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a b s t r a c t

Continuous neural field models with inhomogeneous synaptic connectivities are known to support
traveling fronts as well as stable bumps of localized activity. We analyze stationary localized structures
in a neural field model with periodic modulation of the synaptic connectivity kernel and find that
they are arranged in a snakes-and-ladders bifurcation structure. In the case of Heaviside firing rates, we
construct analytically symmetric and asymmetric states and hence derive closed-form expressions for
the corresponding bifurcation diagrams. We show that the approach proposed by Beck and co-workers
to analyze snaking solutions to the Swift–Hohenberg equation remains valid for the neural field model,
even though the corresponding spatial–dynamical formulation is non-autonomous. We investigate how
the modulation amplitude affects the bifurcation structure and compare numerical calculations for steep
sigmoidal firing rates with analytic predictions valid in the Heaviside limit.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Continuous neural field models are a common tool to inves-
tigate large-scale activity of neuronal ensembles. Since the sem-
inal work of Wilson and Cowan [1,2] and Amari [3,4], these
nonlocalmodels have helped understanding the emergence of spa-
tial and spatio-temporal coherent structures in various experi-
mental observations. Stationary spatially-extended patterns have
been found in visual hallucinations [5,6], while stationary local-
ized structures, commonly referred to as bumps [7], are related to
short term (working) memory [8] and feature selectivity in the vi-
sual cortex [9,10]. Traveling waves of neural activity are relevant
for information processing [11] and can be evoked in vitro in slice
preparations of cortical [12], thalamic [13] or hippocampal [14] tis-
sue by electric stimulation (for recent reviews see [15,16]). Fur-
thermore, traveling waves have also been observed in vivo in the
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form of spreading depression in neurological disorders such as mi-
graine [17].

The simplest neural field models are (systems of) integro-
differential equations posed on the real line or on the plane. The
corresponding nonlocal terms feature a synaptic kernel, a function
that models the neural connectivity at a macroscopic scale. For
mathematical convenience, neural field models are often chosen
to be translationally invariant, that is, the synaptic kernel depends
on the Euclidean distance between points on the domain. This
assumption reflects well experiments in which cortical slices are
pharmacologically prepared. However, in vivo experiments by
Hubel andWiesel [18–21] revealed that a complex microstructure
is present in several areas of mammalian cortex. In order to model
thismicrostructure, Bressloff [22] incorporated a spatially-periodic
modulation of the synaptic kernel into a one-dimensional neural
field model. The translational invariance is thus broken, leading
to slower traveling waves and, for sufficiently large modulation
amplitudes, to propagation failure (a similar effect is also caused by
inhomogeneities in the input [23]). In the present article we show
how inhomogeneities in the synaptic connectivity can give rise
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to a multitude of stable stationary bumps which are organized in
parameter space via a characteristic snaking bifurcation structure.

The formation and bifurcation structure of stationary localized
patterns has been studied extensively in partial differential
equations (PDEs) posed on domainswith one [24–30], two [31–36]
and three spatial dimensions [37–39].Most analytical studies focus
on the Swift–Hohenberg equation (or one of its variants) posed
on the real line: stationary localized solutions to the PDE connect
a homogeneous (background) state to a patterned state at the
core of the domain, hence they can be interpreted as homoclinic
connections in the corresponding spatial–dynamical system. In
a suitable region of parameter space, close to the so-called
Maxwell point, there exist infinitely many homoclinic connections,
corresponding to PDE solutions with varying spatial extent.
Localized states with different symmetries belong to intertwined
solution branches that snake between two (or more) limits and
are connected by branches of asymmetric states. This bifurcation
structurewas called snakes and laddersbyBurke andKnobloch [27].

It is known that snaking localized structures arise also in sys-
tems with nonlocal terms. For instance, snaking bumps are sup-
ported by neural field models posed on the real line [40–44] and
on the plane [45], as well as the Swift–Hohenberg equation with
nonlocal terms [46]. In neural fieldmodels, the choice of the kernel
has an impact on the bifurcation structure [45], hence it is interest-
ing to study how inhomogeneities affect the existence and stability
of localized states, an investigation that has been carried out very
recently by Kao et al. in the context of the Swift–Hohenberg equa-
tion [47].

In the present paper, we study a neural field model with
a synaptic kernel featuring a tunable harmonic inhomogeneity
[48,49]. As pointed out by Schmidt et al. [48], the inhomogeneity
gives rise to stable bumps which do not exist in the homogeneous
case. We will show here that the synaptic modulation is also
responsible for the snaking behavior of such solutions.

A characteristic of neural field models is that they can be
conveniently analyzed in the limit of Heaviside firing rates: for the
model under consideration, bumps can be constructed analytically,
hence, following Beck et al. [30], we can derive closed form
expressions for the snaking bifurcation curves. In addition, we
show that the Heaviside limit provides a good approximation to
the case of steep sigmoidal firing rates, for which the theory by
Beck et al. cannot be directly applied.

This article is structured as follows: in Section 2 we present
the neural field model and discuss stability of stationary solutions.
In Section 3 we show numerical simulations of the model in the
case of steep sigmoidal firing rates, for which an equivalent PDE
formulation is available. In Section 4 we move to the Heaviside
firing rate limit, forwhichwe discuss the construction and stability
of generic localized steady states. In Sections 5 and 6 we calculate
explicitly periodic and localized steady states and infer the relative
bifurcation diagrams. In Section 7 we discuss how the bifurcation
structure is affected by changes in the modulation amplitude. We
conclude the paper in Section 8.

2. The integral model

We consider a neural field model of the Amari type, posed on
the real line,

∂tu(x, t) = −u(x, t)+


∞

−∞

W (x, y)f (u(y, t)) dy, (x, t) ∈ R × R+

(1)

where u is the synaptic potential,W the synaptic connectivity and
f a nonlinear function for the conversion of the synaptic potential
into a firing rate. In general, both W and f depend upon a set of
control parameters, which have been omitted here for simplicity.
Several studies of neural fieldmodels assume translation invari-
ance in the model (see [50,51] and references therein), therefore
the synaptic strength W depends solely on the Euclidean distance
between x and y, that isW (x, y) = w(|x− y|). A neural field of this
type is said to be homogeneous.

A simple way to incorporate an inhomogeneousmicrostructure
is to multiply the homogeneous kernel w by a periodic function
A(y) that modulates the synaptic connectivity and thus breaks
translational invariance. Following Bressloff [22] we choose A(y)
to be a simple harmonic function and we pose

W (x, y) = w(|x − y|)A(y),
where

w(x) =
1
2
e−x, A(y) = 1 + a cos

y
ε
. (2)

Here, a is the amplitude of themodulation and 2πε its wavelength.
With this choice, the neural fieldmodel is invariant with respect to
transformations

x → x + 2πεn, n ∈ Z. (3)

In this paper we study stationary localized states of system (1)
with inhomogeneous kernels (2). The firing rate f will be either a
Heaviside function f (u) = H(u−h), where h is the firing threshold,
or a sigmoidal firing rate

f (u) =
1

1 + exp(−ν(u − h))
, (4)

with ν ≫ 1. In the limit ν → ∞, the sigmoidal firing rate (4)
recovers the Heaviside case. As we shall see, a Heaviside firing rate
will bemore convenient for analytical calculations,whereas a steep
smooth firing rate will be employed for numerical computations.

Stationary solutions to the system (1)–(2) satisfy

q(x) =


∞

−∞

W (x, y)f (q(y)) dy. (5)

Linear stability is studied posing u(x, t) = q(x) + eλtv(x), with
v ≪ 1, and linearizing the right-hand side of (1). This leads to the
following nonlocal eigenvalue problem

(1 + λ)v(x) =


∞

−∞

W (x, y)f ′(q(y))v(y) dy, (6)

where we have formally denoted by f ′ the derivative of f . This
linear stability analysis is standard in the study of localized
solutions in neural field models [7].

3. PDE formulation for smooth firing rates

When f is a smooth sigmoid, it is advantageous to reformulate
the nonlocal problem (1) as a local PDE, more suitable for direct
numerical simulation and numerical continuation. Following
[41,52,49,53,54], we take the Fourier transform of (1), with kernel
expressed by (2)

∂t û(ξ , t) = −û(ξ , t) + ŵ(ξ)
Af (u)(ξ , t),

where ŵ(ξ) = (2π)−1/(ξ 2
+1). Multiplying the previous equation

by ξ 2
+ 1 and taking the inverse Fourier transform we obtain

(1 − ∂2
x )(∂tu + u) = A(x)f (u), (7)

where the dependence of u on x and t has been omitted for
simplicity. Once complemented with suitable initial and boundary
conditions, the equation above constitutes an equivalent PDE
formulation of the model problem. Steady states are solutions to

0 = (∂2
x − 1)q + A(x)f (q) (8)
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Fig. 1. Time simulations of the PDE model (7) with synaptic kernel (2) and sigmoidal firing rate (4), posed on a large domain x ∈ [−Lx, Lx] with Neumann boundary
conditions ∂xu(±Lx, t) = 0. Panel (a): initial condition used in the simulations. Panel (b): the periodic core invades the domain (time runs upwards) as two pulsating fronts
travel towards the boundary. Panel (c): a stable localized steady state is formed. Panel (d): the homogeneous background invades the domain. Parameters: Lx = 90 (plots
show an inset (x, t) ∈ [−40, 40] × [0, 50]), ν = 50, a = 0.3, ϵ = 1. Spatial operators are discretized via finite differences with 3000 gridpoints.
and linear stability is inferred via the generalized eigenvalue
problem

(1 + λ)(1 − ∂2
x )v = A(x)f ′(q)v. (9)

In passing we note that time simulations of (7) and stability
calculations (9) can be carried out numerically without forming
a discretization for (1 − ∂2

x )
−1 (see [53]). In Fig. 1 we show time

simulations of (7) posed on the interval [−90, 90] with Neumann
boundary conditions, for various values of the firing rate threshold
h. For selected values of h, we find stable localized solutions,
which destabilize as the parameter is increased or decreased.
Time-dependent solutions, such as the ones shown in Fig. 1(b) and
(d), have been previously analyzed by Coombes and Laing [49],
whereas in the present paper we focus on the existence and
bifurcation structure of stationary localized states.

The simulations in Fig. 1 are compatible with a snakes-and-
ladders bifurcation structure and, owing to the spatial modulation,
we expect to find stable localized states that are spatially in-phase
with A and centered around its local minima and maxima. In Fig. 2
we fix h andperturb a localized steady statewith abrupt phase slips
in the kernel modulation. More precisely we set

A(x, t) = 1 + a cos

x
ε

+

4
i=1

i
π

2
χ[ti,ti+1](t)


(10)

where ti = 10 + iκ and χ[ti,ti+1] is the indicator function with
support [ti, ti+1]. After four phase slips, we return to the original
spatial inhomogeneity A(x) = 1 + a cos(x/ε), which is kept con-
stant thereafter. Perturbationswith κ = 10 elicit a localized steady
state that is symmetric with respect to the axis x = −2π , whereas
shorter phase slips, with κ = 5, give rise to states that are sym-
metric with respect to the axis x = −π .

In local models supporting localized states, symmetries of the
PDE are reflected in the bifurcation structure: each snaking branch
includes solutions with the same symmetry and intertwined
branches are connected by ladders of asymmetric solutions. In one-
dimensional snaking systems with spatial reversibility, localized
states can be interpreted from a spatial–dynamical systems
viewpoint and symmetries of the PDE correspond to reversers of
the spatial–dynamical system [30,55]. Following this approach, we
recast (8) as a first-order non-autonomous system in x

d
dx


U1
U2


=


U2

U1 − A(x)f (U1)


, (11)

where we posed (U1,U2) = (q, qx). Localized steady states of the
nonlocalmodel correspond to bounded solutions to (11) that decay
exponentially as |x| → ∞. System (11) is reversible: for each
n ∈ Z, we consider the following autonomous extension

d
dx

U1
U2
U3


=

 U2
U1 − A(U3 + nπε)f (U1)

1


, n ∈ Z

with reverser

R: (U1,U2,U3) → (U1, −U2, −U3).
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Fig. 2. Time simulations of the PDE model (7) with instantaneous phase slips in the kernel modulation (10). Panel (a): with κ = 10 we obtain a localized steady state that
is symmetric with respect to the axis x = −2π . Panel (b): for κ = 5, the steady state is symmetric with respect to the axis x = −π . Parameters as in Fig. 1(c). In the top
panels we plot reference curves that are spatially in phase with the inhomogeneity A.
We say that a stationary state q is even-symmetric (odd-
symmetric) if there exists an even (odd) integer n such that Rq =

q, that is, q(x) is symmetric with respect to the axis x = nπε and
n is even (odd). Conversely, we say that a solution is asymmetric if
Rq ≠ q. The stationary profiles plotted in Fig. 2(a) and (b) corre-
spond to an even- and odd-symmetric solution, respectively.

The spatial–dynamical formulation developed in [30,55] for the
Swift–Hohenberg equation allows predictions of snaking branches
of localized patterns from the bifurcation structure of fronts con-
necting the trivial (background) state to the core state. A localized
solution to the Swift–Hohenberg PDE corresponds to a heteroclinic
orbit of the spatial–dynamical system, inwhich the variable x plays
the role of time. If we denote by L the spatial extent of the localized
solution, then the corresponding heteroclinic orbit spends a time
L in the proximity of the periodic core state. In the snaking bifur-
cation diagram the L2-norm of localized solutions, which is pro-
portional to L, is parametrized by a control parameter of the PDE.
Hence, it is possible to predict the occurrence of snaking branches
by focusing on heteroclinic orbits of the spatial–dynamical system
and studying how the time L depends upon the control parameter.

We cannot directly apply this theory to our case, in that sys-
tem (11) is non-autonomous, and (0, 0) is not an equilibriumwhen
the firing rate is sigmoidal. However, we shall see that the inter-
pretation of the snaking bifurcation diagram in terms of L remains
valid: in the limit of Heaviside firing rate, which gives rise to a non-
smooth spatial–dynamical formulation,we are able to compute ex-
plicit expressions for connecting orbits and, hence, for the snaking
bifurcation diagram, which we partially present in Fig. 3. We con-
struct connecting orbits directly in the integral formulation (5), as
opposed to the non-smooth, non-autonomous spatial–dynamical
formulation, as the former is more natural in the context of neu-
ral field models. For sigmoidal firing rates we will adopt numeri-
cal continuation and compute snaking bifurcation branches solving
the boundary-value problem (8) and the associated stability prob-
lem (9).

4. Steady states for Heaviside firing rate

In the case of Heaviside firing rate, localized steady states with
two threshold crossings (see solutions 2 and 3 in Fig. 3) can be
constructed explicitly for the inhomogeneous model and their sta-
bility can be inferred solving a simple 2-by-2 eigenvalue problem.
To each steady state q with firing threshold h, we associate an ac-
tive region B = {x ∈ R | q(x) > h}, that is, a subset of the real line
in which q is above threshold. In the case of Heaviside firing rate,
this implies that H(q(x)) ≡ 1 if x ∈ B and 0 otherwise. We focus
on the case B = [x1, x2], for which Eq. (5) can be rewritten as

q(x) =

 x2

x1
w(|x − y|)A(y) dy. (12)

If the threshold crossings x1,2 are known, then (12) yields the pro-
file of the stationary solution. The boundaries x1 and x2 can be
determined as functions of system parameters by enforcing the
threshold crossing conditions q(x1) = h, q(x2) = h. This effec-
tively constitutes a parametrization of L = x2 − x1, as discussed
in Section 3. As we shall see, periodic solutions with two threshold
crossings per period (such as solutions 1 and 4 in Fig. 3) can also be
studied with an equation similar to (12).

If f is the Heaviside function, the nonlocal eigenvalue problem
(6) is written as

(1 + λ)v(x) =


∞

−∞

W (x, y)H ′(q(y))v(y) dy

=


∞

−∞

W (x, y)
2

i=1

δ(y − xi)
|q′(y)|

v(y) dy, (13)

where δ denotes the Dirac delta function. Evaluating the integral
on the right hand side of (13) yields

(1 + λ)v(x) =

2
i=1

A(xi)
|q′(xi)|

v(xi) w(|x − xi|). (14)

Setting x = x1, x2 in Eq. (14), we obtain the eigenvalue problem

(1 + λ)ξ = Mξ, Mij =
A(xj)w(|xi − xj|)

|q′(xj)|
, i, j = 1, 2 (15)

for which {(λk, ξk)}k=1,2 can be found explicitly. In the equation
above, ξk has entries ξk = (vk(x1), vk(x2))T , where {vk(x)}k=1,2 are
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Fig. 3. Branches of periodic and localized steady states of the integral model with inhomogeneous kernel (2) with a = 0.3, ε = 1 and Heaviside firing rate. The bifurcation
diagram is plotted in terms of the norm ∥u∥2

2 = 1/(2Lx)
 Lx
−Lx

|u(x)|2 dx, where Lx = πε for periodic solutions and Lx = 30 for localized solutions. The trivial steady state

u(x) ≡ 0 coexists with the fully periodic state for h ∈


0, 1 − aε2/(1 + ε2)


. A snaking branch of even-symmetric localized solutions emanates from B0 . As we ascend the

snaking diagram, more bumps are formed. Example solutions are plotted in the panels. For reference, we also plot the activity threshold u(x) ≡ h (dashed magenta). There
exist (not shown) a snaking branch of localized odd-symmetric solutions, as well as ladder branches connecting the two snaking branches.
eigenfunctions satisfying (14). In particular, we find

λ1,2 = −1 +
1
2
w(0)


A(x1)

|q′(x1)|
+

A(x2)
|q′(x2)|



±

w2(0)
4


A(x1)

|q′(x1)|
−

A(x2)
|q′(x2)|

2

+ w2(x2 − x1)
A(x1)A(x2)

|q′(x1)q′(x2)|
. (16)

In the following sections we will apply this framework to both
periodic and localized solutions in the Heaviside limit.

Remark 1 (Number of Threshold Crossings). The framework pre-
sented here can be extended to patterns with an arbitrary num-
ber of threshold crossings; however, throughout this paper wewill
restrict analytic calculations to solutions that have only two
threshold crossings, or to spatially-periodic patterns with two
threshold crossings per period. The linear stability analysis out-
lined here is valid for small perturbations v that have the same
number of threshold crossings of q.

Remark 2 (Stability of Solutions with No Threshold Crossing). Solu-
tions that do not cross threshold are linearly stable, in that the
eigenvalue problem (13) gives a single eigenvalue λ = −1.

5. Homogeneous and spatially periodic solutions for Heaviside
firing rates

We now begin exploring steady state solutions to the integral
model (1) with inhomogeneous kernel (2) andHeaviside firing rate
f (u) = H(u − h). If the kernel is homogeneous, a straightforward
computation shows that localized solutions exist and are linearly
unstable. These patterns are organized in parameter space with
a non-snaking bifurcation diagram: we integrate (12) with a =

0, x1,2 = ±L/2 and obtain

q(x) =


1 − e−L/2 cosh x if |x| < L/2,
e−|x| sinh(L/2) otherwise

where h = (1− e−L)/2. Using (16) we find λ1,2 ≥ 0. We plot these
solutions and their bifurcation diagram in Fig. 4.

From now on, we will concentrate on the more interesting case
a > 0.

Owing to the inhomogeneity, the only spatially-homogeneous
solution is the trivial state q0(x) ≡ 0: posing q(x) ≡ κ we obtain

κ = H(κ − h)


∞

−∞

W (x, y) dy,

from which we deduce 0 = κ < h. The trivial solution is linearly
stable for strictly positive h (see Remark 2).

Spatially-periodic states are also supported by the integral
model. In Appendix A we show that 2πε-periodic solutions satisfy

q(x) =

 πε

−πε

w̃(|x − y|)A(y)f (q(y)) dy, x ∈ [−πε, πε) (17)

q(−πε) = q(πε), (18)
where

w(x) =
1
2
e−x

+
e−2πε

1 − e−2πε
cosh (x) . (19)
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Fig. 4. Bifurcation diagram for localized fronts for the homogeneous kernel. Left: branch of localized unstable fronts obtained for a = 0. We use the width L of the active
region as a solution measure. The branch does not snake and approaches a vertical asymptote. Right: selected profiles along the branch.
In other words, if we seek a stationary 2πε-periodic solution, then
we may pass from an integral equation posed on R to a reduced
integral formulation posed on the interval [−πε, πε], provided
that we use the amended kernel w instead of w. In passing, we
note that similar conditions for periodic solutions can be derived
for generic exponential kernels.

We now specialize the problem (17)–(19) to the case of Heavi-
side firing rate f (u) = H(u−h), construct 2πε-periodic stationary
solutions and explore their bifurcation structure. The simplest type
of stationary periodic state of the model is the above-threshold so-
lution qat, that is, a solution that lies above threshold h for all x ∈ R.
We then formulate the following problem:

Problem 1 (Above-threshold Periodic Solutions). For fixed h, a, ε ∈

R+, find a smooth 2πε-periodic function qat such that

qat(x) =

 πε

−πε

w(|x − y|)A(y) dy, x ∈ [−πε, πε),

h < min
x∈[−πε,πε)

qat(x).

An explicit solution qat can be computed in closed form for the
specific kernel (19), yielding

qat(x) = 1 +
aε2

1 + ε2
cos

x
ε
, x ∈ [−πε, πε), (20)

for h ∈

0, 1−aε2/(1+ε2)


. Since there are no threshold crossings,

qat is stable in this interval of h for all values of a and ε. In Fig. 3, we
show an example of qat for a = 0.3, ε = 1 (solution label 5).

We now turn to the more interesting case of periodic solutions
that cross threshold. The simplest of such cross-threshold states, qct,
are solutions that attain the value h exactly twice in [−πε, πε),
as shown in Fig. 5(a). More precisely, we derive cross-threshold
solutions as follows:

Problem 2 (Cross-threshold Periodic Solutions). For fixed h, a, ε ∈

R+, find an even 2πε-periodic smooth function qct and a number
L ∈ (0, 2πε) such that

qct(L/2) = h, (21)

qct(x) =

 L/2

−L/2
w(|x − y|)A(y) dy, for x ∈ [−πε, πε). (22)
The first equation implies that the threshold crossing occurs at
points x = ±L/2, whereas the second one is simply derived from
Eq. (17) using the identity f (qct(x)) ≡ 1 for x ∈ [−L/2, L/2].

Remark 3 (Bifurcation Equation for Periodic Solutions). Inspecting
Problem 2 we notice that the width L of the active region of qct is
a function of the threshold crossing h: combining (21) and (22) we
obtain

h = Ict(L) :=

 L/2

−L/2
w(|L/2 − y|)A(y) dy. (23)

In analogy with [30], we call the equation above a bifurcation equa-
tion for periodic solutions qct. Explicit formulae for the solution
profile qct and the corresponding bifurcation equation are given in
Appendix B.

The stability of a stationary profile (qct, L) is found in a similar
fashion to what was done for stationary states in Section 4, with
the original kernel w replaced by the amended kernel w̃. We find

(1 + λ)v(x) =

 πε

−πε

w(|x − y|)A(y)
2

i=1

δ(qct(y) − xi)
|q′

ct(y)|
v(y) dy (24)

where x1,2 = ∓L/2. Evaluating the equation above at x = x1,2
yields the pair of eigenvalues

λ1,2 = −1 + (w̃(0) ± w̃(L))
A(x0 + L/2)

|q′
ct(x0 + L/2)|

,

where we have made use of the fact that |q′
ct(x)| and A(x) are even.

We are now ready to study the bifurcation structure of periodic
solutions in greater detail.

In the Heaviside limit we use Eqs. (21)–(24) which allow us to
compute the solution profile, its activity region L and its stability
as a function of h. The resulting bifurcation diagrams are shown
in Fig. 5(b). The main continuation parameter is h and we set
ε = 1, a ∈ {0.3, 0.7, 1}: for small values of a the trivial state
q0 coexists with the above threshold solution qat for 0 < h <
0, 1 − aε2/(1 + ε2)


. At the grazing point h = 1 − aε2/(1 + ε2),

the above threshold solution becomes tangent to u(x) ≡ h.
The branches of q0 and qat are connected by a branch of cross-

threshold solutions which are initially unstable. As we increase
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Fig. 5. Periodic solutions in the Heaviside limit. (a) Construction of an even periodic solution qct with exactly 2 threshold crossings in each period. (b) Branches of periodic
solutions for ε = 1 and various values of a. A branch of unstable solutions qct connects the branch of trivial steady states q0 to the branch of above-threshold periodic
solutions qat (bottom left); for suitable combinations of a and h the system admits three stable solutions (bottom center). A further increase of a leads to a new bistable
regime. Stable solutions at h = 0.6 are shown in the top panels.
a, two saddle–node bifurcations emerge on the cross-threshold
branch, at a cusp, and there exists an interval of h in which q0, qct
and qat coexist and are stable. As a is further increased, only one
saddle–node persists and we have an extended bistability region.
We refer the reader to Section 7 for a more detailed study of the
two-parameter bifurcation diagram.

We can also study the case of continuous sigmoidal firing rates
(4) using standard numerical bifurcation analysis techniques: we
find steady states q solving (8) with Neumann boundary con-
ditions and we continue the solution in parameter space with
pseudo-arclength continuation [56] using the secant code devel-
oped in [45]. A comparison betweenbifurcation diagrams forHeav-
iside and sigmoidal firing rates is presented in Fig. 6. The solution
branches are in good agreement, with the exception of the fold
points, as it can be seen in the insets.

6. Construction and bifurcation structure of localized solutions
for Heaviside firing rates

Localized steady states are solutions to (1) which decay to zero
as |x| → ∞ and for which the activity region B is a finite disjoint
union of bounded intervals [4,44]. In Fig. 1 we have shown time
simulations of the PDE model (7) posed on a large finite domain
withNeumannboundary conditions and steep sigmoidal firing rate
with ν = 50. The parameters are chosen such that the trivial solu-
tion q0 and the above-threshold periodic solution qat are supported
in the Heaviside firing rate case. As expected, stable localized pat-
terns are found in this region.
In this section, we construct such patterns analytically and
study their stability. As it was done in Section 5, we will perform
analytical or semi-analytical calculations in the Heaviside limit,
whereas we will employ numerical continuation for sigmoidal
firing rates.

As seen in Section 4, a generic bump qb with active region B =

(x1, x2) ⊂ R satisfies, in the Heaviside limit,

qb(x) =

 x2

x1
w(|x − y|)A(y) dy. (25)

Without loss of generality, we pose x1,2 = x0 ∓ L/2. We note that
if L = 0 then qb coincides with the trivial solution. In analogy with
the periodic case, we find a localized solution as follows:

Problem 3 (Localized Solutions). For fixed h, a, ϵ ∈ R+ find a
smooth function qb and scalars x0 ∈ R, L ∈ R+, such that

qb(x0 − L/2) = h, (26)

qb(x0 + L/2) = h, (27)

qb(x) =

 x0+L/2

x0−L/2
w(|x − y|)A(y) dy, x ∈ R. (28)

Remark 4. In the problem above we do not enforce explicitly
asymptotic conditions for qb, since they are implied by (28) for our
particular choice of w and A. Indeed, let A∗ = maxx∈R |A(x)|, then

0 ≤ |qb(x)| ≤ A∗

 x0+L/2

x0−L/2
w(|x − y|) dy,

hence |qb(x)| → 0 as |x| → ∞.
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Fig. 6. Branches of periodic solutions for Heaviside firing rate and steep sigmoidal
firing rates. Panel (a): sigmoidal firing rates (4) with h = 0 and ν = 20, 50.
Panel (b): bifurcation diagram of the integral model for a = 0.7 and ε = 1; in
the Heaviside limit a branch of periodic solutions connects the trivial steady state
q0 to the above-threshold periodic state qat; for sigmoidal firing rates the trivial
steady state does not exist, but the branch behaves in a similar fashion, with 2
saddle–nodes on the branch for ν = 20 and 4 saddle–nodes on the branch for
ν = 50.

In Section 3 we discussed symmetric and asymmetric solutions in
the context of spatial–dynamical systems of the PDE associated
with the integral model. Equivalently, a solution is symmetric if
qb(x − x0) = qb(x0 − x) and asymmetric otherwise. Problem 3
does not provide a direct way to distinguish between symmetric
and asymmetric states, but it can be reformulated so as to avoid
this limitation. Each solution (qb, x0, L) to Problem 3 is such that
qb(x0 − L/2) = qb(x0 + L/2), which can be written as

Ψsym(x0)Ψasym(L) = 0, (29)

where

Ψsym(x0) = sin

x0
ε


, (30)

Ψasym(L) = (1 − e−L) cos


L
2ε


− (1 + e−L)ε sin


L
2ε


. (31)

Crucially, (29) holds if eitherΨsym = 0 orΨasym = 0, sowe are now
ready to construct symmetric and asymmetric localized solutions
as follows:

Problem 4 (Symmetric and Asymmetric Localized Solutions). For
fixed h, a, ϵ ∈ R+, find a smooth nonnegative function qb and
scalars x0 ∈ R, L ∈ R+, such that

Ψsym(x0) = 0, (or Ψasym(L) = 0) (32)

qb(x0 + L/2) = h, (33)

qb(x) =

 x0+L/2

x0−L/2
w(|x − y|)A(y) dy, x ∈ R. (34)

In symmetric states, the symmetry condition (30) fixes the
value of x0; more precisely we have x0 = nπε for n ∈ Z, therefore
we distinguish between even- and odd-symmetric solutions, de-
pending on the value of n. On the other hand, in asymmetric states
the width L is fixed by the asymmetry condition (31) and x0 is not
restricted to assume discrete values.
For our choice of the connectivity function w and modulation A
we derive closed-form expressions for symmetric and asymmetric
localized states.

For the profile of symmetric solutions we find

qb(x) =


1 +

aϵ2

1 + ϵ2
cos

x
ϵ

− Θ1(L; x0) cosh (x0 − x)

if |x − x0| < L/2,
Θ2(L; x0) exp(−|x − x0| + L/2) otherwise,

(35)

where the auxiliary functions Θ1 and Θ2 are given by

Θ1(L; x0) =


1 +

aϵ
√
1 + ϵ2

cos
x0
ϵ

cos


L
2ϵ

+ Φ


e−L/2,

Θ2(L; x0) =
1 − e−L

2
+

a
2

ε
√

ε2 + 1
cos

x0
ε

×


cos


L
2ε

− Φ


− e−L cos


L
2ε

+ Φ


.

In the above expressions we posed Φ = arctan ϵ−1 and we ex-
ploited the fact that sin(x0/ϵ) = 0.

Similarly, for asymmetric solutions we obtain

qb(x) =

1 +
aϵ2

1 + ϵ2
cos

x
ϵ

− Λ1(x, x0; L) if |x − x0| < L/2,

Λ2(x0; L) exp(−|x − x0| + L/2) otherwise,

with auxiliary functions Λ1 and Λ2 given by

Λ1(x, x0; L)

=
aϵ

√
1 + ϵ2

e−L/2

sinh(x0 − x) sin

x
ϵ
sin


L
2ϵ

+ Φ


+ cosh(x0 − x) cos

x
ϵ
cos


L
2ϵ

+ Φ


,

Λ2(x0; L) =
1 − e−L

2


1 + a cos


x0
ε


cos


L
2ε


.

Examples of symmetric and asymmetric localized solutions
are plotted in Fig. 7. These patterns are computed in a region of
parameter space where the trivial solution q0 and the periodic
above-threshold qat solution coexist. As expected, localized
solutions are in-phase with the inhomogeneity A.

Remark 5 (Bifurcation Equation for Localized Solutions). Similarly
to the periodic case, h is related to L and x0 via a bifurcation
equation. For a solution (qb, x0, L) of Problem4,we find the general
expression

h = Ib(L, x0) :=

 x0+L/2

x0−L/2
w(|x0 + L/2 − y|)A(y) dy

which can be specialized for the symmetric and asymmetric cases
as follows:

h = Isym(L; x0) := Θ2(L; x0) (36)

h = Iasym(x0; L) := Λ2(x0; L), (37)

where Θ2 and Λ2 are auxiliary functions defined above. In the
bifurcation function Isym the value of x0 is fixed by the condition
Ψsym(x0) = 0, hence cos(x0/ϵ) = ±1. Similarly, L is fixed in the
expression of Iasym and its value is determined by Ψasym(L) = 0.

Following [30], we notice that the bifurcation equation (36) is a
parametrization of snaking branches of even- and odd-symmetric
solutions, whereas Eq. (37) is a parametrization of ladder branches
of asymmetric solutions: indeed both x0 and L depend on h, as they
solve Problem 4. In this case, however, the bifurcation equations
are available in closed form so we can proceed directly to plot
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Fig. 7. Examples of localized stationary solutions constructed in the Heaviside limit (dashed magenta line indicates the firing threshold h). Left: symmetric solutions satisfy
q(x − x0) = q(x0 − x) where x0 = nπε, n ∈ Z. Even- (Odd-) symmetric solutions, qse (qso), are characterized by n even (odd). The profiles in the pictures are constructed
for h = 0.55, a = 0.3, ε = 1. As expected, peaks of localized solutions are in phase with peaks of the periodic solution qat . Right: localized asymmetric solutions satisfy
Ψasym(L; ε) = 0 (see Eq. (31)); for these patterns x0 varies in a continuous interval. The asymmetric solution is constructed for h = 0.5, a = 0.3, ε = 1.
Fig. 8. Snakes and ladders computed in the Heaviside limit. Selected profiles along the branch are reported on the right (they correspond to the ones in Fig. 7). Parameters
as in Fig. 7.
Fig. 9. Eigenvalues and eigenfunctions of localized even-symmetric solutions. Left: eigenvalues of localized even-symmetric solutions along the snaking branch of Fig. 8
(see Eq. (38)). Right: eigenfunctions of selected states, in the proximity of a saddle–node and a pitchfork on the snaking branch.
snakes and ladders. In Fig. 8, we fix a and ε, construct localized
solutions and plot their bifurcation diagrams as loci of points on
the (L, h)-plane that satisfy the bifurcation equations. In particular
we use Isym(L; 0) and Isym(L; πε) to plot representative branches
of even- and odd-symmetric solutions, respectively. As expected,
in the limit for large L, Isym is well approximated by a cosinusoidal
function. On the other hand, ladders are found using Iasym(x0; L),
where L satisfies the asymmetry condition Ψasym(L) = 0.

The stability problem of a localized state (qb, x0, L) is deter-
mined following the scheme outlined in Section 2: we use Eq. (16),
with threshold crossings x1,2 = x0 ∓ L/2. For symmetric solutions
we find

λ1,2 = −1 + (w(0) ± w(L))
A(x0 + L/2)

|q′

b(x0 + L/2)|
. (38)

In Fig. 9 we plot eigenvalues λ1,2, along the even-symmetric
snaking branch for n = 0. The results show that solutions on
this branch undergo a sequence of saddle–nodes and pitch-
fork bifurcations, as indicated by the corresponding eigenfunc-
tions. Similar results (not shown) are found for odd-symmetric
states.

For asymmetric solutions we obtain

λ1,2 =
e−L

1 − e−L
±

Γ (L)
2|q′

b(x0 + L/2)|
, (39)

where

Γ (L) =


1 + e−2L

 
a sin

x0
ε

sin
L
2ε

2

+ e−2L


1 + a cos

x0
ε

cos
L
2ε

2

. (40)

Here we have made use of the fact that, with our choice of the
synaptic kernel, we have

|q′

b(x0 − L/2)| = |q′

b(x0 + L/2)| = Iasym(x0; L), (41)
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which is found by differentiating (6). Further, we note that

Γ (L) ≥ e−L

1 + a cos

x0
ε

cos
L
2ε


. (42)

By using (37), (41) and (42) we see that the eigenvalues λ1,2 are
such that λ1 > 0 and λ2 ≤ 0. As a consequence, all asymmetric
solutions are linearly unstable. For completeness, we find values
of h at which pitchfork bifurcations are attained: such points can
also be computed analytically by setting Isym = Iasym and obtaining

h =
1 − e−L

2


1 + a cos

x0
ϵ

cos
L
2ϵ


, cos(x0/ϵ) = ±1

at which

λ1 =
2e−L

1 − e−L
, λ2 = 0. (43)

The snake-and-ladder bifurcation structure derived here for
Heaviside firing rates is also found in the case of steep sigmoidal
firing rates: in particular, we have performed numerical continu-
ation for the firing rate function (4) with ν = 50 and found an
analogous bifurcation diagram (not shown).

7. Changes in the modulation amplitude

The framework developed in the previous Sections can be
employed to study two-parameter bifurcation diagrams. So far,
we have fixed the parameters a, ε and used h as our main
continuation parameter. It is interesting to explore how variations
in secondary parameters affect the snaking branches. In [47], the
authors explore variations in the spatial scale of the heterogeneity
for the Swift–Hohenberg equation. Here, we concentrate on the
amplitude a of the heterogeneity A(x) for the integral neural field
model. Following the previous sections, we study the Heaviside
case analytically and then present numerical simulations for the
steep sigmoid case.

We begin by considering Heaviside firing rate and outlining the
region of parameter space where the trivial steady state q0 and
the above-threshold periodic solution qat coexist and are stable,
that is, we follow the grazing point B1 in Fig. 3 in the (a, h) plane.
The curve is found by imposing the tangency condition h =

minx∈[−πε,πε) qat(x), which combined with Eq. (20) gives the locus
of points

a = (1 − h)
1 + ε2

ε2
, h ∈ (0, 1). (44)

In Fig. 10 we present a two-parameter bifurcation diagram and
indicate with a green line the locus of grazing points (44): qat and
q0 coexist and are stable if (a, h) is below the green line. Next, we
compute the snaking limits, for large L, as functions of h and a.
We use the bifurcation equation for symmetric localized states, Eq.
(36), and find in the limit for large L the following snaking limits

h1,2 =
1
2


1 ±

aε
√
1 + ε2


.

These curves are plotted in Fig. 10 (solid blue lines). Further,
we compute the loci of saddle–node bifurcations of the cross-
threshold solutions qct (which are labeled SN1 and SN2 in Fig. 5)
by solving for (a, h) the following system

h − Ict(L; x0) = 0
d
dL

Ict(L; x0) = 0.

The loci of saddle–node bifurcations are plottedwith darkmagenta
lines in Fig. 10. The area between these two curves identifies a
Fig. 10. Two-parameter bifurcation diagram for Heaviside firing rates in the (a, ε)-
plane. Top:We plot the grazing curve B1 (in green), belowwhichwe have bistability
between q0 and qat , curves of snaking limits h1,2 (blue), curves of saddle–nodes
bifurcations of qct, SN1,2 (magenta) and lines atwhich a simple threshold crossing is
followed by a tangency in wide (Tw , dashed blue line, see also patterns 1 and 2) and
narrow (Tn , dashed gray line) solutions. We find a simple snake and ladder scenario
in the shaded blue area and amore complicated snaking scenario in the shaded gray
area. Bottom: selected solution profiles on the curve Tw . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

region in which qct, qat and q0 coexist and are stable. In passing
we note that the curve for SN2 intersects the curve for the grazing
point B1 at a = 1.

We found a snake-and-ladder bifurcation structure, as dis-
cussed in Section 6, in a wedge delimited by the lines h1 and h2
for a . 0.57 (dark blue area in Fig. 10). Snaking branches in this re-
gion are formed of solutions with exactly two threshold crossings
at x0∓L/2. However, there exist snaking branches of solutionswith
more threshold crossings. An example is given for the steep sig-
moidal case for a = 0.6 in Fig. 11: the snaking branch collides with
neighboring branches of solutionswithmultiple crossings and give
rise to an intricate bifurcation structure.

In order to understand the occurrence of such curves we return
to the Heaviside case and concentrate on the even- and odd-
symmetric solutions featuring a threshold crossing followed by a
threshold tangency at a local minimum (for an example with large
L, see pattern 1 in Fig. 10).More precisely,wedenote by x∗ the point
with largest absolute value at which qb attains a local minimum
and solve for (a, h, x∗) the system

qb(x∗) − qb(x0 + L/2) = 0 (45)

qb(x∗) − h = 0 (46)

q′

b(x∗) = 0 (47)

where qb is given by Eq. (34). We follow solutions to the system
above as L varies in a given range and show the corresponding
loci of solutions in the (a, h)-plane in Fig. 10: the dashed curve
Tw contains solutions to (45)–(47) with a wide active domain (L
varies approximately between 45 and 57), whereas Tn corresponds
to solutions with a narrow active domain (L varies approximately
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Fig. 11. Branch of even solutions for sigmoidal firing rate with a = 0.6, ν =

50, ε = 1. Stable (Unstable) branches are indicated with thick blue (thin magenta)
lines.

between 0.7 and 12). Even though Tw and Tn are not loci of
bifurcations, they are indicative of regions of parameter space
where solutions with multiple threshold crossings may occur.

In Fig. 12 we show a bifurcation diagram for a = 0.8 for
the steep sigmoid: the snaking branch is composed by solutions
with two (green), six (blue) ormore (magenta) threshold crossings.
The snaking structure reflects these three types of solutions and
their occurrence is predicted adequately by the two-parameter
bifurcation analysis for Heaviside case (reference intervals are
reported on top of the bifurcation diagram of Fig. 12). Stable
and unstable branches alternate in the usual manner and an
intertwined branch of localized odd solutions exists as well (not
shown). A similar scenario, with an evenwider snaking diagram, is
found for a = 1.2 (see Fig. 13): for large modulation amplitudes,
the bifurcation diagram also contains cross-threshold solutions,
but this time their occurrence ismarkedby the grazing pointB1 and
Fig. 13. Bifurcation diagram for a = 1.2, ν = 50, ε = 1. Reference intervals for the
Heaviside case are reported on top of the bifurcation diagram. The branches occupy
awide region of parameter space, as we expect from the extended bistability region
of periodic solutions for high values of a (see panel (b) for a = 1 in Fig. 5).

the saddle–nodes SN2 (see also the bifurcation diagram for a = 1
in Fig. 5(b)).

8. Conclusions

In the present paper we have studied the existence and
bifurcation structure of stationary localized solutions to a neural
field model with inhomogeneous synaptic kernel. For Heaviside
firing rates, we computed localized as well as spatially-periodic
solutions andwe followed them in parameter space.We recovered
the classical snakes and ladders structure that is found in the one-
dimensional Swift–Hohenberg equation aswell as previous studies
in neural field models: for our model, however, both solutions and
Fig. 12. Bifurcation diagram for a = 0.8 ν = 50, ε = 1. The snaking branch is composed by solutionswith two (green), six (blue) ormore (magenta) threshold crossings. The
snaking structure reflects these three types of solutions and their occurrence is predicted adequately by the two-parameter bifurcation analysis for Heaviside case (reference
intervals are reported on top of the bifurcation diagram). Stability is not indicated and a second intertwined branch of odd localized states is also found (not shown). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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bifurcation equations are found analytically. Since linear stability
can also be inferred with a simple calculation, it is possible to draw
the snaking bifurcation diagrams analytically or semi-analytically
(using elementary quadrature rules for the integrals).

Interestingly, we found that the interpretation of the snake
and ladder structure proposed by Beck and co-workers [30]
and extended by Makrides and Sandstede [55] is valid for the
specific inhomogeneous case presented here, for both Heaviside
and sigmoidal firing rates: it seems plausible that their framework
could be extended to tackle the corresponding non-autonomous
spatial–dynamical formulation (11).

With reference to the particular system presented here, we
found that a harmonic modulation with an O(1) spatial wave-
length promotes the formation of snaking localized bumps and we
note that these structures are driven entirely by the inhomogene-
ity: in the translation-invariant case, a = 0, the system supports
localized fronts belonging to a non-snaking branch (a scenario
that is also found in the homogeneous Swift–Hohenberg equation
[57,35]).

We also remark that, in awide region of parameter space, a ≤ 1,
the kernel is purely excitatory, yet snaking stable bumps are sup-
ported. When a is further increased and the kernel becomes exci-
tatory–inhibitory (a > 1), the snaking limits become wider and
involve solutions with multiple threshold crossings. We note that
with a modulated but translation-invariant kernel, with modula-
tion function A(x − y), the integral over the resulting kernel,W (x)
would be monotonically increasing and would then prevent the
formation of stable bumps for a < 1 [41]. The inhomogeneity is
thus a key ingredient to produce stable solutions in the absence of
inhibition when a < 1.

The analytical methods presented in this paper could be
useful in the future to study time-periodic spatially-localized
structures (often termed oscillons). A simple mechanism to obtain
oscillatory instabilities in neural field models is by introducing
linear adaptation [58]. This modification seems amenable to study
oscillons, since localized bumps of the extended system can be
constructed in the same way presented in this paper, yet the
corresponding stability problem changes slightly and may lead to
a Hopf bifurcation of the localized steady states. This approach has
recently beenused by Folias and Ermentrout [59] andCoombes and
co-workers [53] in two component models supporting breathers
and other spatio-temporal patterns. Another possible extension
is to study the effect of spatial modulation in planar neural field
models, in which case one could build upon the interface method
developed in [60] for homogeneous planar neural fields.
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Appendix A. Cell reduction for spatially-periodic states

We aim to show that 2πε-periodic solutions q to the integral
model satisfy

q(x) =

 πε

−πε

w̃(|x − y|)A(y)f (q(y)) dy, x ∈ [−πε, πε)

where

w(|x − y|) =
1
2
e−|x−y|

+
e−2πε

1 − e−2πε
cosh (|x − y|) ,

which correspond to Eqs. (17) and (19) in the main text.
For exponential kernels w(|x − y|) = exp(−|x − y|)/2, Eq. (5)
can be rewritten as

q(x) =

−1
m=−∞

 (2m+1)πε

(2m−1)πε

1
2
e−x+yA(y)f (q(x − y)) dy

+

∞
m=1

 (2m+1)πε

(2m−1)πε

1
2
ex−yA(y)f (q(x − y)) dy

+

 πε

−πε

1
2
e−|x−y|A(y)f (q(x − y)) dy.

By setting η = y − 2mπε,

q(x) =

−1
m=−∞

 πε

−πε

1
2
e−x+ηe2mπεA(η)f (q(x − η)) dη

+

∞
m=1

 πε

−πε

1
2
ex−ηe−2mπεA(η)f (q(x − η)) dη

+

 πε

−πε

1
2
e−|x−η|A(η)f (q(x − η)) dη.

Here, we have made use of the fact that q(x) and A(x) are 2πε-
periodic functions. Since

−1
m=−∞

e2mπε
=

∞
m=1

e−2mπε
=

e−2πε

1 − e−2πε

we obtain the reduced formulation (17) with amended kernel (19).

Appendix B. Explicit solutions for cross-threshold solutions
q(x)

An explicit solution for Eq. (22) with Heaviside nonlinearity and
kernel (2) is found by carrying out a direct integration, which gives

qct(x)

=




ex +

2e−2πε

1 − e−2πε
cosh x


Ξ(L)

if − πε < x < −L/2

1 +
aε2

ε2 + 1
cos

x
ε

+ 2 cosh x

×


e−2πε

1 − e−2πε
Ξ(L) + Υ (L)


if − L/2 < x < L/2
e−x

+
2e−2πε

1 − e−2πε
cosh x


Ξ(L) if L/2 < x < πε.

(B.1)

Here,

Ξ(L) =


sinh

L
2


1 +

aε2

ε2 + 1
cos

L
2ε


+

aε
ε2 + 1

cosh
L
2
sin

L
2ε


, (B.2)

and

Υ (L) = e−L/2

1 +

aε2

ε2 + 1
cos

L
2ε

−
aε

ε2 + 1
sin

L
2ε


. (B.3)

The bifurcation equation is thus given by

h =


e−L/2

+
2e−2πε

1 − e−2πε
cosh

L
2


× Ξ(L). (B.4)
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