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a b s t r a c t

We formulate a stochastic least-action principle for solutions of the incompressible Navier–Stokes
equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the
case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem
for the Navier–Stokes equation, recently established by Constantin and Iyer, which shows that this
stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues
of irreversibility, energy dissipation, and the inviscid limit of Navier–Stokes solutions in the framework
of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin
Theorem with our previous ‘‘martingale hypothesis’’ for fluid circulations in turbulent solutions of the
incompressible Euler equations.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Alternative formulations of standard equations can be very
illuminating and can cast new light on old problems. As just
one example, consider how Feynman’s path-integral solution
of the Schrödinger equation enabled intuitive new approaches
to difficult problems with many degrees-of-freedom, such as
quantum electrodynamics and superfluid helium. In this same
spirit, many different mathematical formulations have been
developed for the equations of classical hydrodynamics, both
ideal and non-ideal. Recently, Constantin and Iyer [1] have
presented a very interesting representation of solutions of
the incompressible Navier–Stokes equation by averaging over
stochastic Lagrangian trajectories in the Weber formula [2] for
incompressible Euler solutions. Their formulation is a nontrivial
application of themethod of stochastic characteristics, well known
in pure mathematics [3] (Chapter 6), in theoretical physics [4,5]
and in engineering modeling [6,7]. The characterization of the
Navier–Stokes solutions in [1] is through a nonlinear fixed-point
problem, since the velocity field that results from the average over
stochastic trajectories must be the same as that which advects the
fluid particles. Constantin and Iyer have shown that their stochastic
representation implies remarkable properties of Navier–Stokes
solutions in close analogy to those of ideal Euler solutions, such as
a stochastic Kelvin Theorem for fluid circulations and a stochastic
Cauchy formula for the vorticity field.
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In this paper, we point out some further remarkable features
of the stochastic Lagrangian formulation of [1]. Most importantly,
we show that the nonlinear fixed-point problem that characterizes
the Navier–Stokes solution is, in fact, a variational problem
which generalizes the well-known Hamilton–Maupertuis least-
action principle for incompressible Euler solutions [8]. We
shall demonstrate this result by a formally exact calculation,
at the level of rigor of theoretical physics. A more careful
mathematical proof, with the set-up of relevant function spaces,
precise definitions of variational derivatives, etc. shall be given
elsewhere. Closely related stochastic variational formulations of
incompressible Navier–Stokes solutions have been developed
recently by others [9–11] and a detailed comparison with these
approaches will also be made in future work.
Our variational formulation sheds some new light on a basic

proposition of [1], the stochastic Kelvin Theorem which was
established there for smooth Navier–Stokes solutions at any finite
Reynolds number. We show that this result is a consequence of
particle-relabelling symmetry of our stochastic action functional
for Navier–Stokes solutions, in the same manner as the usual
Kelvin Theorem arises from particle-relabelling symmetry of the
standard action functional for Euler solutions [8]. This result
strengthens the conjecture made by us in earlier work [12,13] that
a ‘‘martingale property’’ of circulations should hold for generalized
solutions of the incompressible Euler equations obtained in the
zero-viscosity limit. Indeed, the stochastic variational principle for
Navier–Stokes solutions considered in the present work is very
closely similar to a stochastic least-action principle for generalized
solutions of incompressible Euler equations that was developed
by Brenier [14–16]. One of the arguments advanced for the
‘‘martingale property’’ in [12] was particle-relabelling symmetry
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in a Brenier-type variational formulation of generalized Euler
solutions. That argument, however, did not distinguish an arrow
of time, so that fluid circulations might satisfy the martingale
property either forward or backward in time. It was subsequently
argued in [13] that the backward-martingale property is the
correct one, consistent with time-irreversibility in the limit
of vanishing viscosity. The present work shows that a small
but positive viscosity indeed selects the backward martingale
property, as expected for a causal solution.

2. The action principle

The action principle formulated here for Navier–Stokes solu-
tions involves stochastic flows [3]. The relevant flows are those
which solve a backward Ito equation:{
d̂tx$ (a, t) = u$ (x$ (a, t), t)dt +

√
2νd̂W$ (t), t < tf

x$ (a, tf ) = a. (1)

HereW$ (t), t ∈ [t0, tf ] is a d-dimensional Brownian motion on a
probability space (Ω, P,F ) which is adapted to a two-parameter
filtration F t ′

t of sub-σ -fields of F , with t0 ≤ t < t
′
≤ tf . Thus,

W$ (s) − W$ (s′) is F t ′
t -measurable for all t ≤ s < s

′
≤ t ′. The

constant ν that appears in the amplitude of the white-noise term
in the SDE (1) will turn out to be the kinematic viscosity in the
Navier–Stokes equation. Note that, for such an additive noise as
appears in (1), the (backward) Ito and Stratonovich equations are
equivalent.
In order to describe the space of flow maps which appear

in the action principle, we must make a few slightly technical,
preliminary remarks. The random velocity field u$ (r, t) in Eq. (1)
is assumed to be smooth and, in particular, continuous in time,
as well as adapted to the filtration F

tf
t , t < tf backward in

time. It then follows from standard theorems (e.g. see Corollary
4.6.6 of [3]) that the solution x$ (a, t) of (1) is a backward semi-
martingale of flows of diffeomorphisms. Conversely, any backward
semi-martingale of flows of diffeomorphisms has a backward
Stratonovich random infinitesimal generator F̊$ (r, t) which is
a spatially-smooth backward semi-martingale (e.g. see Theorem
4.4.4 of [3]). The class of such flows forwhich themartingale part of
the generator is

√
2νW$ (t) and for which the bounded-variation

part of the generator is absolutely-continuous with respect to dt
coincides with the class of solutions of equations of form (1), for
all possible choices of u$ (r, t). Clearly, the random fields u$ (r, t)
and x$ (a, t) uniquely determine each other. We consider here
the incompressible case, where u$ (r, t) is divergence-free and
x$ (a, t) is volume-preserving a.s.
The action is defined as a functional of the backward-adapted

random velocity fields u$ (r, t)—or, equivalently, of the random
flow maps x$ (a, t)—by the formula

S[x] =
∫
P(d$)

∫ tf

t0
dt
∫
ddr
1
2
|u$ (r, t)|2 (2)

when this is well defined and as +∞ otherwise. The variational
problem (VP) is to find a stationary point of this action such that
x$ (a, tf ) = a and x$ (a, t0) = ϕ$ (a) for P− a.e. $ , where ϕ$ (a)
is a given random field of volume-preserving diffeomorphisms
of the flow domain. It is interesting that this problem is very
similar to that considered by Brenier [14–16] for generalized Euler
solutions. The above problem leads instead to the incompressible
Navier–Stokes equation, in the following precise sense:

Proposition 1. A stochastic flow x$ (a, t) which satisfies both the
initial and final conditions is a solution of the above variational prob-
lem if and only if u$ (r, t) solves the incompressible Navier–Stokes
equation with viscosity ν > 0

∂tu$ + (u$ ·∇)u$ = −∇p$ + ν∆u$ , P-a.s. (3)
where kinematic pressure p$ is chosen so that ∇·u$ = 0.
Proof. Making a variation δu$ (r, t) in the random velocity field,
the Eq. (1) becomesd̂tδx

$ (a, t)
= [δx$ (a, t)·∇ru$ (x$ , t)+ δu$ (x$ , t)]dt, t < tf

δx$ (a, tf ) = 0.
(4)

Since the VP requires that x$ (a, t0) = ϕ$ (a), one can only
consider variations such that, also, δx$ (a, t0) = 0. (We shall
consider below an alternative approachwith a Lagrangemultiplier
that permits unconstrained variations.) This equation may also be
written as

d̂tδx$ (a, t)− (∇ru$ (x$ , t))>δx$ (a, t)dt
= δu$ (x$ , t)dt (5)

for t < tf and then easily solved by Duhamel’s formula (backward
in time) to give δx$ (a, t) in terms of δu$ (r, t). Since the
martingale term vanished under variation, the process δx$ (a, t)
is of bounded variation and clearly adapted to the backward
filtration F

tf
t , t < tf . Conversely, any such flow variation

will determine the corresponding velocity variation δu$ (r, t) by
Eq. (5) directly. Lastly, note that the volume-preserving condition
det(∇ax$ (a, t)) = 1 becomes

∇r ·δx$ (a$ , t) = 0 (6)

under variation, where a$ (r, t) is the ‘‘back-to-labels’’ map
inverse to the flow map x$ (a, t). Because these maps are
diffeomorphisms, we see that the Eulerian variation of the flow
map, δx̄$ (r, t) ≡ δx$ (a$ (r, t), t), is an arbitrary divergence-free
field.
With these preparations, we obtain for the variation of the

action (2):

δS[x] =
∫
P(d$)

∫ tf

t0
dt
∫
ddr u$ (r, t)·δu$ (r, t)

=

∫
P(d$)

∫
dda

∫ tf

t0
u$ (x$ (a, t), t)

·

[
d̂tδx$ (a, t)− δx$ (a, t)·∇ru$ (x$ , t)dt

]
= −

∫
P(d$)

∫
dda

∫ tf

t0

[
d̂tu$ (x$ , t)

+∇r

(
1
2
|u$ |2

)∣∣∣∣
x$
dt
]
·δx$ (a, t). (7)

In the second line we employed (5). In the third line we integrated
by parts, using the facts that δx$ (a, tf ) = δx$ (a, t0) = 0 and
that δx$ (a, t) is a bounded-variation process, so that the quadratic
variation vanishes: d̂t〈u$ (x$ , t), δx$ (a, t)〉 = 0. We note that
the final gradient term vanishes, because δx̄$ (r, t) is divergence-
free. We can evaluate the remaining term using the chain rule

d̂tu$ (x$ , t)

= ∂tu$ (x$ , t)dt + (x$ (a, ◦d̂t)·∇)u$ (x$ , t), (8)

in terms of the backward Stratonovich differential. This result can
also be written using Ito calculus. Calculating from (1) and (8) the
quadratic variation
√
2νd̂t〈W$

j (t), ∂xju
$ (x$ , t)〉 = 2ν∆u$ (x$ , t)dt,

one obtains the backward Ito equation

d̂tu$ (x$ , t) = [∂tu$ + (u$ ·∇)u$ − ν∆u$ ](x$ , t)dt

+
√
2ν(d̂W$ (t)·∇)u$ (x$ , t). (9)
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A crucial point is that the martingale part of (9) vanishes when the
expression is substituted back into (7), since both (∇u$ )(x$ , t)
and δx$ (a, t) are adapted to the backward filtration F

tf
t , t < tf .

Thus, the final result is

δS[x] =
∫
P(d$)

∫ tf

t0
dt
∫
ddr [∂tu$ + (u$ ·∇)u$

− ν∆u$ ] (r, t)·δx̄$ (r, t). (10)

Since the integrands are smooth in space and continuous in time
and since the flow variation is an arbitrary divergence-free field,
the theorem statement follows. �

There are alternative formulations of the VP which should
be mentioned. Rather than performing the variation with the
constraint x$ (a, t0) = ϕ$ (a), one can instead modify the action
with a Lagrange multiplier term:

S ′[x, v0] = S[x]

+

∫
P(d$)

∫
dda v$0 (a)·[x

$ (a, t0)− ϕ$ (a)]. (11)

Varying with respect to the Lagrange multiplier v$0 yields the
constraint, whereas an unconstrained variation with respect to x$
yields

δS ′[x, v0] =
∫
P(d$)

∫ tf

t0
dt
∫
ddr [∂tu$ + (u$ ·∇)u$

− ν∆u$ ] (r, t)·δx̄$ (r, t)+
∫
P(d$)

×

∫
dda [v$0 (a)− u$ (x$ (a, t0), t0)]·δx$ (a, t0). (12)

The second term on the righthand side arises partly from
the Lagrange multiplier term and partly from integration-by-
parts in time. It follows that v$0 (a) can be identified as the
Lagrangian fluid velocity at the initial time t0 and, likewise,
u$0 (r) = v$0 ((ϕ

$ )−1(r)) is the Eulerian fluid velocity at time
t0. Another alternative is to add a Lagrange multiplier term∫
P(d$)

∫ tf
t0
dt
∫
ddaπ$ (a, t) ln det(∇ax$ (a, t)) for the incom-

pressibility constraint and to allow variations over flows which
are not volume-preserving. In that case π$ (a, t) is the Lagrangian
pressure field and p$ (r, t) = π$ (a$ (r, t), t) is the Eulerian
pressure.
There are several mathematical questions that deserve to be

pursued. Some technical issues remain, e.g. the precise degree of
smoothness of solutions required to make the above argument
fully rigorous, etc. It would also be very interesting to know under
what conditions the solution of the VP corresponds to a minimum
of the action and not just a stationary point. Although we have
characterized the solutions of the VP, we have not proved either
their existence or their uniqueness. We just remark on the latter
point that a unique stationary point certainly exists if the initial
velocity u0(r) is deterministic and if the Navier–Stokes equation
has a unique solution u(r, t) over the time interval [t0, tf ] for
that initial datum. This will be the case, for example, if the initial
velocity is smooth enough and the Reynolds number Re = UL/ν is
low enough. In that case, the solution of the VP is also deterministic
and is given by the corresponding Navier–Stokes solution.

3. The Stochastic Kelvin Theorem

We nowmention a closely related result of [1]:

Proposition 2 (Constantin & Iyer [1]). The following two properties
for a divergence-free velocity field u(r, t) are equivalent: (i) For all
closed, rectifiable loops C and for any pair of times t0 ≤ t < t ′ ≤ tf ,
∮
C
u(a, t ′)·da =

∫
P(d$)

[∮
x$
t′,t
(C)

u(r, t)·dr

]
, (13)

where x$t ′,t(a) are the stochastic backward flows which solve Eq. (1)
with velocityu(r, t) for times t < t ′with final condition x$t ′,t ′(a) = a;
and, (ii) the velocityu(r, t) satisfies the incompressible Navier–Stokes
equation over the time interval [t0, tf ].

This is just a slight restatement of Theorem 2.2 and Proposition
2.9 of [1]. The result (13) is a stochastic version of the Kelvin
Theorem on conservation of circulations for incompressible
Euler solutions. Although circulations are not conserved for
Navier–Stokes solutions in the usual sense, (13) states that
circulations on loops advected by the stochastic Lagrangian
flow are a martingale backward in time. This property of the
Navier–Stokes solutions is closely related to the ‘‘martingale
conjecture’’ of Eyink [12] for generalized Euler solutions obtained
in the limit ν → 0. This connection will be discussed in detail in
the next section.
It is well known that the Kelvin Theorem for incompressible

Euler equations can be derived by the least-action principle as
a consequence of an infinite-dimensional symmetry [8], called
‘‘particle-relabelling symmetry’’ and corresponding to the group
of volume-preserving diffeomorphisms of the flow domain. This
may be done by applying the general Noether Theorem relating
symmetries and conservation laws. In this section, we shall show
that the result of Proposition 2 can be similarly derived from
the stochastic action principle of Section 1 as a consequence
of particle-relabelling symmetry. We shall not make use of the
Noether Theorem but, following Salmon [8], shall instead employ
a more direct method of Lanczos [17] based on time-dependent
symmetry transformations.
Suppose given a smooth 1-parameter family {ϕ(a, t), t ∈

[t0, tf ]} of volume-preserving diffeomorphisms satisfying ϕ(a, tf )
= ϕ(a, t0) = a. Then any incompressible flow x(a, t) may be
deformed into another such flow

xϕ(a, t) ≡ x(ϕ(a, t), t) (14)

with initial and final values the same. It follows furthermore from
(14) by chain rule that

d̂txϕ(a, t) = d̂tx(ā, t)+ (ϕ̇(a, t)·∇ā)x(ā, t)dt, (15)

for ā = ϕ(a, t). If x$ (a, t) is the solution of the stochastic equation
(1), then (15) implies thatx$φ (a, t) also satisfies (1) for themodified
velocity field

u$φ (r, t) = u$ (r, t)+ (ϕ̇(a$ , t)·∇ā)x$ (ā$ , t), (16)

where we employ the shorthands a$ = a$ (r, t) and ā$ =
ϕ(a$ (r, t), t). It is easy to see from (16) that u$φ (r, t) is adapted to
the backward filtration F

tf
t , t < tf whenever the original velocity

u$ (r, t) is adapted.
In infinitesimal form, ϕ(a, t) = a + εg(a, t) + O(ε2) with

∇a·g(a, t) = 0 and g(a, tf ) = g(a, t0) = 0. Formula (16) then
yields the velocity variation

δu$ (r, t) = ε(ġ(a$ , t)·∇a)x$ (a$ , t)+ O(ε2). (17)

The corresponding variation of the action is thus [see the first line
of (7)]:

0 = δS[x]

= ε

∫
P(d$)

∫ tf

t0
dt
∫
ddaġ(a, t)·w$ (a, t)+ O(ε2), (18)

wherew$ (a, t) is the stochastic Weber velocity [1,2,8]

w$ (a, t) = ∇ax$ (a, t)·u$ (x$ (a, t), t). (19)
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We can conclude that the O(ε) variation in (18) must vanish
for any smooth divergence-free function g(a, t) with g(a, tf ) =
g(a, t0) = 0. Taking limits of such functions, onemay approximate
a divergence-free distribution of the form

gC,t,t ′(a, τ ) = χ[t ′,t](τ )
∮
C
δd(a− a′) da′ (20)

for any closed, rectifiable loop C and any tf > t ′ > t > t0.
Here χ[t,t ′](τ ) is the characteristic function of the interval [t, t ′]
and δd(a−a′) is the Dirac delta-distribution. If we use the property
of the Weber velocity that∮
C
w$ (a′, t)·da′ =

∮
x$ (C,t)

u$ (r, t)·dr, (21)

it then follows that∫
P(d$)

∮
x$ (C,t ′)

u$ (r, t ′)·dr

=

∫
P(d$)

∮
x$ (C,t)

u$ (r, t)·dr, (22)

for any tf > t ′ > t > t0. Taking the limit t ′ → tf allows
us to identify the above constant average as

∮
C u(r, tf )·dr with

u(r, t) =
∫
P(d$)u$ (r, t), since x$ (a, tf ) = a P-a.s. When the

velocity field that solves the VP is deterministic, i.e. corresponds to
a unique Navier–Stokes solution u(r, t), then this result gives the
statement (13) of Proposition 2 for the special case where t ′ = tf .
However, the VP may be applied not only over the entire interval
[t0, tf ], but over any subinterval [t, t ′] as well and this yields the
general case.

4. Irreversibility and the zero-viscosity limit

At first sight, it is strange to obtain thedissipativeNavier–Stokes
equation from a principle of least-action, which ordinarily leads
to time-reversible equations. There is no paradox, however, since
an ‘‘arrow-of-time’’ is built into the stochastic action principle of
Section 1. We may say that this is a causal variational principle,
since labels are assigned at the final time and variations are over
prior histories. The VPmay be recast instead to be anti-causal, with
fluid particle labels assigned at the initial time t0 and with flow
maps solving a forward Ito equation:{
dtx$ (a, t) = u$ (x$ (a, t), t)dt +

√
2ν dW$ (t), t > t0

x$ (a, t0) = a. (23)

The random velocity field u$ (r, t) must now be adapted to the
forward filtration F t

t0 , t > t0. An exact analogue of Proposition 1
holds, but with the conclusion that the velocity must satisfy

∂tu$ + (u$ ·∇)u$ = −∇p$ − ν∆u$ , P-a.s. (24)

or the negative-viscosity Navier–Stokes equation. An analogue of
Proposition 2 also holds, in the form∮
C
u(a, t ′)·da =

∫
P(d$)

[∮
x$
t′,t
(C)

u(r, t)·dr

]
,

t0 ≤ t ′ < t ≤ tf , (25)

with circulations at the present time given anti-causally as
averages over future values. The process of circulations in this case
is a forward martingale. The proofs of all of the above statements
follow by straightforwardmodifications of the previous arguments
for the causal case.
Conservation of energy is another property of Hamiltonian

systems derived from the least-action principle, as a consequence
of time-translation invariance. For example, consider a standard
incompressible Euler fluid, with the action functional

S[x] =
1
2

∫ tf

t0
dt
∫
ddr |u(r, t)|2. (26)

Following the procedure of Lanczos [17], one considers an arbitrary
increasing function τ(t) on the interval [t0, tf ], with τ(t0) = t0 and
τ(tf ) = tf , and defines a modified flow

xτ (a, t) = x(a, τ (t)). (27)

When ẋ(a, t) = u(x(a, t), t), then xτ (a, t) satisfies the analogous
equation with

uτ (r, t) = τ̇ (t)u(r, τ (t)). (28)

In an infinitesimal form, τ(t) = t + εδ(t) + O(ε2) with
δ(tf ) = δ(t0) = 0, corresponding to a time-translation by a time-
dependent shift. The variation in the velocity resulting from (28)
is δu(r, t) = (d/dt)[δ(t)u(r, t)], which implies a variation of the
action

δS[x] =
∫ tf

t0
dt δ̇(t)

∫
ddr
1
2
|u(r, t)|2. (29)

From the stationarity of the action it follows that kinetic energy
E(t) = 1

2

∫
ddr |u(r, t)|2 is conserved.

This argument is not valid, however, for the stochastic action
principle of Section 1. Indeed, if x$ (a, t) solves the stochastic
equation (1) for backward Lagrangian trajectories, then the time-
reparameterized flow (27) satisfies

d̂tx$τ (a, t) = u$τ (x
$
τ (a, t), t)dt +

√
2ντ̇ (t) d̂W̃$

(t), (30)

where u$τ (r, t) is given by the analogue of (28) and W̃$
(t) is

a Brownian motion defined on the same probability space as
W$ (t). This is a consequence of standard results on time-change
in stochastic differential equations (e.g. see [18], Ch.IV, Section
7). We thus see that the reparameterization (27) leads to a flow
map which is outside the class obeying an equation of the form
(1) and for which the stochastic action (2) is formally +∞. Thus
the argument leading to energy-conservation based on time-
translation invariance of the action is no longer valid.
One interest of the characterization of Navier–Stokes solutions

via an action principle is that it may give some hint as to
the character of their zero-viscosity limit. It was long ago
conjectured by Onsager [19] that singular solutions of the Euler
equations may result from that limit, relevant to the description of
turbulent energy dissipation at high Reynolds numbers. For recent
reviews, see [20,21]. The variational principle formulated for the
Navier–Stokes solutions in the present work is similar to that of
Brenier [16] for generalized Euler solutions, in which deterministic
Lagrangian trajectories are also replaced by distributions over
histories. There is other evidence to suggest that this may be
a physical feature of the zero-viscosity limits of Navier–Stokes
solutions, based upon recent results in a simpler problem, the
Kraichnan model of random advection by a rough velocity field
that is white-noise in time [22,5]. Unlike the smooth-velocity
case considered in [3], it has been shown for the case of
rough velocities that the solutions of the stochastic equations
(1) and (23) for backward and forward Lagrangian trajectories
do not become deterministic in the limit as ν → 0 [23–29].
Instead, there are unique and nontrivial probability distributions
on Lagrangian histories in the limit, a property referred to as
‘‘spontaneous stochasticity’’. This property is a direct consequence
of Richardson’s law of 2-particle turbulent diffusion [30] and thus
extends very plausibly to Navier–Stokes turbulence in the limit of
large Reynolds numbers.
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The results discussed above helped to motivate the conjecture
in [12,13] that a martingale property of circulations should hold
for Euler solutions obtained in the limit ν → 0. The derivation
of the stochastic Kelvin theorem in the present paper based
on particle-relabelling symmetry is closely related to a similar
argument in [12] for the martingale property of circulations in
generalized Euler solutions (see Section 4 there). Note, however,
that it was incorrectly proposed in [12] that circulations for such
Euler solutions should be martingales forward in time, and this
conjecture was only later emended to a backward-martingale
property in [13]. The present work shows that the backward-
martingale property is indeed the natural one, which could be
expected to hold for dissipative Euler solutions obtained as the
zero-viscosity limit of Navier–Stokes solutions.

5. Final remarks

The stochastic Lagrangian representation of Constantin and
Iyer [1] and our closely related variational formulation should
clearly extend to a wide class of Hamiltonian fluid-mechanical
models with added Laplacian dissipation. In a forthcoming
paper [31] we prove the analogous results for several non-
ideal (resistive and viscous) plasma models, including the two-
fluid model of electron–ion plasmas, Hall magnetohydrodynamics
(MHD), and standard MHD. As we shall show there, those
models possess two stochastic Lagrangian conservation laws, one
corresponding to the Alfvén Theorem [32] on conservation of
magnetic flux and another corresponding to a generalized Kelvin
Theorem [33,34]. In following work we shall apply these results
to important physical problems of magnetic reconnection and
magnetic dynamo, especially in turbulent MHD regimes.
As noted earlier, similar stochastic least-action principles have

recently been proposed for the incompressible Navier–Stokes
equations [9–11]. A detailed discussion of the relation of these
different variational principles to ours, as well as a rigorous
treatment of the latter, will be the subject of future work. It is
worth remarking that there is another variational principle for
fluid equations, Onsager’s principle of least dissipation [35,36],
which determines the probability of molecular fluctuations away
from hydrodynamic behavior in terms of the dissipation required
to produce them. A modern formulation is presented in [37],
and [38] gives a rigorous derivation of Onsager’s principle for
incompressible Navier–Stokes in a microscopic lattice-gas model.
It would be interesting to know if any relation exists between the
least-action and least-dissipation principles.
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