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Abstract

Synchronization of complex/chaotic systems is reviewed from a dynamical control perspective. It is shown that notions like
observer and feedback control are essential in the problem of how to achieve synchronization between two systems on the
basis of partial state measurements of one of the systems. Examples are given to demonstrate the main results. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Probably one of the earliest detailed accounts on
synchronized motion was made by Christiaan Huy-
gens, who around 1650 describes in his notebook
[12] an experiment where two identical pendulum
clocks are attached to the same (flexible) bar, and
these clocks exhibit synchronized motion in a short
while in case they are initialized at arbitrary, possibly
different phases. The explanation by Huygens is re-
markably accurate since by that time the differential
calculus needed to describe the clocks’ motion was
still to be developed. Many other examples of syn-
chronized motion have been described after the 17th
century. For instance, Rayleigh describes in his fa-
mous treatise “The theory of sound” [25] in 1877 that
two organ tubes may produce a synchronized sound
provided the outlets are close to each other. Early this
century another Dutch scientist, van der Pol, studied
synchronization of certain (electrical-) mechanical
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systems, see [24]. Actually, rotating bodies, or more
general rotating mechanical structures form a very
important and special class of systems that with or
without the interaction through some coupling, ex-
hibit synchronized motion. In fact, synchronization
of oscillating physical systems is by today an impor-
tant subject in some of the major physics journals.
An illuminating survey on synchronization of a wide
variety of mostly (electrical-) mechanical systems is
given in [2]. Also [21] contains a rich class of mo-
tivating and illustrative examples of synchronizing
systems. The growing interest in synchronization —
and the above mentioned surveys are illustrative for
this — was probably caused by the paper [22], where
among others, secure communication as a potential
application has been indicated. Although, sofar it is
still questionable whether this application can be fully
realized, the Pecora and Carroll paper [22] has formed
an impulse for much research along these lines.

On the other hand, for mechanical systems syn-
chronization is of utmost importance as soon as two
machines have to cooperate. Typically, robot coordina-
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tion, cf. [4] and cooperation of manipulators, see [15]
form important illustrations of the same goal, where it
is desired that two or more mechanical systems, either
identical or different, are asked to work in synchrony.

The purpose of this paper is to address the synchro-
nization problem from a control theory perspective.
Control theory is the field in which a systematic study
of control systems, together with appropriate con-
troller design(s) is made, see, e.g. [13] as a textbook on
linear control theory and [19] for results in nonlinear
control. Control theory, and more specifically nonlin-
ear control, forms a powerful framework to formulate
and describe various synchronization questions, and
the aim of the paper is to present a review of some of
the existing tools and methods from nonlinear control
in this regard. This includes the obvious problem of
how to build a synchronization system for a given
system; a problem that is intimately linked with an
observer problem in control, see Section 2. In Section
3 various aspects regarding (parameter) uncertainty
and noise are reviewed. Especially, in practical appli-
cations like communications and coordination these
noise and robustness issues are of great importance.
Controlled synchronization is the subject of Section
4. Contrary to the setting of Section 2, where for a
given system a synchronizing system is sought, here
the problem is to achieve synchronization of two
system by means of a suitably feedback controller.

This paper does not present formal theorems and
proofs but merely develops various problem-solutions
through illustrative examples. For detailed formula-
tions and proofs the reader has to consult the appro-
priate references. Hopefully, the paper initiates further
interest in dynamical control methods in the study of
synchronization problems.

2. Synchronization and observers

Following [22], we consider the Lorenz system
x1=0(y1 —x1), Y1 =rxp — y1 — X121,
z1=—bz1 + x1y1. ey

The system (1) is known to exhibit complex or chaotic
motions for certain parameters o, r, b > 0. With the

system (1) viewed as the transmitter or master system,
we introduce the drive signal

y =xi, ()

which can be used at the receiver, or slave system, to
achieve asymptotic synchronization. This means, as in
[22], we take as receiver dynamics

Xy =0(y2 — x2), Y2 =7rx] — Y2 — X122,

720 =—bzp + x1y3. 3)

Notice that (3) consists of a copy of (1) with state
(x2, y2, z2) and where in the (y2, z2)-dynamics, the
known signal x1, see (2), is substituted for x;. Intro-
ducing the error variables e = x; — x2,€3 = y1 —
Y2, €3 = 71 — 22, we obtain the error dynamics

e1=o(ex —ey), € = —ep — xje3,

e3 = —bes + xjea, 4

which is a linear time-varying system. The stability
of (e1, e2, e3) = (0, 0, 0) is straightforwardly checked
using the Lyapunov function

1
Vel ez, e3) = ;e%+e§+e§ 5)
with time-derivative along (4)
Vier, er,e3) = —2(e1 — 2e2)? — 3¢5 —2be3,  (6)

showing that (e, ez, e3) asymptotically (and even ex-
ponentially!) converges to (0,0, 0). In other words,
the receiver dynamics (3) asymptotically synchronizes
with the chaotic transmitter (1) no matter how (1) and
(3) are initialized.

Remark 1. Almost similarly, one can show that the
(y2, z2) dynamics from (3) — which are independent
from x, anyway — will synchronize with (y1, z1) from
(1), using the Lyapunov function V(ez, e3) = e% +
e%. This also implies that in this manner the state
(x1, y1, 1) can be reconstructed from (y», z2) and the
known signal xi.

The synchronization of the transmitter (1) and re-
ceiver (3) using the drive signal (2) may at this point
seem more a coincidence rather than a structural prop-
erty. However, as will be argued, this is not the case,
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but follows in much more generality. In particular, one
may cast the foregoing into an observer problem. To
that end consider the general system

X = f(x) @)

with x € R", f a smooth vector field, and output (or
measurement)

y =h(x) ®)

for some smooth function /. Note that more generally
one may consider (7) and (8) on a manifold with func-
tion & mapping into another manifold. The observer
problem can be formulated as: given y(t),t > 0, re-
construct asymptotically x(¢), r > 0.

Remark 2. There is some redundancy in the observer
problem in that the output y = & (x) represents known
(given) information on the state x(#) which needs not
to be estimated. In particular, suppose that the out-
put coincides with one of the components of x (af-
ter a coordinate transformation), say y = xi, then it
is not necessary to reconstruct x, but only the (n —
1)-dimensional ‘state’ (x7, ..., x,). The latter variable
is sometimes denoted as x (mod y) and the reduced
observer problem thus reads as the question of recon-
structing x(¢) (mod y(z)), given y(¢),t > 0. As an
easy example, consider the linear system

X1 =y y1 = ax1 + by 9
with output
y =ax1. (10)

Setting for some k € R,

z =y + kxi, (1D
we see that
2= (b+kz+ (a—bk—k>y, (12)

and thus we may find a reduced observer as
Z=(0b+kzi+ (a—bk—k>y, (13)

provided b +k < 0, since z —7 — 0 as t — o0. The
state (x1, y1) is asymptotically reconstructed from the
one-dimensional reduced observer (13) as (y, Z — ky).

With the given formulation of the observer problem
at hand, the natural question is, how to find, given (7)
and (8), a mechanism for reconstructing x(t), ¢ > 0.
Although, in its full generality the answer to the above
question is unknown, there are some important cases
where a solution can be found. Some of them will
be reviewed next. The natural way to approach the
observer problem for (7) and (8) is to design another
dynamical system driven by the measurements (8)

X = f@) +k@E ), (14)

where the y-parameterized vector field & in (14) should
be such that k(x, y) = 0 if h(x) = h(x) = y. The
dynamics (14) is called an observer for (7) provided
that x (¢) asymptotically converges to x(¢) for any pair
of initial conditions x(0) and x(0). The structure of
the observer (14) deserves some further attention. One
may view (14) as an identical copy of (7) with an
‘innovations’ term k(X, y) which vanishes in case the
estimated output y = h(x) coincides with y = h(x).
The latter could be phrased as we cannot do better as
our measurements allow for. In the Lorenz system (1)
and (2) with receiver (3) it is easily checked that the
system (3) indeed acts as an observer and can be put
in the form (14):

Xy =0(y2 —x2) + 0,
Y2 =rxa — y2 — x222 + (r — z2)(x1 — x2),
22 = —bzo + x2y2 + y2(x1 — x2). (15)

Also, it is worth noting that (14) is simply a comput-
erized model and no hardware is required in building
this system, even if a hardware realization of (7) is
given.

Remark 3.

1. Though we restrict attention to observers of the
form (14) with dynamics of the same dimension as
(7), other possibilities for obtaining suitable esti-
mates for x (¢) exist. For instance, the estimate X (¢)
can arise as a function of a higher dimensional mea-
surement driven dynamics, or even as a solution of
an infinite dimensional (pde) system.

2. It should be clear, see also Remark 2 that a re-
duced order observer should be designed as a
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measurement driven dynamics that asymptotically
matches with x(f) (mod y(¢)). Although, some
interesting aspects arise, no further attention to
reduced observers will be given here.

To illustrate the above observer design, we discuss
first the linear observer problem [13]; that is both the
dynamics (7) and measurements (8) are assumed to be
linear:

X = Ax, (16)
y=Cx (17)

with x € R?,y € R and A and C matrices of corre-
sponding dimensions. An observer in this case should
be of the form:

¥ = A% + K(Cx — CX), (18)
which, setting ¢ = x — X, yields the error dynamics
é =(A—KCQ)e. (19)

Clearly, (18) acts as an observer for (16), or what
is the same, X and x asymptotically synchronize, if
(19) has e = 0 as asymptotically stable equilibrium.
The question under what conditions a matrix K can
be found, so that (17) is asymptotically stable can be
answered using the observability rank condition. The
linear system (16) and (17) satisfies the observability
rank condition if

C

CA
rank ) =n, (20)

CAn—l

which is equivalent to the requirement that the sys-
tem (16) and (17) is observable, i.e., the state x(¢) is
uniquely determined by y(¢), ¢ > 0. The rank condi-
tion (20) is equivalent to the pole placement property,
which means that for any symmetric set of n points
in C, there exists a real matrix K such that A — KC
has these n points as eigenvalues. In particular, it fol-
lows that (20) guarantees the existence of an observer
(18) (or suitable K) that makes (19) asymptotically
stable. In fact, a slightly weaker condition than (20),

detectability, is required for the stabilizability of (19)
with a suitable K. Detectability requires, instead of
(20) that A restricted to the largest A-invariant sub-
space in Ker C (this subspace is equal to the kernel of
the matrix defined in the left-hand side of (20)), should
be asymptotically stable. For further details, see [13].

It is clear that the above discussion on synchroniza-
tion of linear systems cannot directly be used for non-
linear/chaotic systems. On the other hand, there are
a number of extensions of the foregoing linear ob-
server design that are relevant for complex nonlinear
systems. The first class for which observer design is
as simple as in the linear case are the so-called Lur’e
systems, which are described as

% = Ax+ ¢(Cx), Q1)
y=Cr (22)

with the pair (A, C) observable, i.e. (20) holds, and ¢
is a smooth nonlinear vector field depending on y. A
synchronizing system (observer) is designed as

X = A% + ¢(Cx) + K(Cx — CX), (23)

which again produces the error dynamics (19). Notice
that the class of systems (21) and (22) only contain
nonlinearities in the dynamics that depend upon the
measured output y, and which can also be used in the
observer (23). Perhaps the best known example of the
form (21) and (22) is the Chua circuit:

X1 =a(=x; +y1 — ¢(x1)),
yi=x1—y+2z1,
1 =—AY1, (24

where ¢ (x1) = mix1 +mo(Jx1 + 1| — |x; — 1]) with
m; = —%,mz = —%, and 23 < A < 31,0 = 15.6.
Taking as measurements

y =Xxq, (25)

one immediately realizes that this system — which is
chaotic and has the so-called double scroll attractor —
is of Lur’e type and admits an observer of the form
(23), since the corresponding linear part is observable.
It is interesting to see that the only nonlinearity in (24)
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is through the piecewise linear function (nonsmooth)
¢, which only depends on the measurements y.

A larger class of systems that admit linear observer
design consists of all systems (7) with outputs (8) that
possess linearizable error dynamics. More precisely,
these are systems (7) and (8) that after a suitable state
space transformation and output transformation can
be brought in Lur’e form (21) and (22). Conditions in
terms of f and & that are necessary and sufficient for
having linearizable error dynamics are given in [16]
in the context of synchronization. As an illustration,
consider the hyperchaotic Rossler system, see [1],

X1 = —x2 + axy,
xi:xifl_xi‘l’l? i=2,...,N_1,
Xy =€ +bxy(xn—_1 —d) (26)

with a,b,d,e € RT and N an arbitrary positive
integer. The case N = 3 corresponds to the usual
Rossler system, and when N = 4 the system has the
so-called hyperchaotic flows, and has two positive
Lyapunov-exponents. With (26) we take as output
equation

Yy =Xn. 27)

It is clear that the solutions of (26) with xx(0) >
0, and which exist for all positive time (no finite es-
cape time!) have xy(¢) > O for all # > 0. There-
fore, we may introduce the coordinate transformation
71 = X1,...,IN—1 = XN—1, 2N = In(xy), and output
transformation y = In(y). Then in the new coordi-
nates the system reads as

71 = —22 +azy,

i =2Zi—1 — Zi+l

i=2,...,N—=2,

IN—-1 = ZN-2 — exp(zn),

v = bzy—1 — bd + € exp(—zn), (28)

Y =2N. (29)

The remarkable fact is that the above system (28) and
(29) is again in Lur’e form (21) and (22), and an easy
check shows that the linear part is observable, thus
allowing for a synchronizing system of the form (23).

The classes of systems for which a successful ob-
server design is possible, sofar all exploit a linear er-
ror dynamics. There are, however, other cases where
synchronization can be achieved without relying on a
‘linearizability’ assumption. To that end we return to
the system (7) with measurement (8) and we introduce
the following assumptions, see [9]:

1. The vector field f in (7) satisfies a global Lipschitz
condition on its domain, which as mentioned earlier
need not to be R”.

2. The n functions h(x), Lph(x), L3h(x), ...,
L';-_lh(x) define new coordinates (globally!). Here,
L}h(x) denotes the ith iterated Lie-derivative of
the function /4 in the direction of f.

If both (1) and (2) hold an observer exists of the
form

X = f(E) 4 Khx) —hE) (30)

with K a constant suitable (n, 1)-vector. Note that (30)
obviously is of the form (14), though some of the
entries in K may become very large (high-gain). An
illustrative example of a system that fulfills (1) and (2)
is formed by the Lorenz-system (1) and (2), when this
is restricted to a compact domain. Since it is known
that (1) has an attractive compact box, the observer
(30) is an interesting alternative for the observer (3).

Besides the above discussed cases for which a
synchronizing system can be systematically designed
we note that there exist further methods that may
be applicable for other classes of systems, like bi-
linear systems. Also, for certain mechanical systems
‘physics-based” observers can be developed, and
finally some systems admit a Kalman filter-like ob-
server. But, no general method exists that works for
all systems.

3. Uncertainty, robustness and noise

In the previous section, the synchronization problem
has been treated under the assumption that the dynam-
ics and output are exactly known. In many cases this
is obviously not true and therefore alternative meth-
ods are required. We will review here three illustrative



224 H. Nijmeijer/Physica D 154 (2001) 219-228

examples how one may possibly proceed in such case.
The first example to be discussed contains parameter
uncertainty in the dynamics (7), i.e.

x = f(x,p) 3D

with p some unknown parameter (vector) or in a com-
munications context, an unknown message. We take
again as output

y = h(x). (32)

Now, in addition to the standard synchronization prob-
lem of reconstructing x(¢), t > 0, one may in addition
be interested in reconstruction of the parameter p. The
latter may be particularly interesting in a communi-
cations context where p may represent some (slowly
time-varying) signal. The next example illustrates that
adaptive control (cf. [26]) may form a good approach
in such setting. Consider again the Chua circuit

X1 = a(—=x1 +y1 — ¢(x1, p)),

y1=x1—y1+2z1,
21 = —Ay1, (33)

where ¢(x1, p) = ¢(x1) + p(lx1 + 1| — |x1 — 1]) =
mixy + (mz + p)(|x1 + 1| — |x1 — 1) with m; =

%,mz = —g,)» = 14.286 and @ = 9. As output, we
take
y =Xi. (34)

The parameter p is assumed to be constant or slowly
time-varying, but in practice it may also be a binary
time-varying signal. A solution to both the synchro-
nization problem and the parameter estimation prob-
lem is given by the following adaptive observer:

Xo=0a(—x2 +y2 — ¢(x1))
+p1(lx1r + 1 — [x1 — 1)) + p2(x2 — x1),

y2=x2 — y2 + 22, 20 = —Ay2, (35)
p1=—yx1 —x2)%,
Py =—v2(x1 — x2)(|x1 + 1] — [x1 — 1)), (36)

where y1, 2 > 0 are the positive adaptation gains.
It follows, see [8] that again (e, e2, €3) converges to

(0,0,0) but also p; and pp converge to their true
values, and in particular, pj converges to p, and p; can
be viewed as an observer gain. The key observation in
showing this result is actually the fact that the signal
|x1 + 1| — |x; — 1] is ‘persistently exciting’ for the
chaotic Chua circuit (33), which among others, means
this signal does not converge to some constant value.
In case p is a binary signal, the parameter convergence
will occur provided the time step in changing p is
sufficiently large, see [8] for further details.

The idea of using adaptation mechanisms like in
(36) requires that only parametric uncertainties occur.
This may be a strong assumption in specific cases and
alternatives may be sought. A simple illustration of
a robust synchronization scheme can be given for a
second order (mechanical) system

X1 =y1, y1 = f(x1,y1) 37
with
y =Xi. (38)

An observer is proposed as

Xo =y +ki(x1 — x2), v2 =ko(x1 —x2) (39)

then under the assumption that f in (37) satisfies
a global Lipschitz condition one may show that for
k1, ko > 0 sufficiently large, the error (e, e2) con-
verges to a neighborhood of (0,0) and moreover,
the larger the ki and k, are selected, the smaller the
neighborhood of (0, 0) becomes. In this case, we have
the so-called high-gain observer (39) that achieves
practical stability of the error (ep, e2), and thus the
state (x7, y2) of (39) asymptotically almost synchro-
nizes with (x1, y1), see [18] for further details on the
dual problem of robust control of chaotic systems.
The implementation of a high-gain observer is sim-
ple —no hardware realization of the observer system
is build—but it has practical limitations since large
values for k1 and k, will amplify measurement errors
in the output y = xj. There exist in the control liter-
ature a wide range of alternative methods of studying
robust observers, and thus robust synchronization;
one alternative method can be found in [23], see also
[28]. Besides parameter uncertainty or unstructured
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uncertainty in the dynamics (7) and output (8) the
equations may be noisy. Noise may appear for differ-
ent reasons in (7) and (8), for instance measurement
noise or uncertainties in the dynamics. In this case,
synchronization becomes even more problematic than
in the previous section, and certainly no exact state
reconstruction will be possible. Nevertheless, a fil-
tering approach may be very suited in this case and
we will illustrate this through an example of a noisy
Lorenz-system, see [17] for further details. Consider
the Lorenz system with noise

X1 =o0(y1 —x1) + ey,
Y1 =rx; —y1 — x121 + €2,
z21 = —=bz1 + x1y1 + €3, (40)

and noisy measurements
y=x1+v, 41)

where (€1(1), (1), €3(t)) ~ N(, Q) and v(t) ~
N (0, R) are independent white noise processes.
Clearly (40) now represents a set of stochastic differ-
ential equations, which due to the nonlinearities are
highly nontrivial to solve (numerically). This makes
it even more difficult to find a synchronizing system.
Instead of a— deterministic— observer one may at-
tempt to use an extended Kalman filter. (Here the
word extended refers to the fact that the filter ap-
plies to nonlinear equations; the Kalman filter itself
applies only to a linear stochastic system with noisy
measurements.) The extended Kalman filter reads as

X2 =0(y2 — x2) +ki(t)ey,
V2 =1 — y2 — X222 + ka(t)eq,
20 = —=bzo + x2y2 + k3(t)eq, (42)

where as before, ej = y — x» = x1 + v — x3. At this
point one may again notice that (42) fits in the struc-
ture (14). The crucial point of (42) lies in the way
how the gain vector k(t) = (k1 (@), ka2 (1), k3@)T is
determined. For the filter (42), k(¢) is determined via

1

0|RrR1, (43)
0

k(t) = P(t)

where R is the covariance of the measurement noise v
and P (t) the solution of the matrix Riccati differential
equation

P=F@P+PF®)" —PHO)TR'H®)P + O,
P(0) = Py > 0, (44)

where F(r) = (3f/9x)(x2(1), y2(1), z2(r)) and
H(t) = (0h/9x)(x2(1), y2(1), z2(r)) with f and h
denoting the right-hand side of (40) and (41). In other
words F(t) and H(t) are obtained through lineariza-
tion along the estimated solution (x3(¢), y2(t), z2(t)).
Although, at this point no complete proof exists
which guarantees that in some stochastic sense
(x2(t), y2(t), z2(t)) converges approximately to
(x1(2), y1(¢), z1(¢)), simulations indicate that with
suitable initialization, the extended Kalman filter may
form an appropriate scheme for synchronization, see
[27]. In the discrete-time context, we have recently
investigated this in detail for some specific chaotic
systems, see [6].

Remark 4.

1. Crucial in [6] is the observation that the chaotic
systems under investigation ‘live’ in a compact re-
gion and thus fulfill a Lipschitz condition in this
region. It is precisely this fact— which has some
similarity with the high gain observer approach in
the previous section — that enables a successful ex-
tended Kalman filter approach, see [14].

2. It is clear that convergence of the estimate
(x2(1), y2(1), 22(2)) towards (x1(2), y1 (1), z1(1)) is
at best possible in expectation. The noise in dy-
namics and measurement prohibit exact asymptotic
convergence and therefore simulations based on
the filter (42) will become sensitive with respect
to the variances Q and R. Likewise, the initializa-
tion of the Riccati differential equation (44) is an
important design parameter.

4. Controlled synchronization

Synchronization as reviewed in Sections 2 and 3 was
merely a property of finding an appropriate mechanism
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for reconstructing the state of some chaotic system on
the basis of some given measurement signal. On the
other hand, this could be contrasted with another set-
ting in which both transmitter and receiver dynamics
are given, as well as the corresponding output func-
tion, and the aim is to find a suitable mechanism to
control the slave system such that master and slave
will asymptotically synchronize. More specifically, as-
sume we have been given the transmitter

x = f(x) (45)
with output

y = h(x) (46)
together with the receiver dynamics

X =g(F, uw), (47)

where we for simplicity assume that x and X both are
n-dimensional. The dynamics (47) depends on a con-
trol (vector) i, which we assume for the moment to be-
long in R. The control u is the variable through which
we may manipulate or change the dynamics (47), and
it is here that we enter the area of nonlinear control,
see [19]. Obviously, there exist many controller types
that we may use but in the sequel we limit ourselves
to the use of a feedback of the form

u=ualx,y), (48)

where « is a smooth function depending on the state
of the receiver and the available measurements of the
transmitter. This is, at least at an intuitive level, a nat-
ural choice. The closed-loop system (47) and (48) is
now described as

¥ = gFa(x, h(x))), (49)

and the aim in synchronizing master and slave system
now is to find a suitable function « in (48) such that
asymptotically x(z) and x(¢) coincide. Stated in terms
of Section 2 this implies that (49) acts as an observer
for (45).

Remark 5. From the foregoing it becomes clear that
there are numerous other ways to enforce the syn-
chronization between (45) and (46). In [3] various

definitions are given, with perhaps the most general
controller being of the form

u=ax,zy), z=h(z,y), (50)

which is in control terminology a dynamic output feed-
back. Potentially, the introduction of the dynamics in
(50) allows for synchronization of (45), (47) and (50),
which means that in this case we need not start with
systems (45) and (46) of the same dimension.

The general problem of finding, if possible, a suit-
able output feedback (48) in order that (45) and (49)
synchronize is quite difficult. We will illustrate this by
means of a relatively simple example of van der Pol
systems. Consider as transmitter dynamics the van der
Pol system

1=y,  y1=-x— @G- Dy, (51)

y=xi, (52)

and as receiver we take the ‘controlled’ van der Pol
system

Xo=yr +oau, Y2 =-—x1— @&} —Dyr+ Bu. (53)

Note that we have exploited the knowledge of x; in
(53), and also that control in (53) is possible along the
direction (oz,B)T. If (53) represents an electrical circuit
or physical system it may happen that either « = 0 or
B = 0. Typically, the control u is a current (or voltage)
or force that acts on the system.

Remark 6. At this point, there is a notable difference
with most of the ‘control of chaos’ literature where
often a control parameter is varied as to influence the
dynamics, see for instance the OGY paper [20].

To achieve synchronization of (52) and (53) we will
use here (high-gain) output error feedback (c¢; > 0)

u=—ci(x1 —x2) 54
resulting in the error dynamics

e = —acel + ez,
éy = —fBeer — (x7 — ey, (55)

which is a linear time-varying system, in which the
time varying signal ()cl2 —1) is known, see (52). For the
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synchronization of (51), (53) and (54) it is required that
the error dynamics (55) are asymptotically stable about
the equilibrium (0, 0). Already this relatively simple
error dynamics require some nontrivial analysis. The
most interesting case probably arises if « = O and 8 #
0. One can show, see [11] that there exists a constant
cx — which is determined in terms of the transmitter
dynamics (51) — such that if the gain ¢ > c,, then the
error dynamics (55) are uniformly exponentially sta-
ble. In fact, this result follows by transforming (55) to
an associated Hill equation and as a result the stability
turns out to be rather slow. At the same time, the lower
bound from Huijberts et al. [11] may be rather conser-
vative.

The example of controlled synchronization reveals
that the problem to find a suitable (output) feedback
controller that achieves synchronization of transmitter
and receiver will in general become difficult, or even
impossible to solve. On the other hand, a systematic
analysis that parallels the different cases reviewed in
Section 2 may lead to other solutions. For instance,
this is true for Lur’e systems, with a transmitter system
of the form

X =Ax+ ¢(Cx), (56)
y = Cx, (57)
and receiver dynamics

X = AX + ¢(Cx) + Bu. (58)

It follows that provided the pair (A, C) is detectable,
as well as (AT, BT) is detectable (or equivalently,
(A, B) is stabilizable) then there exists a (linear)
dynamic output feedback of the form (50) such that
the two systems asymptotically synchronize. Re-
call that detectability of the pair (A, C) requires,
instead of the observability condition (20) that the
matrix Aj; restricted to the largest A-invariant sub-
space in the kernel of C, should be asymptotically
stable. For further details and insight in the controlled
synchronization problem the reader is referred to
[11].

5. Epilogue

We have tried to give a dynamical control view
on synchronization. All in all, it is felt that nonlinear
control may provide some useful tools to address cer-
tain synchronization problems. On the other hand, in
many cases, a thorough study of certain time-varying
dynamical systems is required and it may be con-
cluded that further research along these lines requires
knowledge from both dynamical systems and non-
linear control theory. The review as presented here
gives only a partial view on synchronization. There
are numerous variants of synchronization defined in
the literature, of which one could mention, phase syn-
chronization, partial synchronization and generalized
synchronization, see [21] or [3] where a general defi-
nition of (controlled) synchronization is proposed. In
the study of synchronization several elements from
control theory turn out to be relevant. This includes
observers (see Section 2), filtering and robustness
(Section 3) and feedback control (Section 4), but also
further aspects as system inversion, cf. [7] or system
identification, cf. [10]. The observer ideas as are put
forward here, are quite common in standard control
system design. For feedback regulation of an exper-
imental or industrial plant often it is not possible to
use state feedback, since the state of the system is
partially measured. A standard approach to avoid this
problem is to replace in the state feedback controller
the state vector by an estimate, which is derived from
an observer. Even in simple PD controllers one needs
a numerical differentiator (a kind of reduced observer)
to obtain the derivative of the output. It should be clear
that synchronization problems can be treated in other
domains too. In particular, for discrete-time systems
various results more or less parallel the material from
the foregoing sections. Even for transmitter/receiver
dynamics described by partial differential equations
one may expect some results along these lines, see,
e.g. [5] for a specific example of synchronizing pde’s.
Likewise, synchronization with time-delayed feed-
back has also been studied in [5]. Synchronization
has numerous potential applications running from
coordination problems in robotics to mechanisms for
secure communications. Precisely, the latter area was
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mentioned in [22] as a potential field of application,
although sofar much work remains to be done here.
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