of the trapped mode slowly decayed, presumably due
to nonlinear coupling to radiation modes [29]. The scenario that occurs depends on details of the incoming soliton
(velocity, amplitude and phase) as well as the defect shape: see [14].

A second approach is to derive finite dimensional models which reproduce the essential dynamics of the soliton–
defect interaction. One way to do this is to approximate the solution by a superposition of a small set of ‘modes’,
characterized by time-dependent parameters (collective coordinates), and then use these parameters to form a reduced
effectiveLagrangian for the system. Evolution equations are then derived as the Euler–Lagrange equations for the
effective Lagrangian. This procedure is explained in more depth in Section 2. Such models have been derived for the
sine-Gordon andφ4 equations by Fei and coworkers [10,11,19], and by Forinash et al. for the nonlinear Schrödinger
equation [12]. The resulting models are finite systems of ordinary differential equations or differential–algebraic
equations. The model derived in [11] for the sine-Gordon equation is a two degree of freedom Hamiltonian system and
it is this system we investigate here, as a prototype of the more complex, higher dimensional system corresponding
to the NLCME. We are able to provide a rather complete analytic description of the behavior of this system.

In [23], equations governing the dynamics of kink and breather locations are derived by a direct perturbation
procedure. In cases where the full system derives from a Lagrangian, this approach gives similar finite dimensional
collective coordinate equations to those obtained from the effective Lagrangian approach. However, this procedure is
also applicable when the full equations are not Lagrangian. Moreover, this framework enables one to systematically
study the problem of the accuracy of the reduction, see also [30,32]. The study of [23] is done for a general class
of defects perturbing the sine-Gordon equation with dissipative and driving terms. It emphasizes the effects of
dissipation and driving on the dynamics of coherent structures, and in some cases “pinning” of kinks was found: a
phenomenon similar to capture studied here.
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Fei et al. [11] note three possible behaviors for a kink solution of the sine-Gordon equation interacting with
a defect. Above a critical velocity, the kink passes through the defect, albeit with diminished speed. Below
this critical speed, they find that the kink is captured, except in certain “resonance bands” where the kink
“interacts a finite number of times with the defect” before returning in the direction from which it came. Our
phase space analysis of the finite dimensional ODE reduction, yields a concise picture of what it means for
the kink to “interact a finite number of times with the defect”. Fei et al. use the finite dimensional reduction
derived from an effective Lagrangian to give a heuristic derivation of the critical velocity for the PDE, with good
agreement.

On the other hand, our simulations and analysis of this reduction indicate a strong contrast between the reduced
dynamics and the infinite dimensional dynamics of the PDE. While for the finite dimensional reduction, we find
capture for finite times, in all cases, the kink eventually escapes from the defect and moves off at reduced constant
speed, leaving some of its energy in the defect mode. In addition to being reflected back toward its starting position,
the kink can also be transmitted and continue traveling in the original direction. Applying methods of dynamical
systems analysis, we show that the system of ordinary differential equations has very complicated dynamics, which
can be understood by examining the stable and unstable manifolds of a fixed point at infinity for an associated
Poincaré map. We show that the initial conditions leading to reflection and transmission by the defect are intricately
interwoven, essentially forming the gaps separating points in a zero-measure Cantor set of initial conditions of
orbits that are trapped for all time. Thus, the finite dimensional reduced system displays sensitive dependence to
initial conditions. Closer qualitative agreement with the PDE dynamics is obtained by inclusion of an appropriate
damping term in the reduced system, reflecting the mechanism of radiation damping. Thus, a finite dimensional
Lagrangian description does not succeed in capturing important features of the long-time dynamics, but it may be
improved by inclusion of an effective damping, an infinite dimensional effect due to coupling of the kink–defect
subsystem with the radiative “heat bath”.

This paper is organized as follows. In Section 2, we review the two-mode model of Fei et al. and in Section 3, we
briefly describe their results. The central Section 4 contains an analysis of the model via the methods of dynamical
systems theory. Using Hamiltonian reduction and introducing a (small) parameter, we show that a Poincaré map
defined on a suitable cross section of each constant energy manifold can be approximated, and prove that the stable
and unstable manifolds of distinguished points at infinity intersect transversely. Phase space transport methods
then allow us to (partially) characterize sets of initial conditions for kinks that are transmitted without capture,
captured and eventually transmitted or reflected, and captured for all time. We provide numerical illustrations of
these behaviors in Section 5. In Section 6, we discuss the role played by coupling to radiation modes, an effect
present in the full infinite dimensional PDE, and modify the two-mode model accordingly. Finally, in Section 7, we
summarize and draw conclusions.

2. The model

Following Fei et al. [11], we consider a sine-Gordon model with a localized impurity at the origin:

utt − uxx+ sin u = εδ(x) sin u. (2.1)

In the absence of any impurity, i.e.ε = 0, the sine-Gordon equation has the well-known family of kink solutions
parameterized by speedV :

uk(x, t) = 4 tan−1 exp

(
x − Vt− x0√

1− V 2

)
. (2.2)
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If we consider the system with an impurity, then solutions of small amplitude approximately satisfy the linear
equation

utt − uxx+ u = εδ(x)u, (2.3)

which, for 0< ε < 2, has standing wave solutions

uim(x, t) = a(t)e−ε|x|/2, (2.4)

wherea(t) = a0 cos(Ωt + θ0) and

Ω =
√

1− 1
4ε

2. (2.5)

Fei et al. [11] study the interaction of the kink and defect modes using a collective coordinate approach to derive a
set of approximate equations for the evolution of the kink positionX, and the defect mode amplitudea. To derive
the approximate equations, they substitute the ansatz

u = uk + uim = 4 tan−1 exp(x −X(t))+ a(t)e−ε|x|/2 (2.6)

into the Lagrangian of Eq. (2.1)

L =
∫ ∞
−∞

(
1
2u

2
t − 1

2u
2
x − [1− εδ(x)](1− cosu)

)
dx. (2.7)

Here,X replacesx0+Vt, anda andX, the parameters characterizing the approximate solution Eq. (2.6), are regarded
as unknown functions oft . It is assumed thata andε are small enough that many cross-terms can be neglected. Thus,
in calculating the effective Lagrangian, all terms produced via overlap of the two-modes are neglected, excepting
those which include the defect potentialδ(x). This is equivalent to assuming that the dominant means of interaction
between the two-modes is via the defect. All terms that are neglected under this assumption contain oscillatory
integrals which should average out to be much smaller than the terms retained. Evaluating the spatial integrals of
Eq. (2.7), an effective LagrangianLeff(X, a, Ẋ, ȧ) is obtained [11]:

Leff = 4Ẋ2+ 1

ε
(ȧ2−Ω2a2)− U(X)− aF(X), (2.8)

where

U(X) = −2εsech2 (X), (2.9)

F(X) = −2ε tanh(X) sech(X). (2.10)

The corresponding evolution equations are then given by the classical Euler–Lagrange equations for Eq. (2.8):

8Ẍ + U ′(X)+ aF′(X) = 0; (2.11a)

ä +Ω2a + ε
2
F(X) = 0. (2.11b)

This system corresponds to a particleXmoving in an attractive potential wellU(X)which is exponentially localized
in a neighborhood of zero, coupled to a harmonic oscillatora by an exponentially localized termaF(X). Note that
this model inherits many properties from the sine-Gordon system. WhenX is large,U(X) andF(X) are small, so
thatẌ ≈ 0 and the kink may propagate at any constant speed, independent of the impurity modea, which oscillates
at its characteristic frequencyΩ. WhenX becomes small, the two equations become coupled and the kink may
exchange energy with the impurity mode.
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Fig. 2. Capture, reflection and transmission of kinks for the sine-Gordon equation with a defect potential, Eq. (2.1).Vf andVi denote final and
initial kink velocities. From [11], Fig. 9.

3. A heuristic trapping argument

In their numerical studies, Fei et al. [11] initialize the sine-Gordon Eq. (2.1) with a kink solution localized far from
the impurity and headed toward it, with zero energy in the impurity mode. They then watch how the kink interacts
with the impurity. The basic result of these experiments is that, above a certain critical velocity, the kink passes
through the impurity, albeit with diminished speed, having transferred some of its energy to the impurity mode.
Below the critical velocity, two possible behaviors emerge. For most values of the initial velocity, the kink is trapped,
but there exists a sequence ofresonantvelocities. These mark the centers of narrow bands of initial velocities for
which the kink interacts with the impurity mode a finite number of times before being reflected back toward its
initial position. Fei et al. [11] do not report any cases of interactions followed by transmission: indeed, transmission
behavior was rarely observed [18]. Fig. 2 shows these phenomena in a plot of final versus initial kink velocity.

In related studies of kink–antikink interactions in modified sine-Gordon,φ4 and double sine-Gordon equations,
Campbell and coworkers [4–6,25] found similar transmission and reflection phenomena, obtaining final versus
initial velocity data similar to that of Fig. 2, as well as phenomenological theory predicting the positions of the
resonance windows.

Using Eqs. (2.11a) and (2.11b), an approximate condition for kink trapping is derived based on a one-way
exchange of energy from the kink to the impurity mode. Fei et al. further derive a heuristic resonance condition
which they use to predict the locations of the first ten or so resonant velocities.

We have performed numerical experiments on Eqs. (2.11a) and (2.11b) and have found some discrepancies with
the findings of [11], sketched in the previous section. We initializeX = −6, a good distance away from the potential,
andẊ > 0, with a = ȧ = 0. We then plot the final velocity of the kink as a function of the initial velocity, see
Fig. 3. Note that for the PDE (Fig. 2), there is a critical velocityvc = 0.166, very similar to our valuevc = 0.169 for
the ODE, above which the kink passes the impurity without any interaction. For velocities below critical, however,
any kink which starts sufficiently far from the impurity eventually escapes if we follow the evolution long enough.
Additionally, we find that kinks that interact with the defect may leave in either direction: they may be reflected as
described above, but they also may be transmitted after interacting with the impurity mode one or more times. This
contrasts with Fig. 2 from [11], in which kinks with subcritical initial velocity are captured unless the velocity lies
in certain reflection windows, with no evidence of transmission windows. There was rare evidence of transmission
for subcritical velocities [18]. Fei et al. suggest a semiheuristic formula for predicting the resonant velocities of
the reflection windows, and their formula could easily be adapted to predict the transmission windows as well.
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Fig. 3. Capture, reflection and transmission of sine-Gordon kinks for the two-mode ODE model Eqs. (2.11a) and (2.11b) of [11] withε = 0.5.
Vf andVi denote final and initial kink velocities. Compare with Fig. 2.

Our simulations of Eqs. (2.11a) and (2.11b) do not show any trapping for all time, and indeed, through study of
Eqs. (2.11a) and (2.11b) as a dynamical system, we show that the set of initial conditions that lead to trapping is
nonempty but of measure zero.

4. Dynamical systems analysis

We modify Eqs. (2.11a) and (2.11b) by inserting a coupling parameter 0≤ µ ≤ 1 in order to facilitate our
analysis:

8Ẍ + U ′(X)+ µaF ′(X) = 0, (4.1a)

ä +Ω2a + 1
2εµF(X) = 0. (4.1b)

We will perform perturbation theory for smallµ and also consider the limiting caseµ = 1 of Eqs. (2.11a) and
(2.11b). It will be convenient to rewrite Eqs. (4.1a) and (4.1b) in Hamiltonian form with momentum variables

pX = ∂Leff

∂Ẋ
= 8Ẋ, pa = ∂Leff

∂ȧ
= 2

ε
ȧ, (4.2)

and HamiltonianH ≡ ẊpX + ȧpa − Leff :

H = 1

16
p2
X +

ε

4
p2
a +

Ω2

ε
a2+ U(X)+ µaF(X). (4.3)

4.1. Preliminary analysis: symmetries, fixed points, and invariant manifolds

Letting

Y = Ẋ and b = ȧ, (4.4)
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we find that the system of equations (4.1a) and (4.1b) is invariant under the following symmetries:

(X, Y, a, b, t)→ (−X,−Y,−a,−b, t), (4.5a)

(X, Y, a, b, t)→ (−X, Y,−a, b,−t), (4.5b)

and(X, Y, a, b, t)→ (X,−Y, a,−b,−t). (4.5c)

Whenµ = 0, theX anda dynamics are uncoupled and the Hamiltonian system is completely integrable:

H = 1

16
p2
X + U(X)+

ε

4
p2
a +

Ω2

ε
a2 def= HX +Ha (4.6)

since the two components ofH may be treated separately. The impurity modea simply oscillates harmonically as

a = a0 cosΩ(t − t0),
and the behavior of the kink may be inferred from the phase plane corresponding toHX, level sets of which are
shown in Fig. 4. IfHX < 0, the kink position,X, undergoes bounded periodic motion. IfHX > 0, it propagates
monotonically, approaching a constant velocity for large|X|. Between these behaviors there exists a separatrix
consisting of a pair of homoclinic orbits to infinity, given by

p0
X = ±4

√
2ε sechX0, (4.7)

for which |X| approaches infinity for large times, but with vanishing velocity. The explicit solution along these
orbits (8Ẋ = ±4

√
2ε sechX) is given by

X0 = ± sinh−1
√

1
2ε(t − t1). (4.8)

These separatrices are analogous to the parabolic orbits in the Newtonian two-body problem that separate regions of
elliptic (periodic) and hyperbolic (unbounded) motions. This geometrical picture is made clear in Fig. 4. Trajectories
between the two dotted separatrices represent clockwise motion on closed curves. Solutions above this region move
monotonically to the right and those below, to the left. This divides the phase plane into three regions, which we
labelR1, R2, andR3, starting at the top and going down.

In the uncoupled system, trapping is impossible, since a kink starting from infinity with nonzero velocity neces-
sarily remains outside the (invariant) separatrix and thus will pass through the defect and recover its initial velocity.

Fig. 4. The phase plane forHX , the uncoupledX system.
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Similarly, solutions starting inR2 must remain inside the separatrix. Once coupling is added, this may change. By
interacting with the oscillator mode whenµ �= 0, the kink can cross between the regionsR1 andR2 orR2 andR3.
A kink will be said to interact with the defect if it starts in regionR1 or R3 and subsequently entersR2, and to be
trapped or captured if it stays inR2 for all future times.

We will examine the system perturbatively, in the limit of smallµ. Whenµ = 0, the system has one fixed point,
a center at the origin. This fixed point persists forµ nonzero. Whenε is also small, the origin remains an elliptic
fixed point, but at

ε = 2√
1+ 2µ2

,

the system undergoes a Hamiltonian pitchfork bifurcation. The origin becomes a saddle-center with one-dimensional
stable and unstable manifolds and two new elliptic fixed points appear at

X = ±sech−1Ψ, pX = 0, (4.9)

a = µε
2

Ω2
tanhX sechX, pa = 0, (4.10)

whereΨ =
√

4+ 2µε2− ε2/2µε. We will concentrate on the caseε < 2/
√

1+ 2µ2 so that the system possesses
only one elliptic fixed point.

Whenµ �= 0 and the system becomes coupled, the flow can no longer be explained in terms of a two-dimensional
phase portrait as in Fig. 4. The system now evolves in the ‘full’ four-dimensional phase space. However, key features
of the uncoupled system remain. For largeX, F(X) approaches zero exponentially, so the system is essentially
uncoupled. AtX = ±∞, the system has a family of periodic orbitsa = a0 cosΩ(t − t0) which persist for nonzero
µ. The ‘parabolic’ orbits of the uncoupled system are the invariant manifolds of these periodic orbits, which form
heteroclinic orbits connecting the fixed points atX = ±∞. We first show that these stable and unstable manifolds
persist whenµ > 0, and then show that they in fact continue to intersect, albeit now transversally, so that a structure
survives akin to that shown in Fig. 4.

To study the stable and unstable manifolds of the periodic orbits at|X| = ∞, we make a change of variables for
positiveX (one proceeds analogously forX = −∞). Letting

q = sechX, p = Ẋ,

the differential equations become

q̇ = −qp
√

1− q2, ṗ = −1
2εq

2
√

1− q2− 1
4µεaq(1− 2q2), (4.11)

ȧ = b, ḃ = −Ω2a + µε2q

√
1− q2. (4.12)

and the periodic orbits are moved to the origin in the(q, p)-plane, where they are contained in a line of degenerate
fixed points withq = 0 (note that forµ = 0 the linearized vector field in this plane isDf(0) = 0). This situation is
analogous to the restricted three-body problems treated by McGehee [22], and we may apply his stable manifold
theorem for degenerate fixed points of planar maps to the Poincaré return map induced by Eqs. (4.11) and (4.12)
on the(q, p)-plane (cf. [8]). For completeness, we state this result in the Appendix A.

By placing the variablesa andpa in action-angle variables (see Section 4.2), we may define a Poincaré map for
p andq with respect to the angleθ . This is valid as long as∂t θ > 0, which is true for largeX (smallq), and globally
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in the phase space for smallµ, as discussed in Section 4.2. Integration of Eq. (4.11) shows that the return map takes
the form:

f =
{
q �→ q −K1q(p + r1(q, p)),
p �→ p −K2q(q + r2(q, p)),

(4.13)

whererj (q, p) contain higher order terms andKj denotes a constant. Lettingq = ξ − η, p = ξ + η, f becomes

f =
{
ξ �→ ξ + p1(ξ, η)+ · · · ,
η �→ η + p2(ξ, η)+ · · · ,

(4.14)

wherep1 = −K3(ξ − η)ξ andp2 = K4(ξ − η)η. Thusp1(ξ,0) = −K3ξ
2 < 0,p2(ξ,0) = 0 and∂p2/∂η(ξ,0) =

K4ξ > 0 for ξ > 0, the hypotheses of McGehee’s theorem are satisfied, and we may conclude that analytic stable
and unstable manifolds exist. We note that Birnir [2,3] used the McGehee result in his study of rational pole solutions
of a periodically forced KdV equation.

4.2. Reduction, Poincaré maps and homoclinic points

The variablea and its conjugate may be expressed in action-angle coordinates [13]I andθ defined by

a =
√
Iε

Ω
cosθ; pa = 2

√
ΩI

ε
sinθ, (4.15)

so that

Ha = ΩI. (4.16)

Then the Hamiltonian of the full system becomes

H(X,pX, I, θ) = HX(X, pX)+ΩI + µH 1(X, pX, I, θ), (4.17)

where

H 1 =
√
Iε

Ω
cosθF (X). (4.18)

Hamilton’s equations are thus:

Ẋ = ∂H

∂pX
= pX

8
, (4.19a)

ṗX = −∂H
∂X
= −U ′(X)− µ

√
Iε

Ω
cosθF ′(X), (4.19b)

İ = −∂H
∂θ
= µ

√
Iε

Ω
sin θF (X), (4.19c)

θ̇ = ∂H
∂I
= Ω + µ

2

√
ε

ΩI
cosθF (X). (4.19d)

The uncoupled (µ = 0) equations have a family of orbits

I (t) = I0, θ(t) = Ωt + θ0

with X andpX given in Eqs. (4.7) and (4.8). These correspond to trajectories in the four-dimensional phase space
homoclinic to periodic orbits.
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Since the Hamiltonian is conserved, the flow is constrained to lie on the invariant three-dimensional energy
manifold determined by the initial data:

H(X,pX, I, θ) = h0 = constant. (4.20)

Forµ sufficiently small, we may invert Eqs. (4.7) and (4.20) to obtain

I = I (X, pX, θ;h0) = 1

Ω
(h0 −HX +O(µ)). (4.21)

This reduces the system from four dimensions to three, since we need not solve the evolution equation forI . Indeed,
as described in Section 4.8 of [16], using the fact that

θ̇ = ∂H
∂I
= Ω +O(µ) > 0

and eliminating time in favor of the time-like variableθ , we may write the reduced equations on each constant energy
manifoldH = h0 as a periodically forced single degree of freedom system with Hamiltonian−I (X, pX, θ;h0):

X′ = − ∂I
∂pX

, p′X =
∂I

∂X
, (4.22)

where(·)′ denotes d/dθ(·). Note that this implies that Eq. (4.22) preserves phase space volumes on each energy
manifold, and hence that the Poincaré maps defined below preserve area.

Forµ = 0, Eq. (4.22) is an autonomous planar system whose phase portrait coincides with that of the uncoupled
X system of Fig. 4, since in this case,I is simply a scaled version ofHX. However, the ‘fixed point’ at infinity is
really a periodic orbitγ , since, provided that the energyh0 > 0, theI -mode is oscillating (θ ′ = 1). Forµ > 0,
Eq. (4.22) becomes nonautonomous, and one may no longer draw phase portraits on the(X, pX)-plane, but one can
define a Poincaré mapPθ0 on the cross-sectionΣθ0 = {(X, pX; θ = θ0)} [16]. By the theorem of McGehee [22]
noted above,γ and its stable and unstable manifoldsW s(γ ),Wu(γ ) persist for smallµ; indeed, we may compute
explicitly thatγ is given bya = (√h0ε/Ω) cosΩ(t − t1).

In order to show thatW s(γ ) intersectsWu(γ ) transversely, we apply Melnikov’s method [24] toPθ0, the Poincaré
map generated by following the flow fromθ = θ0 to θ = θ0 + 2π . Melnikov’s method is generally applied to
systems with hyperbolic fixed points in order to find the intersection of the stable and unstable manifolds. For such
systems, solutions lying on the stable and unstable manifolds of the perturbed and unperturbed systems remain
uniformly O(µ) close. This allows the Melnikov integral to be interpreted as the (normalized) distance between
the stable and unstable manifolds at a specified point on the cross-sectionΣ0 = {(X, pX, θ = θ0)}. Here, we do
not have hyperbolic fixed points, but the results of McGehee [22], applied in Section 4.1, guarantee the existence
of analytic stable and unstable manifolds. As in [8], we may therefore, apply the Hamiltonian reduction version of
Melnikov’s result ([16], Theorem 4.8.4):

Theorem 1. Let h0 > 0 and I0 = h0/Ω. Let {HX,H 1} denote the Poisson bracket2 of HX(X0, p0
X) and

H 1(X0, p0
X,Ωt + θ0, I0) evaluated alongX0(t) andp0

X(t). Define the Melnikov function

M(θ0) =
∫ ∞
−∞
{HX,H 1}(X0, p0

X,Ωt + θ0, I0)dt (4.23)

and assume thatM(θ0) has a simple zero. Then forµ > 0 sufficiently small, the Hamiltonian system has transverse
homoclinic orbits on the energy surfaceH = h0.

2 {F,G}def= ∂F
∂X

∂G
∂pX
− ∂F
∂pX

∂G
∂X
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For the coupled system, there continue to exist orbits which start att = −∞ at the periodic orbitγ atX = −∞
and which approachγ at X = +∞ as t → +∞. By continuity, this must apply to the flow as well as to the
Poincaré map. As a direct corollary to this, the system possessesheteroclinic tangleswhich direct the flow. The
heteroclinic tangle will capture certain orbits and reflect or transmit them after allowing them to interact with the
impurity mode a finite number of times. In addition, there exists a set of initial conditions of measure zero which
start atX = −∞ and are captured for all time. The heteroclinic tangle further implies the existence of chaotic
motions in the dynamics.

To verify that the Melnikov function has simple zeros, we compute, using the expressions (4.7) and (4.8):

M(θ0) =
∫ ∞
−∞

(
∂HX

∂X

∂H 1

∂pX
− ∂H

X

∂pX

∂H 1

∂X

)
dt = −ε2

√
2I0

Ω

∫ ∞
−∞

cos(Ωt + θ0) sech2X(1− 2sech2X)dt.

Using the difference formula for cosines and the fact that, by choosingt1 = 0 in Eq. (4.8), sech2(X) = 2/(2+ εt2),
we find

M = −2ε2

√
2I0

Ω
cosθ0

∫ ∞
−∞

cosΩt
εt2− 2

(εt2+ 2)2
dt. (4.24)

It is clear thatM|θ0=±π/2 = 0 andM ′|θ0=±π/2 �= 0, provided that the integral itself does not vanish. But the integral
may be written as

Re
∫ ∞
−∞

eiΩt εt
2− 2

(εt2+ 2)2
dt

and evaluated by residues by closing the contour in the upper half-plane to give

M = 2πε
√

2I0Ω cosθ0 e−Ω
√

2/ε, (4.25)

or, eliminatingΩ in favor of ε, by Eq. (2.5):

M = 2π
√

2I0G(ε) cosθ0, (4.26)

where

G(ε)
def=ε

(
1− 1

4ε
2
)1/4

e−
√

2/ε−ε/2. (4.27)

In Fig. 5, we plotG(ε), observing that it has no zeros forε ∈ (0,2), and exhibits a maximum atε ≈ 1.88. We
conclude that, forε in the admissible range, the Melnikov function has simple zeros inθ0 and hence, thatW s(γ )

intersectsWu(γ ) transversely. The maximum ofG(ε) identifies the value ofε that gives greatest splitting distance
betweenW s(γ ) andWu(γ ).

Fig. 6 illustrates the transverse intersections of the manifolds in the caseµ = 0.5, ε = 0.5, h0 = 0.484
(which corresponds toI0 = 0.5). Here and in next sections, we use the(X, Y = Ẋ) coordinates rather than
the momentum variablepX, but the pictures are equivalent via Eq. (4.2). Note that the stable and unstable man-
ifolds intersect each other many times in these (relatively) short segments. Indeed, we may apply the Smale–
Birkhoff theorem ([16], Theorem 5.3.5), modified as in [8], to conclude the existence of an invariant Cantor set of
bounded motions on which the Poincaré map is topologically conjugate to a subshift of finite type: the system is
chaotic.
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Fig. 5. The nonvanishing factor,G(ε), of the Melnikov function.

Fig. 6. The stable and unstable manifolds of the fixed points atX = ±∞ for the Poincaŕe mapPπ/2, with parametersµ = 0.5,ε = 0.5,I0 = 0.5.
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4.3. Persistence of homoclinic orbits toµ = 1

We may draw some useful implications from the symmetries (4.5a)–(4.5c), some of which are apparent in Fig. 6.
Here we have plottedW s,u(X = ±∞) on the sectionΣπ/2, corresponding toa = 0. Thus, via Eq. (4.5b), stable and
unstable manifolds reflect into one another across theY -axis. (Taking the sectionΣ0 (b = pa = 0), the reflection
symmetry is about theX-axis.) This immediately implies that, if we can find a point(X = 0, Y0, a = 0, B0, t = 0)
that lies inW s(X = +∞) (respectivelyW s(X = −∞)), then this point also lies inWu(X = −∞) (respectively
Wu(X = +∞)), and is therefore homoclinic to infinity (note the intersections on theY -axis of Fig. 6). We note that
this argument applies even in cases thatΣθ0 fails to be a cross-section, which occurs forµ = O(1), depending on
ε andµ. This failure is due to the fact thatθ̇ changes sign, cf. remarks following Eq. (4.21). In this case we think
of homoclinic orbits to the periodic orbit at infinity in the full flow, rather than the Poincaré map.

We now prove that homoclinic orbits to|X| = ∞ exist for allµ ≤ 1. In particular, consider arcs of initial
conditions connecting the fixed point (0, 0, 0, 0) to a point(0, Y0,0, B0). Orbits starting at or near (0, 0, 0, 0) clearly
remain trapped for all time; in fact no solution with energyH = h0 ∈ (−2ε,0) can escape to|X| = ∞, since
its energy level lies below 0 and all trajectories satisfyingX(t) → ∞ satisfyh0 ≥ 0. In contrast, we prove in
Appendix B that solutions starting at(0, Y0,0, B0) for sufficiently large|Y0| (depending onB0) escape to|X| = ∞
with |Ẋ = Y | > 0. Continuous dependence on initial data then implies that, on each arc connecting (0, 0, 0, 0) to
(0, Y0,0, B0), and in particular on arcs withX = a = 0, there is at least one orbit asymptotic to(|X| = ∞, |Y | = 0).
Hence, appealing to the symmetry Eq. (4.5b), we have a homoclinic orbit to infinity. However, this argument does
not show that homoclinic orbits exist oneveryenergy surface.

4.4. Phase space transport and lobe dynamics

Wiggins and coworkers [26,33] have developed a theory for transport of regions of phase space which is applicable
to the mapPθ0 derived above. We summarize the relevant ideas, referring to Fig. 7, which shows part of the manifolds

Fig. 7. The turnstiles governing phase space transport for the caseµ = 0.5, ε = 0.5,H = h0 = 0.484.Y = Ẋ = 1
8pX .
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W s,u(X = ±∞) for the Poincaré mapPπ/2 (cf. Fig. 6). The bold portions of the manifolds, meeting at theprimary
intersection pointsqi (here, on the symmetry axisX = 0), divide the sectionΣπ/2 into three disjoint regionsR1,
R2, andR3, analogous to those in the unperturbed phase plane of Fig. 6.

The images and preimages ofqi ,P
±1
π/2(qi) and the arcs ofW s,u connecting them boundlobesthat are mapped into

one another byPπ/2 (recall that the lobe boundaries lie in invariant manifolds). In Fig. 7, we show the pairs of lobes
forming the twoturnstiles[21], along with their images. Specifically: the lobeLi,j (1) is the set of all points in region
Ri which are mapped to regionRj under one iteration ofPθ0. Note thatLi,j (1) ⊂ Ri andPθ0(Li,j (1)) ⊂ Rj , and
that points can only pass fromRi toRj via the turnstile lobeLi,j (1). The turnstiles organize the capture dynamics of
the map. In order for a rightward moving orbit to be captured, it must pass fromR1 toR2. Hence, some image of its
initial condition,Pnθ0(X0, Y0), must lie insideL1,2(1) for somen > 0; in other words, the point must be contained

in a turnstile lobe preimageP−nθ0 (L1,2(1)). The first three such pre-images can be seen in the upper-left quadrant of
Fig. 6. Similar observations apply to leftward moving orbits originating inR3.

Consider the sequence of lobes in the upper right quadrant of Fig. 6. Here, sections of the unstable manifold of
X = −∞ form the boundaries of the lobesP kθ0(L2,1(1)) for k = 1, . . . ,4. Continuing the plot, we would find an
infinite sequence of such lobes. The maxima (with respect toY ) of these lobes approach the horizontal asymptote
Y = √H/2 = √h0/2 and also approach equal spacing along that asymptote, since the flow of Eq. (2.11a) (and
the reduced system (4.22)) approaches constant velocity away from the potential well atX = 0. This asymptote
defines the maximum velocity with which kinks starting as trapped modes inside the well (with energyΩI = h0)
can escape, and thus, by symmetry across theY axis, the maximum velocity for capture (this value can also be
computed by solving foṙX asX→∞ with I = 0, givenH = h0).

Thus, far we have considered only those points that are trapped for at least one iterate. Once insideR2 a point may
subsequently enter a turnstile componentL2,j (1), and then be ejected intoR1 or R3. Moreover, since the images
P kθ0(L2,j (1)) all lie outsideR2, once ejected, orbits cannot re-enter, but must pass toX = +∞ orX = −∞. We
now show that the probability of capture for all time is zero, and then analyze the topological structure and expected
statistics of transient capture.

Proposition 1. The set of points inR1∪R3 that is captured inR2 and trapped for all future iterates, is of Lebesgue
measure zero.

Proof. AssumeD ⊂ R1 with meas(D) > 0, PNθ0 (D) ⊂ L1,2(1), andPnθ0(D) ⊂ R2 for all n > N , so that
D is eventually trapped for all time (a similar argument applies toD ⊂ R3). We claim that meas(R2) is finite.
This follows from the exponential decay of its boundariesWu,s(X = ±∞) as|X| → ∞, sinceWu,s(X = ±∞)
are close to the unperturbed separatrix (4.7) for large|X|. Now recall thatPθ0 preserves area. Then, since
meas(D) > 0,

∑
n>N meas(P nθ0(D)) must exceed meas(R2), implying that there exists an integerk ∈ [2,∞)

such thatPN+kθ0
(D) ∩ PN+1

θ0
(D) ≡ Dk is nonempty, and that its first preimage lies inR2 (cf. the Poincaré recur-

rence Theorem). But, by hypothesis,PNθ0 (D) ⊂ L1,2(1) ⊂ R1, and we have a contradiction. �

In fact, the set of points trapped for all time has the local structure of the product of a Cantor set and an arc, and
the gaps of the Cantor set correspond to orbits which are trapped for a finite number of iterates and then ejected. To
understand this, it is helpful to consider an explicit and completely soluble example based on the standard Smale
horseshoe [16,28]. Fig. 8 shows a mapF defined on the unit squareS = [0,1]× [0,1], with three hyperbolic saddle
points at (0, 0), (0.5, 0.5) and (1, 1).F is piecewise linear on the three horizontal stripsHi , i = A,B,C, whose
images are the vertical stripsVi = F(Hi). Indeed, we choose

DF|HA∪HC =
[
λs 0
0 λu

]
, DF|HB =

[−λs 0
0 −λu

]
, λs <

1

3
, λu > 3. (4.28)
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Fig. 8. A soluble trapping model.

The horizontal stripsH−, H+ are mapped (nonlinearly) into the archesA± = F(H±), andF is extended on the
exterior of the unit square in the following manner. The preimagesF−1(V±) of the vertical stripsV± are defined
to be the archesB±: thus,F acts nonlinearly onB± and the small semicircular regions ‘inside’ them, which are
mapped ‘inside’A±; otherwiseF is affine on the exterior of the squareS, with DF = DF|HA∪HC . We indicate the
action ofF at the top of Fig. 8.

The analogy with the mapping of Fig. 7 is as follows: the saddle points (1, 1) and (0, 0) correspond to the
degenerate equilibria at±∞, the invariant upper right and lower left quadrants ‘outside’ these points are neglected,
and we focus on transport among regionsR1 (upper left),R3 (lower right) andR2 = S (the unit square itself).
The reader can check that the turnstile lobesL1,2(1) = B+, L2,1(1) = H−, L3,2(1) = B− andL2,3(1) = H+ are
as shown and that, in this case, there are also lobesL1,3(1) andL3,1(1), ‘inside’ L1,2(1) andL3,2(1), comprising
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points that jump acrossR2 in one iterate. Once insideF(L2,1(1)) = A− orF(L2,3(1)) = A+, future iterates remain
in R1 orR3 and march off to±∞, as do preimages of points inL3,2(1) andL1,2(1).

We can explicitly compute the sets of points inLi,2(1)∩F−k(L2,j (1)); i, j = 1,3, whose orbits are trapped for
exactlyk iterates before ejection back intoR1 or intoR3. First consider the setsF−1(H±), which, sinceH± each
contain three rectangles contained inVi , are thin S-shaped strips crossingHA, HB andHC and connecting them
via thin arches insideL3,2(1) andL1,2(1). Thus the four components ofLi,2(1) ∩ F−1(L2,j (1)); i, j = 1,3 are
semicircular arches, two each insideL1,2(1) andL3,2(1). Fork > 1 we must compute further preimagesF−k(H±),
but, sinceF is piecewise linear on sets that remain inR2 = S, each component of this is a horizontal strip contained
in HA, HB , or HC . Taking a further preimage of any single component, one finds a thinner arch insideL3,2(1)
or L1,2(1), andLi,2(1) ∩ F−2(L2,j (1)) consists of two thinner arches lying in each of the three components of
Li,2(1)\F−1(L2,j (1)). The setsLi,2(1)∩F−k(L2,j (1)); i, j = 1,3, therefore, each comprise 2×3k arches, which
are the gaps in the iterative construction of a Cantor set ofarcswhich belong toW s(0,0) andW s(1,1), and comprise
the points which are trapped for all time.

The widths of the gap-arches, and hence the probabilities of trapping, are determined by the expansion eigenvalue
λu. Assuming symmetry, the heights ofH± areα=def(λu − 3)/2λu, since each stripHi is stretched by a factorλu

to achieve height 1. Again assuming uniformity in the nonlinear portions ofF , we may compute the desired widths
from the gap widths in a Cantor set in whichtwo gaps of widthα, symmetrically placed, are removed from each
remaining closed interval at each step. Starting with a unit interval, we compute the lengthsL(k) removed at each
step, obtaining

L(k) = 2α(1− 2α)k−1 = λu − 3

λu

(
3

λu

)k−1

. (4.29)

Note that
∑∞
k=1L(k) = 1: as we expect from Proposition 1, the Cantor set itself is of measure zero. Moreover,

plottingL(k) versusk, we obtain the distribution of residence times for trapped orbits as an exponentially decaying
curve. We test this prediction for the model at hand in Section 5.

5. The Poincaré maps

To test the predictions of the transport theory outlined above, we performed the following numerical experiments.
We seeded the turnstile lobeL1,2(1) with 5000 points, computed their orbits underPπ/2 until they leftR2, and
plotted a histogram of residence times (number of iterates spent inR2). We used the same parameter values as in
Fig. 6. Fig. 9 clearly indicates exponential decay, with an exponent−0.038 (the least squares fit is also shown).
Approximately two-thirds (65%) of the orbits pass toR3 and are reflected toX = −∞ and one-third return toR1

and are transmitted toX = +∞.
To investigate the topological structure of the lobe intersections, we took 100 initial conditions along a line

crossingL1,2(1) approximately parallel toWu(X = −∞) and recorded an integerk equal to the number of iterates
the orbit remained inR2, positive integers indicating transmission toR1 and negative, reflection toR3. The resulting
bar graph is shown in Fig. 10. Focusing on the largest ‘gaps’, we note a central set of points withk = 9, and two
flanking sets withk = −3. In general, as for the soluble model of Fig. 8, as gap sizes decrease, residence times
increase.

We note that the turnstile lobes of the stable and unstable manifolds of Figs. 6 and 7 do not ‘intersect cleanly’, as
in the case of Fig. 8 analyzed above: only on and after thethird iterate doesFk(L1,2(1)) intersectWu(X = +∞).
It is this ‘incompleteness’ that leads to the imbalance of points ejected intoR1 andR3: the preimages ofL2,1(1)
andL2,3(1) intersectingL1,2(1) are not of equal areas.
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Fig. 9. A histogram of residence times inR2.

Fig. 10. Evidence for the Cantor set lobe substructure.

6. Coupling to radiation

The system Eq. (2.1) is a dispersive nonlinear partial differential equation whose solutions are composed of
a combination of coherent structures (kinks, defect modes) and dispersive waves. In the model, Eqs. (2.11a)
and (2.11b), we have replaced the infinite dimensional system by a finite dimensional system for the “collective
coordinates”X(t) anda(t) describing the kink location and defect mode amplitude. The system, Eqs. (2.11a) and
(2.11b), is energy conserving, being derived from an effective Lagrangian, Eq. (2.8), which is an approximate finite
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dimensional reduction of the full Lagrangian, Eq. (2.8). This reduction neglects nonlinear coupling to radiation
modes, an infinite dimensional subspace. Such coupling will result in energy exchange between the coherent struc-
tures and the radiation modes. The net effect of coupling to radiation modes appears to be that the subsystem,
approximately governed by Eqs. (2.11a) and (2.11b), experiences dissipation; some of the energy of the kink-defect
mode system is carried off to spatial infinity. This enhances the defect’s capacity for trapping the kink, in a man-
ner analogous to the opening of basins of attraction in the undamped pendulum phase portrait, upon inclusion of
dissipative friction.

A rigorous derivation of the (radiation-induced) dissipative correction to a finite dimensional collective coordinate
equation and infinite time analysis of the full system was implemented in a simpler but closely related problem in
[29]. In the present language, the problem considered there concerned the nonlinear interaction between a single
defect mode and radiation modes for solutions of small norm. To see how we arrive at this correction, we rewrite
Eq. (2.1) as

utt − uxx+ u− εδ(x)u = g(u, x), (6.1)

whereg(u, x) = [1 − εδ(x)](u − sinu). Consider Eq. (6.1) with small amplitude initial data, which decays to
zero as|x| → ∞. Sinceu − sin(u) is cubic inu for smallu, Eq. (6.1) can be viewed as a nonlinear perturbation
of a linear wave equation with a single bound state. This is essentially the question addressed in [29].3 For
small amplitude initial conditions it is natural to decomposeu(x, t) into the bound state and continuous spectral
components associated with the linear problem (2.3) obtained by settingg = 0. Thus, we let

u(x, t) = a(t)ϕ(x)+ η(x, t), 〈ϕ, η(·, t)〉 = 0, (6.2)

whereϕ denotes the normalized defect mode. Substitution of Eqs. (6.1) and (6.2) and projecting onto the defect
mode and its orthogonal complement (the radiation modes) yields a coupled system fora(t) andη(x, t). It is natural
to think of solving forη(·, t) as a functional ofa(t) and then substituting the result into the equation fora(t) to get
a closed equation fora(t), in which the radiative effects are taken into account. This scheme, in the spirit of a center
manifold reduction, can be implemented to high enough order to make explicit the radiation-induced dissipation.η

solves a nonlinear wave equation with a forcing term proportional toa3(t)ϕ3(x), which contains the time-frequency
3Ω. Since continuum frequencies,Ω, satisfyω2 > 1, if the third harmonic lies in the continuous spectrum (3Ω > 1,
corresponding here to 0< ε < 4

√
2/3), then this contribution to the forcing resonates with continuum modes. A

careful calculation of the effect of this resonance [29] leads, after a near-identity change of variables, to adamped
oscillator of the following type,

ä +
(
Ω2+O(|a|2)

)
a = −Γ a4ȧ, (6.3)

whereΓ is generically strictly positive. This is the key to showing that the defect mode, a spatially localized and
time-periodic state for the linear limiting equation, does not persist for the nonlinear problem, but is rathermetastable
and slowly decays to zero.

In the current problem, the solutionu is a spatially localized perturbation of the kink (rather than of the zero
solution). Thus, in place of Eq. (2.6), we set

u = uk + uim + η(t, x), (6.4)

whereη(t, x) denotes the part of the solution consisting of dispersive waves. The same mechanisms described above
are expected to be at work. Formal calculations [31] indicate that the simplest coupling to radiation modes occurs

3 The main differences are that in [29], the wave equation considered was in three space dimensions;εδ(x) is replaced by a smooth potential
with one bound state, andg(u, x) ∼ u3, with no explicit spatial dependence. The methods of [29] can be adapted to the current situation.
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Fig. 11. Output velocityVf vs. input velocityVi in the presence of radiation induced damping, withε = 0.5,Γ = 16. The behavior is simplified
in comparison with Fig. 3: below critical velocity, solutions may be captured, reflected, or transmitted, but the sensitivity to initial conditions is
decreased. For smaller values ofΓ , more reflection and transmission bands survive.

if the second harmonic lies in the continuous spectrum (2Ω > 1 or ε <
√

3). Formal inclusion of the damping
correction arising from this resonance in the system Eqs. (2.11a) and (2.11b) yields a reduced system of the form

8Ẍ + U ′(X)+ aF ′(X) = 0 (6.5a)

ä +Ω2a + 1
2εF (X) = −ε3Γ F(X)2a2ȧ (6.5b)

whereΓ > 0.
In Fig. 11, we show the analog of Fig. 2 with the nonlinear damping of Eq. (6.5b) active withε = 0.5 and

Γ = 16. In the presence of damping, the output velocity is a much less sensitively dependent function of the input
velocity than in the case without damping. In this case, below the critical velocityvc, many trajectories are captured,
except for a few intervals, most of which lead to reflection, as in Fig. 2. The incorporation of radiation damping
effects present in the full dynamical system “smoothes out” the dynamics; many reflection resonance bands and
most transmission bands appear to be eliminated. For smallerΓ values, more reflection and transmission bands
survive, while for higherΓ , fewer transmission bands survive.

The Hamiltonian reduction of Section 4.2 can no longer be used directly, since the damping term of Eq. (6.5b) leads
to decay ofH , and an evolution equation forH must be added to the reduced system Eq. (4.22) (the flow of Eqs. (6.5a)
and (6.5b) is volume-contracting, and the fixed point at the origin becomes a (degenerate) sink). However, much as
in [17], Section 5, we may conclude that “ghost horseshoes” persist for smallΓ . In particular, since|F(X)| → 0 as
|X| → ∞, all the degenerate periodic orbitsγh0 at infinity survive, along with their stable and unstable manifolds
W s,u(γh0). The unions of such manifoldsUs,u = ∪h0∈(0,hmax)W

s,u(γh0)are three-dimensional. One may now define a
three-dimensional cross sectionΣ ′ = {(X, pX,H, θ = θ0)} and conclude thatUs,u intersectΣ ′ in two-dimensional
surfaces: essentially, one has a stack of copies of Fig. 6. The Melnikov computation and arguments of Section 4.3
guarantee that, for smallΓ  µ, these surfaces still intersect transversally, although orbits of the Poincaré map now
lose energy, and hence move in the direction of decreasingH . In particular, three-dimensional analogs of the lobes
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and turnstiles of Fig. 7 persist, albeit they are now “invaded” by the stable manifold of the origin. Orbits exhibiting
transient chaos and escape via transmission or reflection (withH → constant as|X| → ∞) persist, but now the set
of captured orbits has strictly positive measure, since the flow is volume-contracting.

7. Discussion and conclusions

In this study, we have examined a model of kink-defect interactions in the sine-Gordon equation. We use the
model’s Hamiltonian structure to give a rather complete characterization of the dynamics. We demonstrate that
a soliton propagating toward a defect may oscillate around the defect any integer number of times before being
ejected, either in the original direction or in the opposite direction, and propagating off to infinity, leaving some of
its energy in the stationary defect mode. This behavior is governed by phase-space transport in thePoincaré mapof
the system, which exhibits sensitive dependence on initial conditions and chaotic behavior. The initial conditions
leading to differing behaviors are intricately interwoven. It also shows that capture of kinks for all positive times
can only occur for measure-zero sets of initial conditions. A comparison is made with a horseshoe map, for which
a complete description of the behavior is given, and we show numerically that the dynamics show similar statistical
behavior to those of the horseshoe map.

This contrasts strongly with numerical simulations of the full sine-Gordon equations [11], and with our own
numerical results on equations Eqs. (6.5a) and (6.5b) in the presence of a damping term. In both of these cases,
the dynamics is much simpler. The strong interlacing of behavior regimes is replaced by a simpler condition:
kinks moving above a critical velocity escape, those below that velocity are captured, except in a few resonance
bands, where kinks are reflected. Two questions of interest are the following: (1) Can one obtain a more detailed
understanding of how the addition of dissipation alters the Hamiltonian dynamics than that sketched at the end of
Section 6? (2) Can an effective dissipation law due to nonlinear resonant coupling to radiation be rigorously derived?

The study of capture orbits in Hamiltonian dynamical systems has its origins in celestial mechanics. The general
problem is as follows: do there exist collisionless solutions to then-body problem for which the interparticle
distances are bounded for all positive times, but for which some or all of the interparticle distances diverge as
t → −∞. Littlewood [20] proved that such a set has measure zero (cf. Siegel and Moser [27], Section 37). More
precisely ([20], Theorem 2), almost all points in the set of collisionless solutions bounded ast →+∞ also belong
to the set of solutions bounded ast → −∞. Specific examples of such solutions for the three-body problem, with
suitable restrictions on the masses, are described by Alekseev [1]. As in the problem we study, a variation on the
Poincaré recurrence theorem shows that capture orbits occupy a set of measure zero.

A generalization of interest is when the defect is not aδ-function, but of nonzero spatial extent. We have studied this
question in the context of gap soliton capture in the nonlinear coupled mode equations (NLCME) [14]. In detailed
numerical experiments, we find many possible interactions between the pulse and the defect mode, including
reflection, transmission, capture, and additional regimes where the pulse is destroyed by its interaction with the
defect. Capture depends on resonance between the incoming gap soliton and an energetically accessiblenonlinear
defect mode“pinned” at the defect. We are currently investigating a similar mechanism for nonlinear Schrödinger
equations, and its connection with finite dimensional models of the type studies here.
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Appendix A. McGehee’s stable manifold theorem

For completeness, we state the stable manifold theorem for degenerate maps proved in [22], Theorem 1. Let
B(β, δ) denote the sector centered on the positiveξ -axis:

B(β, δ) = {(ξ, η) ∈ R2 : 0 ≤ ξ ≤ δ, |η| ≤ βξ},
andA+( f, B) denote the positively invariant set (=stable manifold) restricted toB:

A+( f, B) = {(ξ, η) ∈ B : f k(ξ, η) ∈ B ∀k > 0, f k(ξ, η)→ (0,0), ask→∞}.

Theorem 2. Let f: R2→ R2 be real analytic and of the form

f := id+ p+ r, (A.1)

whereid is the identity,p = (p1, p2) is a homogeneous polynomial of degreen ≥ 2, and r consists of terms of
degree at leastn+ 1. Suppose further that, forξ > 0:

p1(ξ,0) < 0, p2(ξ,0) = 0,
∂p2

∂η
(ξ,0) > 0. (A.2)

Then there exist positive constantsβ andδ such thatA+( f, B) is the graph of a differentiable functionφ : [0, δ] �→
R1. Furthermoreφ|(0,δ] is real analytic.

The unstable manifold is treated by considering the inverse mapf−1.

Appendix B. Proof of claim of Section 4.3

The proof proceeds in two steps. First we examine the direction of the vector field of Eqs. (4.1a) and (4.1b)
through a certain hypersurface in the phase space. We then show that trajectories with sufficiently large initial kink
velocityY0 = pX(0)/8 cannot cross this hypersurface, which gives a lower bound on the velocity of the kink.

Let

F = −4
√

2ε sechX + pX −
√

2εC, (B.1)

so thatF = 0 defines a hypersurfaceM in the four-dimensional phase space at a distanceC above the separatrix
from the uncoupled (µ = 0) system. A trajectory of Eqs. (4.1a) and (4.1b) starting aboveM cannot crossM at
points where the vector field points upward throughM, i.e. where

∇F · #v|F=0 ≥ 0, (B.2)

where#v is the Hamiltonian vector field defined by Eqs. (4.19a)–(4.19d). The inner product is given by

∇F · #v = 4
√

2ε sechX tanhX · 1
8pX|pX=√2ε(C+4sechX) − U ′(X)− µaF ′(X)

= 2εsechX

(
C

2
tanhX − µa(1− 2sech2X)

)
. (B.3)
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We may show that this is positive if and only if

e2X
(

1
2C − µa

)
− e−2X

(
1
2C + µa

)
+ 6µa > 0. (B.4)

We consider the evolution of Eqs. (4.1a) and (4.1b) with initial conditions

(X, pX, a, pa) = (0, pX(0),0, pa(0)) (B.5)

and show that forpX(0) sufficiently large, the trajectory cannot crossM. First we bound the growth rate ofI and
use this to give lower bounds forpX andX for (small) finite times. We boundI using Eq. (4.19c) and the fact that
| sinθF (X) ≤ 1,

√
I (t) ≤

√
I (0)+ εµ

√
ε

Ω
t. (B.6)

Using this bound on
√
I , then for fixedT and 0≤ t ≤ T

pX(t) ≥ p∗X = pX(0)− 2ε

((
2+ µ

√
εI (0)

µ

)
T + ε

2µ2

2Ω
T 2

)
, (B.7)

andp∗X can be made as large as we need by suitable choice ofpX(0). It follows from Eq. (4.19a) that

X(t) ≥ 1
8p
∗
Xt. (B.8)

Therefore, by choosingpX(0) sufficiently large, we may force the dynamics to evolve such thatX(T ) reaches
any chosen value ofX∗ > 0. In particular, we may assume thatX(T ) reaches the valueX = 1 whilepX > p∗X
remains strictly positive. We may thus restrict our attention to the direction of#v alongM in the regionX ≥ 1. From
Eq. (B.4), we determine that the vector field points upward throughM as long as

C >
2

1− e−4
µa

def=Bµa. (B.9)

We now use the bounds onpX andX to give better control ofI and hencea. As long aspX > 0, we may use the
relation

d

dt
= pX

8

d

dX

to write the evolution equation forI as

pX

8

dI

dX
= µ

√
Iε

Ω
sinθF (x) (B.10)

so that√
I (t) ≤

√
I (0)+ 4µ

√
ε

Ω

∫ X

0

|F(X)|
pX

dX. (B.11)

As long aspX ≥ p∗X, usingF(X) = −2ε sechX tanhX, this gives

√
I (t) ≤

√
I (0)+ 8µε

p∗X

√
ε

Ω
. (B.12)

With all these pieces we may now prove the claim. GivenC > 0, ε ∈ (0,2), µ ∈ (0,1), andT , choosepX(0) such
that

pX(t) ≥ p∗X ≥
√

2ε(C + 4sech 1) > 0 ∀t ∈ [0, T ] (B.13)
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and X(T ) ≥ 1
8p
∗
XT ≥ 1. (B.14)

Therefore, the trajectory lies aboveM in the phase space atX = 1. We claim that the above choices ofC > 0 and
pX(0) may be made such that

Ẋ = 1
8pX ≥ 1

8

√
2ε(C + 4sechX) ≥ 1

8

√
2εC

and hence, the solution escapes to+∞.
Supposes that this fails, and the trajectory crossesM atX = X1 > 1, thenX continues to increase until this

time and

pX ≥
√

2ε(C + 4sechX) ≥
√

2εC,

so that, by Eq. (B.12),

√
I (t) ≤

√
I (0)+ 8µε√

2εC

√
ε

Ω

and, by Eq. (4.15)

a ≤
√
εI (0)

Ω
+ 8µε2

√
2εΩC

. (B.15)

Because, by inequality Eq. (B.9), a trajectory cannot crossM whenC > Bµa, at the crossing, we must have
C ≤ Bµa. Combining this with Eq. (B.15) yields

C ≤ Bµ
(√

εI (0)

Ω
+ 8µε2

√
2εΩC

)
⇒ C2 ≤ Bµ

(√
εI (0)

Ω
C + 8µε2

√
2εΩ

)
. (B.16)

If C andpX(0)are chosen sufficiently large, however, inequality Eq. (B.16) cannot hold, and we have a contradiction.
Therefore, givenpa(0) (i.e. givenI (0)), it is possible to choosepX(0) sufficiently large such that for initial conditions
(0, pX(0),0, pa(0)), the solution escapes to infinity at a nonzero rate.

References

[1] V.M. Alekseev, On the possibility of capture in the three-body problem with a negative value for the total energy constant, Uspehi Mater.
Nauk 24 (1969) 185–186.

[2] B. Birnir, Chaotic perturbations of KdV equations. I. Rational solutions, Physica D 18 (1986) 464–466.
[3] B. Birnir, Chaotic perturbations of KdV: Rational solutions, Physica D 19 (1986) 238–254.
[4] D.K. Campbell, M. Peyrard, Kink–antikink interactions in the double sine-Gordon equation, Physica D 19 (1986) 165–205.
[5] D.K. Campbell, M. Peyrard, Solitary wave collisions revisited, Physica D 18 (1986) 47–53.
[6] D.K. Campbell, J.S. Schonfeld, C.A. Wingate, Resonance structure in kink–antikink interactions inφ4 theory, Physica D 9 (1983) 1–32.
[7] X.D. Cao, B.A. Malomed, Soliton-defect collisions in the nonlinear Schrödinger equation, Phys. Lett. A 206 (1995) 177–182.
[8] H. Dankowicz, P. Holmes, The existence of transverse homoclinic points in the Sitnikov problem, J. Diff. Equat. 116 (1995) 468–483.
[9] C.M. de Sterke, J.E. Sipe, Envelope-function approach for the electrodynamics of nonlinear periodic structures, Phys. Rev. A 38 (1988)

5149–5165.
[10] Z. Fei, Y.S. Kivshar, L. Vázquez, Resonant kink-impurity interactions in theφ4 model, Phys. Rev. A 46 (1992) 5214–5220.
[11] Z. Fei, Y.S. Kivshar, L. Vázquez, Resonant kink-impurity interactions in the sine-Gordon model, Phys. Rev. A 45 (1992) 6019–6030.
[12] K. Forinash, M. Peyrard, B. Malomed, Interaction of discrete breathers with impurity modes, Phys. Rev. E 49 (1994) 3400–3411.
[13] H. Goldstein, Classical Mechanics, 2nd Edition, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Reading, MA, 1980.
[14] R.H. Goodman, R.E. Slusher, M.I. Weinstein, Stopping light on a defect, J. Opt. Soc. Am. B, 2001 (submitted for publication).
[15] R.H. Goodman, M.I. Weinstein, P.J. Holmes, Nonlinear propagation of light in one-dimensional periodic structures, J. Nonlinear Sci. 11

(2001) 123–168.



44 R.H. Goodman et al. / Physica D 161 (2002) 21–44

[16] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York,
1983.

[17] P. Holmes, J.E. Marsden, Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom, Commun. Math. Phys. 82
(1982) 523–544.

[18] Y. Kivshar, private communication.
[19] Y.S. Kivshar, Z. Fei, L. Vázquez, Resonant soliton-impurity interactions, Phys. Rev. Lett. 67 (1991) 1177–1180.
[20] J.E. Littlewood, On the problem ofn bodies, Comm. Sém. Math. Unvi. Lund [Medd. Lunds Univ. Mat. Sem.], Tome Supplémentaire, 1952

(1952) 143–151.
[21] R. MacKay, J. Meiss, I. Percival, Transport in Hamiltonian systems, Physica D 13 (1984) 55–81.
[22] R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Diff. Equat. 14 (1973)

70–88.
[23] D.W. McLaughlin, A.C. Scott, Perturbation analysis of fluxon dynamics, Phys. Rev. A 18 (1978) 1652–1680.
[24] V.K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963) 1.
[25] M. Peyrard, D.K. Campbell, Kink–antikink interactions in a modified sine-Gordon model, Physica D 9 (1983) 33–51.
[26] V. Rom-Kedar, S. Wiggins, Transport in two-dimensional maps, Arch. Rational Mech. Anal. 109 (1990) 239–298.
[27] C.L. Siegel, J.K. Moser, Lectures on Celestial Mechanics, in: C.I. Kalme (Ed.), Die Grundlehren der mathematischen Wissenschaften,

Band 187, Springer-Verlag, New York, 1971.
[28] S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967) 747–817.
[29] A. Soffer, M.I. Weinstein, Resonances and radiation damping in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999) 9–74.
[30] D.M.A. Stuart, Perturbation theory of kinks, Commun. Math. Phys. 149 (1992) 433–462.
[31] M.I. Weinstein, unpublished note.
[32] M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (3) (1985) 472–491.
[33] S. Wiggins, Chaotic Transport in Dynamical Systems, Springer-Verlag, New York, 1992.


	Interaction of sine-Gordon kinks with defects: phase space transport in a two-mode model
	Introduction and motivation
	The model
	A heuristic trapping argument
	Dynamical systems analysis
	Preliminary analysis: symmetries, fixed points, and invariant manifolds
	Reduction, Poincaré maps and homoclinic points
	Persistence of homoclinic orbits to mu=1
	Phase space transport and lobe dynamics

	The Poincaré maps
	Coupling to radiation
	Discussion and conclusions
	Acknowledgements
	McGehee's stable manifold theorem
	Proof of claim of Section 4.3
	References


