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a b s t r a c t

We derive the universal collapse law of degree 1 equivariant wave maps (solutions of the sigma
model) from the 2 + 1 Minkowski space–time, to the 2-sphere. To this end, we introduce a nonlinear
transformation fromoriginal variables to blowupones. Our formal derivations are confirmedbynumerical
simulations.
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1. Introduction

In this paper, we investigate the phenomenon of collapse of
degree 1 equivariant wave maps from the 2 + 1 Minkowski
space–time, M2+1, to the 2-sphere, S2. Besides purely mathemat-
ical interest and relation to the σ -model of particle physics, the
study of the blowup phenomena for suchmaps is motivated by the
recent efforts to understand the singularity formation in general
relativity [1].

A wave map,Φ , from a (d+ 1)-dimensional Minkowski space–
time, Md+1, with the Minkowski metric η = diag(1,−1, . . . ,
−1), to a Riemannian manifold, N , with a metric (gab), is a critical
point of the action functional, given as

S(Φ) :=
1
2

∫
Md+1

⟨∂µΦ, ∂
µΦ⟩,

andknownas theσ -model. Here ⟨∂µΦ, ∂
µΦ⟩ is the Riemann scalar

product inN , which, in local coordinates, is gab∂µΦa∂µΦb, as usual,
∂µ =

∂
∂xµ and ∂µ := ηµν∂ν , and we assume the summation over

repeated indices µ = 1, . . . , d+1, a, b, c = 1, . . . , dim(N), i, j =
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1, . . . , d. Critical points of S(Φ) satisfy the Euler–Lagrange
equation

∂µ∂
µΦa

+ Γ a
bc(Φ)∂µΦ

b∂µΦc
= 0,

where Γ a
bc(Φ) is the Christoffel symbols on N . This system of

nonlinear PDEs is Hamiltonian, and in particular has conserved
energy, E(Φ) :=

1
2


Rd gab∂iΦa∂ iΦb, and is scale invariant in the

sense that ifΦ(x) is a solution then so isΦ(λx). The energy, E(Φ),
is transformed under scaling as

E(Φλ) = λ2−dE(Φ),

whereΦλ(x) = Φ(λx). Thus the case d = 2 of interest for us is the
energy critical.

For a map, Φ , to have finite energy, it should converge to a
constant at infinity. In this case for each moment of time, t,Φ can
be extended to a continuous map from Sd to N taking the point
at infinity to the limit of Φ(x) at the spatial infinity. Then one can
define the degree, degΦ , as the homotopy class ofΦ as amap from
Sd to N . This degree is conserved under the dynamics generated by
the Euler–Lagrange equations above.

In the most important case N = G/H , where G is a compact
Lie group and H is its subgroup, specifically, G = SO(n + 1)
and H = SO(n), so that N = Sn. This is exactly our case, with
d = n = 2, i.e.Φ : M2+1

→ S2, and consequently the degree ofΦ
is an integer (the degree for maps from S2 to S2).

http://dx.doi.org/10.1016/j.physd.2011.04.014
http://www.elsevier.com/locate/physd
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If we consider S2 to be embedded in R3 in the standard
way, then Φ can be thought of as a map from R2+1 to R3,
satisfying |Φ| = 1, and the action can be written as S(Φ) =
1
2

 
R2 |∂0Φ|

2d2x − E(Φ)

dx0, where

E(Φ) =
1
2

∫
R2
∂iΦ · ∂iΦd2x

is the energy. (a · b denotes the dot product in R3) Moreover, the
degree is given by degΦ =

1
8π


ϵ ijΦ · (∂iΦ ∧ ∂jΦ)d2x, where

ϵ ij is the Levi-Civita antisymmetric symbol with ϵ12 = −ϵ21 =

1, ϵ11 = ϵ22 = 0, and one has the Bogomolnyi-type identity

E(Φ) = ±4π degΦ +
1
4

∫
|∂iΦ ± ϵijΦ ∧ ∂jΦ|

2d2x,

which implies that the minimizers in every homotopy class satisfy
self-dual/anti-dual equations, ∂iΦ± ϵ ijΦ∧∂jΦ = 0 (as well as the
Bogomolnyi-type inequalityE(Φ) ≥ 4π | degΦ|). For any degΦ =

k, these equations have explicit solutions (harmonic or anti-
harmonic maps), Φstat

k , given by Φstat
k (ρ, φ, t) = (Uk(ρ, t), kφ),

where (ρ, φ) are the polar coordinates in R2 and (ϕ, θ) are the
spherical coordinates in S2 and Uk(ρ) = 2 arctan ρk.

Among the maps of the degree k the simplest, most symmetric
maps are the ‘radially symmetric’ or equivariantmapswhich are of
the formΦk(ρ, φ, t) = (uk(ρ, t), kφ), where, to repeat, (ρ, φ) are
the polar coordinates inR2 and (ϕ, θ) are the spherical coordinates
in S2. Then the Euler–Lagrange equation for Φ reduces to the
equation:

ü = 1u −
k2

2ρ2
sin(2u) (1)

for uk. Here∆ is the 2D spherical Laplacian. This equation inherits
the key properties of the original equation forΦ , mentioned above:
scaling invariance, and existence of the static solutions, Uk(ρ) =

2 arctan ρk, minimizing the static energy. Moreover, degΦk =

Q (uk) = k, where

Q (u) :=
1
π
(u(∞)− u(0)).

Numerical studies of Eq. (1) led to a conjecture that large energy,
degree-one initial data develop singularities in finite time and the
singularity formation has the universal form of adiabatic shrinking
of the degree-one harmonic map from R2 to S2 [2]. Later, it was
shown by Struwe [3] that the existence of a nontrivial harmonic
map is in fact the necessary condition for blowup for 2 + 1
equivariant wave maps. In this paper, we address the question
of the dynamics of the blowup process. We show that there is
0 < t∗ < ∞ such that, as t → t∗, we have on bounded domains
in R2

u(ρ, t) ≈ U(ρ/λ(t)),

where U(ρ) = U1(ρ) is the profile of the degree 1 equivariant,
static (and in particular harmonic) map, minimizing static energy
(see below), and the scaling parameter λ(t), satisfies the following
second order ODE:

λλ̈ =
λ̇2

ln


a
λλ̈

 , with a = (1.04)2e−2
≈ 0.146. (2)

We expect that, proceeding as in [4], we can show that the error
term in the above relation is O(λ̇2).

Note that Eq. (2) shows that if λ̇|t=0 < 0, then λ̇ < 0, λ̈ > 0
for t > 0 and therefore λ and |λ̇| decrease as t → t∗. Since λ̇2 is
the small parameter in our analysis (adiabatic regime), our
approximation improves as t → t∗.
Fig. 1. For a numerical solution that blows up at time t∗ we plot y = ln λ(t)
t∗−t

as a function of x = − ln(t∗ − t) (circles) and compare it with the analytic
formula y = f (x) =

1
2 ln(a) −

√
x + b, where a = 0.146 and b is a free (non-

universal) parameter. Fitting b we get an excellent agreement between numerical
and analytical results.

An approximate solution of Eq. (2) with two free parameters
(constants of integration), t∗ and c , is (see Section 7 below)

√
a(t∗ − t) = λeln

1/2( c
λ ) + c

√
π

2
e1/4

×


1 − Φ


−1/2 + ln1/2

 c
λ


, (3)

where Φ(x) ≡ erf(x) is the Fresnel integral [5]. An exact solution
of Eq. (2) is obtained in Section 7 (see Eq. (80)). A comparison
of the leading term of this solution with a numerical solution of
Eq. (1) is given in Fig. 1. (The initial datum for the solution shown
in the plot was u(0, ρ) = Aρ3e−(ρ−2)2 , ∂

∂t u(0, ρ) = 0. The scaling
factor λ(t) was read off from the formula ∂

∂ρ
u(t, 0) = 2/λ(t). The

blowup time was simply taken as the last moment of time before
the code crashed.) This figure shows that the two resulting curves
are indistinguishable for times sufficiently close to the blowup
time.

Observe that like Eqs. (1) and (2) is a Hamiltonian equation. Its
Lagrangian is

L := h(λ̇)− ln λ, (4)

where the function h is defined by h′′(x) = −1/(af −1(x2/a))with
f (x) = x ln(1/x) (see Section 8).

The localwell-posedness for thewavemapequations in Sobolev
spaces was proven in [6–8], while the global well-posedness for
small initial conditions, in [9–14] (see also [15–22,10,23,24]). The
research on the problem of blowup for thewavemaps startedwith
numerical work [2,25–27]. (We do not review here related works
for nonlinear wave equations.)

The first numerical evidence for singularity formation for 2+ 1
equivariant wave maps to the 2-sphere was given in [2]. In this
paper, (concerned only with k = 1 homotopy) the authors showed
that blowup has the form of adiabatic shrinking of the harmonic
map and formulated conjectures about blowup for large energy,
blowup profile and energy concentration and that λ(t)/(t∗ −

t) must go to zero. As was already mentioned, it was shown
rigorously in [28] that the existence of a stationary solution is
a necessary condition for the blowup to take place. The blowup
scenarios were further numerically investigated in [29,30] (see
references therein for additional works).

The first rigorous results on the blowup rate and profile were
obtained in [31,32]. In particular, [31] has obtained the lower
bound on the contraction rate λ(t) for k ≥ 4 wave maps. As it
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turned out this lower bound conforms exactly to the dynamical
law derived for the 4 + 1 Yang–Mills k = 1 equivariant solutions
in [4] using a formal but careful analysis, explained below in
this introduction, justified by numerical computations. (Earlier
numerical analysis for the latter model was announced in [33]
and described more completely in the survey [34].) (It was noticed
in [31] (see below), that the k ≥ 2wavemap equation are similar to
the 4+ 1 Yang–Mills one for k = 1.) Finally, for each b > 1/2, [32]
has constructed special solutions of the k = 1 equivariant wave
map equation, Eq. (1) with k = 1, which blow up at the rate λ(t)
∼ (t∗ − t)1+b.

Eq. (1) belongs to a general class of semilinear wave equations
in R2+1 of the form

ü = 1u −
k2

ρ2
f (u). (5)

In the case of f (u) =
1
2 sin(2u), Eq. (5) is, aswas alreadymentioned,

the equation for the profile of the equivariant wave map from the
2 + 1 Minkowski space–time of degree k, R2+1, to the 2-sphere,
S2. More generally, (5) is satisfied by equivariant maps for the
case when N is the surface of revolution with the metric g :=

du2
+ g2(u)dϕ2, where g(u) is related to f (u) as f (u) = g(u)g ′(u).
In the case of k = 2 and f (u) =

1
2u(u

2
− 1) the corresponding

equation,

ü = 1u −
2
ρ2
(u2

− 1)u, (6)

is related to the equation for equivariant Yang–Mills fields of
degree 1 in the 4 + 1 dimensions.

Note that
(i) Eq. (5) is invariantwith respect to the scaling transformation,

u(ρ, t) → u

ρ

λ
,
t
λ


;

(ii) Eq. (5) can be presented as a Hamiltonian system with the
standard symplectic form and the Hamiltonian

H(u, v) :=

∫
∞

0


1
2
v2 +

1
2
|∇u|2 +

k2

ρ2
F(u)


ρdρ, (7)

with F ′(u) = f (u). The scaling properties of the Hamiltonian
H(u, v) imply that the dimension d = 2 is the critical dimension
for Eq. (5). This is the dimension treated in this paper.

We assume now that f (u) is a derivative of a double-well
potential F(u), i.e. F(u) is nonnegative and has at least two global
minima, say at a and b for some b > a, with F(a) = F(b) = 0, and
no minima between a and b (F(u) =

1
2 sin2 u and a = 0, b = π

in the case of f (u) =
1
2 sin(2u) and F(u) =

1
2 (u

2
− 1)2 and a =

−1, b = 1 in the case of k = 2 and f (u) =
1
2u(u

2
−1)). In this case,

Eq. (5) has the following features:

(A) For each k ∈ N, Eq. (5) has static solutions, Uk(ρ) and U−k(ρ)

= −Uk(ρ); they have topological degrees Q (Uk) = k and
Q (U−k) = −k.

(B) For k = 1, the solution U1(ρ) is monotonically increasing from
a to b, while U−1(ρ) is monotonically decreasing from a to b.

(C) The solution, Uk(ρ), is a minimizer of the static energy func-
tional E(u) under the constrain, Q (u) = k, on the topological
charge.

(D) Eq. (5) conserves the topological charge Q (u) :=
1

b−a (u(∞)−

u(0)).
Existence of the solutions Uk(ρ) follows from the Bogomolnyi
argument; see above. The solutions U1(ρ) and U−1(ρ) are called
the kink solution and anti-kink solution, or simply kink and anti-
kink, respectively. Since the analysis for k < 0 can be obtained
from the analysis for the case k > 0 by simply flipping the signs,
in what follows we assume that k > 0. Note that though Eq. (5) is
scale invariant, its static kink solution Uk(ρ) are not. Hence Eq. (5)
has an entire family,Uk


ρ

λ


, of kink solutions (symmetry breaking).

Fromnowonwe concentrate on the kink solution,U1(ρ) and omit
the subindex 1: U1(ρ) ≡ U(ρ).

There is a feature of Eq. (5) which is not apparent at the first
sight but which plays an important role in our analysis of the
collapse. The fact that the kink, U(ρ), breaks scale invariance
manifests itself in appearance of the dilation zero mode

ζ (ρ) :=
1
2
ρ∂ρU(ρ).

This is a zero eigenfunction, Lρζ = 0, for the linearization operator

Lρ = −
1
ρ

∂

∂ρ


ρ
∂

∂ρ


+

1
ρ2

f ′(U(ρ)) (8)

(negative Fréchet derivative) for the r.h.s. of (5) around U(ρ). This
zeromodepresents an obstruction to solving Eq. (5) perturbatively,
starting with U(ρ), which can be resolved by a modulation theory,
provided ζ is an L2 function, i.e. one can use a Hilbert space spectral
theory.

Thus equations of the form (5) can be organized in two classes
according to which of the following two properties takes place

(i) ζ is in L2
(ii) ζ is not in L2.

The Yang–Mills equation, (6), belongs to the first class while the
wave map equation, (1), belong to the second. Indeed, the kink
solution for (6) isU(ρ) =

1−ρ2

1+ρ2
and the corresponding zeromode is

ζ (ρ) =
4ρ2

(1+ρ2)2
(see [34,4]). For Eq. (1)with k = 1 the kink solution

is

U(ρ) = 2 arctan ρ,

while the scaling zero mode is

ζ (ρ) :=
1
2
ρ∂ρU(ρ) =

ρ

1 + ρ2
.

Clearly, ζ is L2 in the former case and is not L2 in the latter case.
(This is possible due to the fact that the operator L has no spectral
gap: σ(L) = σcont(L) = [0,∞) (see below). The fact that there is a
problemwith themodulation approach due to the nonintegrability
of the zero mode was pointed out by Bizoń in 2001, [35].)

Note that Uk(ρ) = 2 arctan(ρk) and the corresponding zero
mode is square-integrable for k > 1. Thus, in this case, we expect
that at least the formal analysis of [4] of the Yang–Mills equation
should go through. (Higher degree equivariant, static solutions for
theYang–Mills equations in 4+1dimensions, knownas instantons,
can be found in [36,37].)

We are interested in solution with initial conditions near the
kink manifold

Mkink := {U(ρ/λ)|λ > 0}.

Let S(u) =
  1

2‖u̇‖
2
− V (u)


dt , where V (u) :=

  1
2 |∇u|2 +

1
ρ2

F(u)

, with F ′(u) = f (u), be the action for the Eq. (5). The ef-

fective action S(Uλ) on the family Uλ(ρ) := U(ρ/λ) (the ‘effective
action’ of λ) is equal to

S(Uλ) =

∫
{2λ̇2‖ζ‖2

− V (U)}dt.



1314 Yu. N. Ovchinnikov, I.M. Sigal / Physica D 240 (2011) 1311–1324
Here and in what follows λ̇ =
∂λ
∂t . The fact that the square integra-

bility of the zeromode ζ plays an important role in analysis of such
solutions can be gleaned from the observation that the effective
action S(Uλ) diverges, if ζ ∉ L2. (For a connection to the geodesic
hypothesis see [38,39].)

We present heuristic arguments motivating our approach. It is
natural to guess that for an initial condition close to the manifold
Mkink the solution evolves along this manifold. Let U


ρ

λ(t)


be the

projection of the solution on this manifold. If for this projection
λ(t) → 0 as t → t∗ for some t∗, then the solution collapses at the
time t∗. With this in mind, we look for solutions to Eq. (5) in the
form
u(ρ, t) = U(x)+ w(x, t), (9)
where x = ρ/λ, a blowup variable, with λ a slowly varying
function of time t (we do not pass to the blowup time variable).
Note that while in a standard approach the scaling, λ, is fixed
at the very beginning (with corrections at certain scales possibly
considered later on) we leave it free and we look for a differential
equation for λ which guarantees that |w| ≪ 1. However, this
simple procedure which works in the case of the Yang–Mills
equation mentioned above (see [4,31]) does not work in the
present case as we explain below.

Note that if ζ ∈ L2, then λ(t) is uniquely determined by the
orthogonality condition
⟨ζ ,w⟩ = 0. (10)
If ζ ∉ L2, then this condition is not well defined unless we assume
w belongs to a space of sufficiently fast decaying functions.

Substituting decomposition (9) into (5) leads to the equation for
the functionw and parameter λ:

Lxw + F(w) = −λ2
∂2U
∂t2

, (11)

where F(w) absorbs higher order terms

F(w) = λ2 ∂

2w
∂t2

+ N(w),

N(w) = nonlinearity inw


and Lx is the linearization operator
for the r.h.s. of (5) around U(x) given by (8). The operator Lx is
self-adjoint. The scaling zero mode, ζ , is a zero mode of this
operator: Lxζ = 0. Since ζ is positive and not L2 we conclude by
the Perron–Frobenius theory that σ(Lx) = [0,∞) and 0 is not an
eigenvalue of Lx.

We compute explicitly

λ2
∂2U
∂t2

= λ2[−2∂t(λ̇λ−1)ζ + 2(λ̇λ−1)2x∂xζ ]

= −2λ̈λζ + 2λ̇2(ζ + x∂xζ ). (12)
We multiply Eq. (11) scalarly by ζ (x). If ζ is not L2 one can show
using a limiting procedure that ⟨ζ , Lxw⟩ = 0, provided w = o(x)
and ∂xw = o(1) at ∞. Thus we obtain

λ2

ζ ,
∂2U
∂t2


+ ⟨ζ , F(w)⟩ = 0. (13)

Following [4] we try to develop a perturbation theory in the
small parameter λ̇2 assuming that term λλ̈ is of the order o(λ̇2)
(and λ̇ < 0) and similarly for higher order time derivatives ofλ, e.g.
∂t(λλ̈) = O(λ̇3), etc. Furthermore, if our assumption that |w| ≪ 1
is correct and the integral in ⟨ζ , F(w)⟩ is convergent, then we can
drop the term ⟨ζ , F(w)⟩ in (13). Hence we obtain in the leading
order O(λ̇2)

λ̇2⟨ζ , ζ + x∂xζ ⟩ = 0. (14)
Considering the integral on the l.h.s. over a bounded domain and
integrating by parts one shows that the inner product on the l.h.s.
is

1/2 lim
x→∞

(x2ζ 2(x)). (15)
For Eq. (6), this is 0 so we can solve Eq. (11) in the leading order,
w = −λ̇2L−1(ζ + x∂xζ ). Plugging this result into Eq. (13) and
keeping only the terms up to the order O(λ̇4), we obtain the
equation for scaling dynamics,

λλ̈ =
3
4
λ̇4, (16)

in the leading order O(λ̇4) (see [4,31]). Next, in order to obtain a
correction to this equation, we use (13) at the order O(λ̇6) to solve
Eq. (11) to the order O(λ̇4) and plug the result to (13). However, at
this stepwe run into logarithmically divergent terms. To overcome
this problem we use a multiscale expansion, by introducing an
additional scale at infinity (see [4]).

For Eq. (1) with k = 1 we have limx→∞(x2ζ 2(x)) = 1 and so
we go to the next term, −2λ̈λ‖ζ‖2, and discover that it diverges
logarithmically. Thus for Eq. (1)with k = 1 one runs into a problem
right away. This shows that decomposition (9) is incompatiblewith
the condition |w| ≪ 1.

The problem for Eq. (1) with k = 1mentioned above can be also
seen in a different but related way. Let us try to solve Eq. (11) by
perturbation theory. In the leading order we drop the term F(w) to
obtain the leading order approximation to the solution:w = L−1ϕ,
where ϕ = −λ2 ∂

2U
∂t2

and L−1 is understood as the Green function
of the equation Lw = ϕ (see Section 3). It is easy to check, using
Eqs. (37)–(38) of Section 3, that if λ̈ ≠ 0 then the function
L−1ϕ grows at infinity as x ln x, and a straightforward perturbation
theory fails. (Not only the correction w is large at ∞, its energy is
infinite.)

The point here is that the function U(ρ/λ) is not a good
adiabatic solution to Eq. (1) with k = 1:

λ2

∂2t U(x)−∆ρU(x)+

1
2ρ2

sin(2U(x))


= −2λ̈λζ (x)+
4λ̇2x

(1 + x2)2
, (17)

where x := ρ/λ and where we used (12) and the relation ζ +

x∂xζ = 2x(1 + x2)−2. The r.h.s. is not L2. The problematic term
is 2λ̈λζ (x). In particular, it leads to the logarithmically divergent
term, 2λ̈λ‖ζ‖2 in the orthogonality condition. Hence, one has to
find a better leading term.

We deal with the problem above by introducing instead of
the linear, one-parameter transformation, ρ → ρ/λ, a nonlinear,
three-parameter transformation, ρ → f (ρ, λ, α, β), chosen so
that U(f (ρ, λ, α, β)) becomes a better approximate solution to
Eq. (1) with k = 1 thanU(ρ/λ). In particular, the problematic term
2λ̈λζ entering the r.h.s. of Eq. (17) is canceled and therefore the
large ρ divergence in Eq. (13) mentioned above is eliminated.

Thus, instead of (9), we look for solutions of Eq. (1) in the form

u(ρ, t) = U(y)+ w(y, t). (18)

We consider initial conditions close to U(y) ≡ U(f (ρ, λ, α, β))
(we do not specify the norm, the latter must be determined by
a rigorous analysis; see e.g. [31]). After this we proceed as above
with Eq. (9). The conditions |w| ≪ 1 and w → 0 at ρ → ∞

and constraints on the energy (7) and its fluctuations imply the
differential equation (2) on the parameter λ = λ(t). We expect
that proceeding as in [4] one can obtain corrections to Eq. (2).

The paper is organized as follows. In Section 2 we introduce
a change of variables, ρ → f (ρ, λ, α, β), depending nonlinearly
on the original variable ρ and on the scaling parameter λ−1 (and
depending on additional parameters α, β). This is our main new
idea. In Section 3 we derive, modulo some technical details which
are provided in Appendices B and C, an approximate solution to
Eq. (1) with k = 1. In Sections 4 and 5 we use an orthogonality
condition of the type of (10), the smallness condition on energy
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fluctuations and the minimum condition on the energy of the
approximate solution in order to find our main equation on the
scaling parameter λ, Eq. (2). In Section 6 we find exact and
approximate solutions of Eq. (2), and in Section 7 we show
that this equation is Hamiltonian. In Appendices A–E we provide
technical calculations used in the main text and explanations of
the numerical approaches.

2. Nonlinear blowup variables

In this section we introduce a nonlinear, three-parameter
(scaling) transformation of the independent spatial variable ρ :

ρ → y = y(x, λλ̈, α, β), where x := ρ/λ and α and β are free
parameters to be chosen. This replaces the standard, linear, one-
parameter transformation, ρ → ρ/λ. Write

v(y, t) = u(ρ, t), where y = y(x, λλ̈, α, β). (19)

In the new variables, Eq. (1) with k = 1 becomes

−
∂2v

∂y2
−

1
y
∂v

∂y
+

sin(2v)
2y2

= Ψ (v), (20)

where

Ψ (v) :=
x2

y2


2y
x
χ + χ2


∂2v

∂y2
+


2χ
x

+
∂χ

∂x


∂v

∂y

− λ2
∂2v

∂t2


. (21)

In the last expression, ∂2/∂t2 is the total derivative in t (i.e. taking
into account that y depends on t) and the function χ is defined
according to the equation

∂y
∂x

=
y
x

+ χ. (22)

Eq. (20) is our transformed equation. Initial conditions for (20)
are chosen to be close, in an appropriate norm, to U(y) ≡

U(y(x, λλ̈, α, β)), where, recall, U(ρ) is the static – kink – solution
to Eq. (1). To simplify the exposition we take the initial condition
to be just U(y(x, λλ̈, α, β)).

We look for solutions of Eq. (20) in the form

v(y, t) = U(y)+ w(y, t), (23)

wherew is a small correction. We plug this decomposition into Eq.
(20) to obtain

Lyw + N(w) = Ψ (U + w), (24)

where operator Ly is defined in Eq. (8), N(w) is the nonlinear in w
term defined by this equation and the function Ψ (v) is defined in
(21).

To find an approximate solution of the latter equation we drop
the nonlinearity, N(w), and the termw in Ψ (U +w) to obtain the
leading order equation

Lyw = ψ, (25)

where ψ(y, t) := Ψ (U(y)). The latter function is given explicitly
by

ψ(y, t) :=
2x2

y2(1 + y2)


4χ

x(1 + y2)
+


∂χ

∂x
−

2χ
x


−

2yχ2

1 + y2

+
2λ2y
1 + y2


∂y
∂t

2

− λ2
∂2y
∂t2


. (26)

Above we omitted the term λ2 ∂
2w
∂t2

. To justify this we show in
Section 6, (65), that treating this term as a perturbation yields
λ2 ∂
2w
∂t2

= O

λ̇4 1

y + λ̇2λλ̈
ln y
y + λ̇4λλ̈y3 ln(

√

λλ̈y)

, for 1 ≤ y ≤

ycr, and similarly for other terms in Ψ (w), which we dropped.
The last two terms in Eq. (26) come from λ2

∂2U(y)
∂t2

and they
contain a slowly decaying at infinity term; see (12). To compute
these terms in the leading order we replace y by x = ρ/λ to obtain

2λ2x
1 + x2


∂x
∂t

2

− λ2
∂2x
∂t2

=
2λ2x
1 + x2

(λ−1λ̇x)2 + λ2

λ−1λ̈x − 2(λ−1λ̇)2x


= −λ̇2

2x
1 + x2

+ λλ̈x.

We choose χ so that ∂χ/∂x − 2χ/x removes the undesirable
term, xλλ̈. In other words, we would like χ to solve the equation

∂χ

∂x
− 2

χ

x
= −xλλ̈. (27)

The solution of this equation is χ = −λλ̈x2 ln
√

λλ̈
β ′ x


, for any

constant β ′. This and the definition of χ , (22), gives the equation

∂y
∂x

−
y
x

= −λλ̈x2 ln

√

λλ̈

β
x


, (28)

which can be solved approximately to give the transformation
y = x −

λλ̈
2 x3 ln

√

λλ̈
β

x


in the leading approximation, say for

x ≪ (λλ̈)−1. We extend this transformation to a two-parameter
family by introducing an extra parameter α, which will be used to
determine an appropriate value for the parameterβ byminimizing
the energy under obtained constraints.

We define y = y(x, λλ̈, α, β) as the solution of the equation
y = x −

λλ̈

2
x3 ln

√

λλ̈

β
yαx1−α


if x ≤ xcr,

y = 2ycr − x +
λλ̈

2
x3 ln

√

λλ̈

β
yαx1−α


if x > xcr,

(29)

where 0 ≤ α ≤ 1, β > 0, xcr = xcr(λ, α, β) and ycr = ycr(λ, α, β)
solve the equations

∂

∂x


x −

λλ̈

2
x3 ln

√

λλ̈

β
yαx1−α


= 0,

y = x −
λλ̈

2
x3 ln

√

λλ̈

β
yαx1−α


. (30)

(In the first equation y is fixed.)
First we note that Eqs. (30) have a unique solution, (xcr, ycr).

Indeed, we define γ = γ (α, β) =

√

λλ̈
β

yαcrx
1−α
cr . Then (30) can

be rewritten as 1 − 3 λλ̈2 x2cr ln γ − (1 − α) λλ̈2 x2cr = 0 and ycr =

xcr

1 −

λλ̈
2 x2cr ln γ


. Solving the first of these equations for xcr and

substituting the result into the second equation gives

xcr =


2
λλ̈

1/2

(3 ln γ + 1 − α)−1/2 (31)

and

ycr =


2
λλ̈

1/2 2 ln γ + 1 − α

(3 ln γ + 1 − α)3/2
. (32)
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The last two equations imply that γ = γ (α, β) =

√

λλ̈
β

yαcrx
1−α
cr

satisfies the equation

γ
√
2

(3 ln γ + 1 − α)1/2+α

(2 ln γ + 1 − α)α
= β−1. (33)

This equation has a unique solution for each α ∈ [0, 1], β > 0
(note that the l.h.s. is monotonically increasing in τ := ln γ from 0
at τ = −

1−α
3 to ∞ at τ = ∞) and therefore so does (30).

Finally, we show that, for ln γ +
1
2 > α, where γ is the solution

of Eq. (33), Eq. (29) has at least one solution and, in the case it has
more than one solution, make a choice among the solutions. For
each fixed x ≤ xcr, the r.h.s. of (29) is decreasing in y ≥ 0 from ∞

to−∞. Hence Eq. (29) has a unique solution for y > 0 for any fixed
x ≤ xcr. This solution is monotonically increasing in x and reaches
ycr at xcr.

Consider x ≥ xcr and let f (x, y) := the r.h.s. of (29) for x ≥ xcr.
For x ≥ xcr fixed, y − f (x, y) → ∞, as y → 0 or y → ∞.
Hence it has a minimum. Computing the derivatives ∂yf (x, y) and
∂2y f (x, y), we conclude that y − f (x, y) has a unique critical point

in y at y = α λλ̈2 x3 and this point is a minimum point. Therefore,
y = f (x, y) has at most two solutions for y for each fixed x ≥ xcr.
Since y = f (xcr, y) has a solution y = ycr and ∂yf (xcr, ycr) − 1 =

−2(ln γ +
1
2 − α)(2 ln γ + 1− α)−1 < 0, and since the minimum

value of y− f (x, y) (in y) decreases with x, we see that y = f (x, y),
i.e. (29), has exactly two solutions for each fixed x ≥ xcr, with ycr
being the larger solution for x = xcr. Of these two solutions we
choose the one, y = y(x), satisfying ycr = y(xcr), i.e. the larger one.
A simple computation shows that among the solutions, y = y(x),
of y = f (x, y), larger one increases while smaller one decreases.

The solution y = y(x, λλ̈, α, β), obtained above, increases
monotonically in x for x ≥ 0. Indeed, ∂y

∂x > 0 for x sufficiently small
and sufficiently large and has a single zero at x = xcr and therefore
∂y
∂x > 0 for all x ≥ 0, x ≠ xcr.

With the transformation (29), we show in Appendix B that

ψ(y, t) = O

λ̇2

ln(

λλ̈y)λλ̈y2

−1
y−1


for y ≥ ycr, (34)

and, in particular, it decays sufficiently fast at infinity.
Following [4] we develop a perturbation theory in the small

parameter λ̇2 assuming that term λλ̈ is of the order o(λ̇2) (and
λ̇ < 0) and similarly for higher order time derivatives of λ, e.g.
∂t(λλ̈) = o(λ̇3), etc.

3. Approximate solution of Eq. (25)

In this section we find an approximate solution to Eq. (25).
Recall that y is a function of x := ρ/λ given in (29) and the operator
Ly entering (25) has a zero mode:

Lyζ = 0. (35)

Multiplying Eq. (25) scalarly by ζ and using the self-adjointness of
the operator L (and some elementary limiting procedure) and (35),
we obtain∫

∞

0
dyy ζψ = 0. (36)

This is a (necessary) solvability condition for Eq. (25). It gives
an equation on the parameters λ, α and β . (Note that it is an
approximate solvability condition for the exact Eq. (24).)

So far we obtained one equation for the three parameters
λ, α and β . To derive another equation we analyze the solution
W (y, t) = L−1ψ to (25), with ψ satisfying (36), which is an
approximate solution to (24). (We denote the solution to (25) by
the capital W to distinguish it from solutions to (24).) Our goal in
the rest of this section is to isolate the leading contribution to W .
This will be used in the next section to derive the second equation
for the parameters.

To find L−1ψ we compute the Green function for the operator L.
Two linearly independent solutions of the homogeneous equation
Lw = 0 are

w1(y) =
y

1 + y2
and w2(y) =

y
2

−
1
2y

+
2y ln y
1 + y2

(37)

(the first of these solutions is just the scaling zero mode, ζ , the
second solution is found in Appendix A). Hence, by the ODE theory,
the general solution, W = L−1ψ , of Eq. (25) decreasing at infinity
is of the form

W (y, t) = c1w1(y)+ w1(y)
∫ y

0
w2(s)ψ(s, t)sds

−w2(y)
∫ y

0
w1(s)ψ(s, t)sds, (38)

where c is chosen to guarantee solvability of the equation to
the second order correction term or by minimizing the energy.
Since the function w2 is singular at y = 0, we use −w2(y) y
0 w1(s)ψ(s, t)sds in (38), rather than+w2(y)


∞

y w1(s)ψ(s, t)sds.
Since the function w2 grows at infinity, W is bounded only if the
condition (36) is satisfied.

We find the leading contribution to the solution W = L−1ψ of
Eq. (25). In what follows, we use results of Appendix B, where we
used the assumptions

0 < λλ̈ ≪ λ̇2 ≪ 1, λ∂t(λλ̈) = o(λ̇3),

λ∂t(λ̇
2) = o(λ̇3), β = O(1), (39)

and

time derivatives of α, β are small and can be neglected. (40)

Consider first the region y ≤ ycr ⇔ x ≤ xcr. It is shown in
Appendix B that in this region the function ψ can be written as

ψ := ψ1 + ψ2, (41)

where the functionsψ1 andψ2 satisfy for y ≪ ycr = O


1
√

λλ̈


≫ 1

the estimates (see Eqs. (105) and (106) and the text that follows)

ψ1(y, t) =
−4yλ̇2

(1 + y2)2


1 + O


λλ̈

λ̇2


and

ψ2(y, t) = O(λ̇2λλ̈y ln(

λλ̈y)) (42)

(as indicatedby these estimates, the functionsψ1(y, t) andψ2(y, t)
are localized on the scales y ∼ 1, and y ∼ ycr = O


1

√

λλ̈


≫ 1,

respectively).
Using that for y ≥ 1, w1(y) = O(1/y) (see (37)) this and using

(42), which implies in particular that ψ satisfies the estimate
ψ(y, t) = O


λ̇2

y3
+ λ̇2λλ̈y ln(

√

λλ̈y)

, we find that for 1 ≤ y ≪

ycr,

w1(y)
∫ y

0
w2(s)ψ(s, t)sds = O


λ̇2

ln y
y

+ λ̇2λλ̈y3 ln(

λλ̈y)


.

Next, using that for y ≥ 1, w2(y) = y/2 + O(ln y/y) and using
the estimates (42) for ψ1 and ψ2 in the domain y ≤ ycr, we find
that for 1 ≤ y ≪ ycr,

−w2(y)
∫ y

0
w1(s)ψ(s, t)sds

= −w2(y)
∫ y

0
w1(s)ψ1(s, t)sds + O


λ̇2λλ̈y3 ln(


λλ̈y)


= −

y
2

∫
∞

0
w1(s)ψ1(s, t)sds + O


λ̇2

y
+ λ̇2λλ̈y3 ln(


λλ̈y)


,
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where, in the second equality, we used thatψ1(y, t) = (λ̇2y−3) for
y ≥ 1 and therefore


∞

y w1(s)ψ1(s, t)sds = O

λ̇2

y2


. Hence, due to

(38), we have that for y ≪ ycr

W (y, t) = −
y
2

∫
∞

0
w1(s)ψ1(s, t)sds

+O

λ̇2

ln(y)
y

+ λ̇2λλ̈y3 ln(

λλ̈y)


. (43)

From the estimate (42), it is easy to see that∫
∞

0
w1(s)ψ1(s, t)sds ≍ λ̇2, (44)

i.e. the first expression on the r.h.s. of (43) is the leading term for
1 ≪ y ≪ ycr = O


1

√

λλ̈


.

4. Energy of the approximate solution and the equation on λ

We compute the energy of our approximate solution u(ρ, t) =

Uλ,α,β(ρ) + W (y), where Uλ,α,β(ρ) := U(y, t), with y = y(x,
λλ̈, α, β) andU defined in the Introduction, andwhereW = L−1ψ ,
the solution to Eq. (25) (see the previous section). Due to (7), the
energy functional is

E(u) =

∫
∞

0


1
2
u̇2

+
1
2
|∇u|2 +

1
2ρ2

sin2 u

ρdρ. (45)

Inserting the approximate solution (43) forW into this expression,
we obtain that E(Uλ,α,β + W ) = E(Uλ,α,β)+ δE1, with

δE1 = O(λ̇2y4cr)
∫

∞

0
w1(s)ψ1(s, t)sds

2

+ O(λ̇2). (46)

Furthermore, we have that

E(Uλ,α,β) = E(U)+ δE0 with δE0 = O(λ̇2 ln(1/λ̇2)). (47)

We require that the energy correction due to the fluctuation,W , be
much smaller than the one due to the modulation:

|δE1| ≪ |δE0|. (48)

Since


∞

0 w1(s)ψ1(s, t)sds ≍ λ̇2 and ycr = O


1
√

λλ̈


≫ O


1
|λ̇|


,

this implies that the integral in the leading term in the above
expression for δE1 must vanish:∫

∞

0
dyyζψ1 = 0, (49)

where, recall, ψ1 is given in Appendix B, Eq. (105). This gives an
implicit equation on the parameters λ, α, β .

In the leading order, we can replace y by x = ρ/λ (see the first
equation in (29)) and use (105), so that Eq. (49) becomes∫

∞

0
dxx

x
1 + x2


8λλ̈x

(1 + x2)2


ln

√

λλ̈

β
x


+ 1/2



+
4λ̇2x

(1 + x2)2


= 0. (50)

Computing the integrals in (50) (see Appendix B for detailed
computations), we obtain

λ̇2 + 2λλ̈


ln

√

λλ̈

β


+ 1


= 0. (51)

This is our explicit equation for the parameter λ. It depends on the
parameter β whose value we still have to determine. Since in the
leading approximation (y → x) the first equation on the r.h.s. of
(29) is independent of α, then so are the resulting Eqs. (50) and
(51). Eqs. (51) and (2) coincide, provided

a = β2 e−2. (52)

Clearly, solutions of Eq. (51) have the property (39) assumed
above. Moreover, if λ(0) > 0, λ̇(0) < 0, then, by Eq. (51), λ(t) >
0, λ̇(t) < 0, λ̈(t) > 0 and therefore λ̇(t)2 ≤ λ̇(0)2 for t > 0.
As t → t∗, |λ̇| decreases so that our approximation improves as
t → t∗.

Thus, it remains to find the value of the parameter β . This is
addressed in the next section.

5. Values of the parameters α and β

In this section we find the values of the parameters α and β .
We are interested in an adiabatic (very slow) evolution close to
the collapse time. This means that the energy has smallest possible
value. (The system lowers its energy by radiating excess energy
to infinity.) Hence we require that the leading approximation,
Uλ,α,β(ρ) := U(y(x, λλ̈, α, β)), to the solution of our equation
minimizes the energy under existing constraints. To find the
constraint we use the Eqs. (36) and (49) to derive an equation,
I(α, β) = 0, on the parameters α and β (see (61) below). Then
we find these parameters by minimizing the energy E(α, β) :=

E(Uλ,α,β) under the constraint I(α, β) = 0.
First we rewrite Eq. (36) as

 ycr
0 ζψydy+


∞

ycr
ζψydy = 0. Next,

using (49) and the estimate in (42) onψ1, we obtain
 ycr
0 ζψ1ydy =

−


∞

ycr
ζψ1ydy = O(λ̇2y−2

cr ) = O(λ̇2λλ̈). The last two equations and
decomposition (41) imply that, modulo O(λ̇2λλ̈),∫ ycr

0
ψ2ζydy +

∫
∞

ycr
ψζydy = 0. (53)

To find the leading approximation to the l.h.s. in this equation, we
use the expressions for the functions ψ and ψ2 given in (105)–
(107) in Appendix B. A little contemplation of these expressions
shows that the most important region in the above integral is
where y is of the order of ycr. Since ycr = O


1

√

λλ̈


≫ 1 (see

Eq. (32)), it is natural to pass in the integrals in (53) to the new
variables

x′
=


λλ̈x, y′

=


λλ̈y, (54)

where, recall, x and y are connected by (29). Note that (29) implies
that x′ and y′ are related by

y′
= x′

−
1
2
x′3 ln


1
β
y′αx′1−α


if x′

≤ x′

cr,

y′
= 2y′

cr − x′
+

1
2
x′3 ln


1
β
y′αx′1−α


if x′ > x′

cr,

(55)

where x′
cr :=

√

λλ̈xcr and y′
cr :=

√

λλ̈ycr are just numbers,

x′

cr =
√
2(3 ln γ + 1 − α)−1/2 (56)

and

y′

cr =
√
2

2 ln γ + 1 − α

(3 ln γ + 1 − α)3/2
, (57)

with the number γ being the solution to Eq. (33). Using this change
of variables it is easy to show that∫ ycr

0
ψ2ζydy +

∫
∞

ycr
ψζydy = λ̇2I(α, β)+ O(λλ̈), (58)
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where the function I(α, β), given in (59), is, in fact, independent of
λ̇2 and λλ̈ and is given by the integral

I(α, β) = 2
∫ y′cr

0
dy′

x′6

y′5

1 +

αx′3
2y′


 ω′

− α
1 +

αx′3
2y′


−
(1 + σ ′)(3ω′

+ 1 − α)
1 +

αx′3
2y′

 −
αx′

2y′

σ ′2
1 +

αx′3
2y′

2 +
3α

1 +
αx′3
2y′


+

3y′(1 − α)

2x′
+

2(3ω′
+ 1 − α)y′


1 − α x′3

4y′



1 +

αx′3
2y′


x′


+ 2

∫
∞

y′cr

dy′
x′4

1 −
αx′3
2y′


y′4

 2σ ′2

y′


1 −

αx′3
2y′

 +
2σ ′

x′

+
x′

2


ασ ′2x′2

1 −
αx′3
2y′

2
y′2

+
6αx′

y′


1 −

αx′3
2y



− 3(1 − α)−

2

1 +

αx′3
y′

 
3ω′

+ 1 − α


1 −
αx′3
2y′

  . (59)

Here

ω′
:= ln


1
β
y′αx′1−α


, σ ′

= 1 −
x′2

2


3ω′

+ 1 − α

. (60)

This reduces Eq. (53), in the leading approximation in 1/ ln(1/λλ̈),
to the equation

I(α, β) = 0. (61)

The resulting integral can be computed numerically. In particular,
one can show that for α = 0, I(α = 0, β) = 1, independently of
the value of β . Thus we cannot take α = 0 in our transformation
(29).

We chose the parameters α and β which minimize the
energy E(α, β) := E(Uλ,α,β), where, recall, Uλ,α,β(ρ) :=

U(y(x, λλ̈, α, β)), given that Eq. (61), I(α, β) = 0, holds. To find
these minimizers, we use Eqs. (45) and U(ρ) = 2 arctan ρ to
rewrite the energy E(α, β) as

E(α, β) = 2
∫

∞

0
dρρ

1
(1 + y2)2


∂y
∂t

2

+


∂y
∂ρ

2

+
y2

ρ2


. (62)

We find numerically (see Appendix E for the analytical part) that
the energy E(α, β) is minimized on the curve I(α, β) = 0 at the
point

β0 = 1.04 and α0 = 0.65436. (63)

Note that the solvability condition ln γ +
1
2 − α > 0 (see the

paragraph after (33) is satisfied at this point: γ0 := γ (α0, β0) ≈

1.21 and ln γ0 +
1
2 − α0 ≈ 0.193 − 0.154 > 0.

This is a special point for the curve I(α, β) = 0. Our numer-
ics show that while the functions α = α(β) and β = β(α) de-
termined by the equation I(α, β) = 0 are double-valued, their
branches originate exactly at this point (and form a wedge there).
So the equation I(α, β) = 0 has a unique solution only for β = β0
or for α = α0 and has no solutions for β > β0 or for α < α0.

Substituting β = β0 = 1.04 into Eq. (51), we obtain the
following value for the parameter a:

a = 0.146.

This proves Eq. (2) with a = 0.146.
6. Justification of Eq. (25)

To justify Eq. (25), i.e. that the term λ2 ∂
2w
∂t2

can be dropped
from the r.h.s. of (24), we estimate this term in the leading order,
i.e. we estimate λ2 ∂

2W
∂t2

. Eqs. (38), (41) and (49) imply the following
expression for the general solution, W = L−1ψ , of Eq. (25), which
decreases at infinity:

W (y, t) = c1w1(y)+ w1(y)
∫ y

0
w2(s)ψ(s, t)sds

+w2(y)
∫

∞

y
w1(s)ψ1(s, t)sds −

∫ y

0
w1(s)ψ2(s, t)sds


, (64)

where, recall, c1 is chosen to guarantee solvability of the equation
to the second order correction term or by minimizing the energy.
Using (64), (39) and the estimates (97)–(100) of Appendix B on λ ∂y

∂t

and λ2 ∂
2y
∂t2

, we obtain after lengthy computations

λ2
∂2W
∂t2

= O

λ̇4

1
y

+ λ̇2λλ̈
ln y
y

+ λ̇4λλ̈y3 ln(

λλ̈y)


. (65)

We demonstrate these computations on estimating, say, the term
λ2 ∂

2

∂t2

w1(y)

 y
0 w2(s)ψ1(s, t)sds


for 1 ≪ y ≪ ycr. We have

λ2
∂2

∂t2


w1(y)

∫ y

0
w2(s)ψ1(s, t)sds


= λ2

∂2

∂t2
(w1(y))

∫ y

0
w2(s)ψ1(s, t)sds

+ 2λ
∂

∂t
(w1(y))λ

∂y
∂t
w2(y)ψ1(y, t)

+w1(y)


λ2
∂2y
∂t2

w2(y)ψ1(y, t)+ 2λ
∂y
∂t
w2(y)λ

∂

∂t
ψ1(y, t)

+

∫ y

0
w2(s)λ2

∂2

∂t2
ψ1(s, t)sds


. (66)

Using definitions (37) and (105) of w1, w2 and ψ1 and the
assumptions (39) on time derivatives of λ, we compute, for y ≫ 1,

λ
∂

∂t
w1(y) = O


1
y2
λ
∂y
∂t


, λ

∂

∂t
w2(y) = O


λ
∂y
∂t


,

λ2
∂2

∂t2
w1(y) = O


1
y

2

1
y
λ
∂y
∂t

2

−
1
y
λ2
∂2y
∂t2




and

λ
∂

∂t
ψ1(y, t) = O


λ̇2

y4

λ∂y∂t
+ |λ̇3λλ̈|y ln(


λλ̈y)


.

Next, using the estimates (97)–(100) of Appendix B on λ ∂y
∂t and

λ2
∂2y
∂t2

, we find for 1 ≪ y ≪ ycr

1
y
λ
∂y
∂t

= O(λ̇) and 2

1
y
λ
∂y
∂t

2

−
1
y
λ2
∂2y
∂t2

= O(λλ̈).

Similarly one estimates λ2 ∂
2

∂t2
ψ1(y, t). Finally, we note that

definition (37) and (105) of Appendix B imply that w1 = O


1
y


,

w2 = O(y). Inserting all these estimates into (66) and using
estimate (42) for ψ1, we arrive, for 1 ≪ y ≪ ycr, at

λ2
∂2

∂t2


w1(y)

∫ y

0
w2(s)ψ1(s, t)sds


= O


λ̇4

y
+ λ̇2λλ̈

ln y
y

+ λ̇4|λλ̈|y3 ln(

λλ̈y)


. (67)
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(To check ourselves, we see that in the domain 1 ≪ y ≪ ycr, w1 ∼

y−1
∼ x−1

= λρ−1 and therefore, e.g. λ∂tw1 ∼ λλ̇ρ−1
= λ̇x−1

∼

λ̇y−1.)
To obtain the next term in the perturbation theory for Eq. (24)

we write w = W + θ , plug this into (24) to obtain in the leading
order

Lyθ = −N(W )−
x2

y2
λ2
∂2W
∂t2

,

where, recall, the operator L is given in (8). Using the expression
for the inverse of L, given on the r.h.s. of (38), and estimates (43),
with (49) and (65), one can easily estimate θ and show that it is of
a higher order thanW .

7. Investigation of Eq. (2)

In this sectionwe find an approximate solution to Eq. (2) (which
is, up to a redefinition of the parameters, Eq. (51)). Iterating this
equation, we find, in the leading approximation, the following
equation

λ̈

λ̇
=

λ̇

λ ln(a/λ̇2)
. (68)

Solution of the Eq. (68) with two free parameters of integration,
c > 0 and t∗, is

√
a(t∗ − t) =

∫ λ

0
dxeln

1/2( cx ). (69)

Changing the variable of integration as ln
 c
x


= z2, we reduce

Eq. (69) for the parameter λ to the form Eq. (3) given in
Introduction.

Nowwe derive an exact expression for a general solution of (2).
We introduce the function f (x) := x ln(1/x). For 0 < x < e−1

this function has the inverse, f −1(x). Using this inverse we rewrite
Eq. (2) as

λλ̈

a
= f −1


λ̇2

a


. (70)

(Note that for x → 0, f −1(x) =
−x
ln x + · · ·, so in the leading

approximation of (70) gives (68).) Integrating equation (70) gives

ln λ = F(λ̇) where F(y) =
1
2

∫ y2
a dz

z
g(z), (71)

with g(z) := z/f −1(z). Using the equation f (f −1(y)) = y, or, more
explicitly, f −1(y) ln(1/f −1(y)) = y, we find that the function g(z)
satisfies the equation

g(z) = ln

g(z)
z


. (72)

Differentiating the latter equation, we find

g ′(z) = −
g(z)

z(g(z)− 1)
. (73)

Using this equation we integrate∫ x dz
z
g(z) = −

∫ x

dzg ′(z)(g(z)− 1)

= −
1
2
(g(x)− 1)2 + const. (74)

This gives

F(y) = −
1
4
(g(y2/a)− 1)2 + const, (75)

which together with Eq. (71) yields

g

λ̇2

a


= 1 + 2


ln
 c
λ


(76)
for some constant c. The latter equation can be integrated as
follows

√
a(t∗ − t) =

∫ λ

0

dx
g−1


1 + 2


ln
 c
x

1/2 . (77)

Nextwe find the function g−1(x). The definition of the function f (x)
implies f (e−x) = xe−x, which yields

xe−x

f −1(xe−x)
= x, (78)

which, in turn, leads to g(xe−x) = x, which finally gives the
expression

g−1(x) = xe−x. (79)

Now Eqs. (77) and (79) imply

√
a(t∗ − t) =

∫ λ

0
dx

e1/2+
√

ln( cx )
1 + 2


ln
 c
x

 . (80)

Our goal is to expand the r.h.s. by perturbation theory in powers of
(ln(c/λ))−1/2

≪ 1 to the second order. To this end, we change the
variable of integration as ln(c/x) = z2, to find

√
a(t∗ − t) =

√
2ce1/2

∫
∞

√
ln(c/λ)

dz
z

√
z + 1/2

ez−z2 . (81)

Next, we change the integration variable on the r.h.s. as z = β+ y,
where β :=

√
ln(c/λ) and expand the integrand as

β + y
√
β + y + 1/2

eβ+y−(β+y)2

=
eβ−β2β

√
β + 1/2

1 +
y
β

1 +
y

β+1/2

e−(2β−1)y−y2

=
eβ−β2β

√
β + 1/2


1 +

y
β


1 −

1
2

y
β + 1/2

+ O


y

β + 1/2

2


(1 − y2 + O(y4))e−(2β−1)y.

Note that e−β2
= λ/c. Hence for β =

√
ln(c/λ) ≫ 1 this gives

modulo O((ln(c/λ))−2) the equation
√
a(t∗ − t) =

λ
√
2[ln(c/λ)]1/4

e1/2+
√
ln(c/λ)

×

[
1 +

1
4
√
ln(c/λ)

−
1
32

1
ln(c/λ)

]
. (82)

Eq. (3) is an approximation for this exact expression, it differs from
the latter by a slowly varying factor which can be found in the next
approximation to (3).

8. Hamiltonian formulation

Eq. (2) is a Hamiltonian system. Indeed, it can be obtained from
the Lagrangian

L = h(λ̇)− ln λ (83)

where the function h is defined by

h′′(x) = −
1

af −1(x2/a)
(84)
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with f (x) = x ln(1/x) (see Section 5). Now the generalized mo-
mentum, Hamiltonian and energy can be found in the standard
way. In particular, the energy is given by

E = λ̇
∂L
∂λ̇

− L = λ̇h′(λ̇)− h(λ̇)+ ln λ. (85)

This is the energy conservation law. On the other hand, differenti-
ating Eq. (85) w.r.t. t , we obtain the equation of motion (2).

9. Conclusion

We presented detailed arguments that for initial conditions
close to the degree 1 equivariant, static wave map, the solutions
of the wavemap equation (σ -model) collapse in a finite time. Near
the collapse point the solutions have a universal profile given by
themodified degree 1 equivariant, staticwavemap depending on a
time-dependent parameter λ. This parameter describes the rate of
compression (scaling) of the collapse profile. We derived a second
order Hamiltonian dynamical equation for the scaling parameter,
λ. We also found approximate solutions of this equation. These
solutions are of a rather complex form. They are in excellent
agreement with direct numerical simulations of the wave map
equation. We expect that the set of initial conditions for which our
analysis works is open.

Note added in the proofs

A rigorous proof of Eq. (3), in the leading order and without
specifying the multiplicative constant, was achieved in e-print
[40], posted soon after the posting of this manuscript.
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Appendix A

In this appendix we find two linearly independent solutions of
linear homogeneous equation

Lxw = 0, (86)

which are used in order to find the Green function of the equation
Lw = g , and then we find the general solution of the latter
equation. The first solution of Lxw = 0 is the scaling zero mode ζ

w1 = ζ =
x

1 + x2
. (87)

The second solution w2 satisfies the inhomogeneous equation of
first order:

w1w
′

2 − w2w
′

1 =
1
x
. (88)

The standard solution of this equation is

w2 = w1z; z ′
= x +

2
x

+
1
x3

;

z = C +
x2

2
+ 2 ln x −

1
2x2

.

(89)
Setting C = 0, we obtain

w2 =
x
2

+
2x ln x
1 + x2

−
1
2x
. (90)

To obtain a general solution of the equation Lxw = g , we
rewrite it as a first order ODE

∂

∂x

w
v


=

0 1
1
x2


1 −

8x2

(1 + x2)2


−

1
x

w
v


− g


0
1


. (91)

Two linear independent solutions of (91) are
w1

w′

1


,


w2

w′

2


. (92)

By the method of variation of constants we look for a general
solution of inhomogeneous equation (91) in the formw
v


= c1


w1

w′

1


+ c2


w2

w′

2


(93)

where c1 and c2 are functions of x. Inserting (93) into Eq. (91), we
find
∂c1
∂x

= xw2g;
∂c2
∂x

= −xw1g, (94)

which together with (93) give the general solution to the equation
Lxw = g .

Appendix B

In this appendix we will find an explicit expression for the
inhomogeneous term ψ and use this expression to show Eq. (34).
In what follows we assume (39) and (40).

We consider separately two domains {y ≤ ycr} ≡ {ρ ≤ ρcr}

and {y ≥ ycr} ≡ {ρ ≥ ρcr}. First, we compute ∂y
∂t and ∂2y

∂t2
. Recall

the notation x := ρ/λ and

ω := ln

√

λλ̈

β
yαx1−α


, σ := 1 −

λλ̈x2

2
(3ω + 1 − α), (95)

and let

µ := 1 +
αλλ̈x3

2y
and ν := 1 −

αλλ̈x3

2y
. (96)

Now, we take time derivatives of Eq. (29) to obtain expressions
for λ ∂y

∂t and λ2 ∂
2y
∂t2

. We explain at the end only a derivation of one
of these expressions, with the remaining expressions obtained in
a similar way. Taking time derivatives of Eq. (29) in the domain
y ≤ ycr, we obtain

λ
∂y
∂t

= −λ̇x
σ

µ
+ O


ωx3λ

∂

∂t
(λλ̈)


,

λ2
∂2y
∂t2

= (2λ̇2 − λ̈λ)x
σ

µ
+
λ̇x3

2
λ3
∂

∂t

×


λλ̈

λ2

3ω + 1 − α +
αx
y

µ


+ O


x3λ̇λ

∂

∂t
(λλ̈)


.

(97)

Using (29) and (39), we compute

∂

∂t


λλ̈

λ2

3ω + 1 − α +
αx
y

µ



=
λ̇λλ̈

λ3


αx2

y2
σ 2

µ3
−

6αx
yµ2

−
3(1 − α)

µ

−
2(2ν − 1) (3ω + 1 − α)

µ2


. (98)
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In the domain y ≥ ycr, again, using (29), (32) and (39), we compute

λ
∂y
∂t

= λ̇x
σ

ν
+ O


ωx3

ν
λ
∂

∂t
(λλ̈)


,

λ2
∂2y
∂t2

= −(2λ̇2x − λλ̈x)
σ

ν
−
λ̇x3

2
λ3
∂

∂t

×


λλ̈

λ2

3ω + 1 − α −
αx
y

ν


+ O


x3λλ̇

∂

∂t
(λλ̈)


,

(99)

and

∂

∂t


λλ̈

λ2

3ω + 1 − α −
αx
y

ν



=
λ̇λλ̈

λ3


αx2

y2
σ 2

ν3
+

6αx
yν2

−
3(1 − α)

ν

−
2(2µ− 1) (3ω + 1 − α)

ν2


. (100)

We explain the derivation of the first relation in (97).
Differentiating Eq. (29) with respect to t in the domain y ≤ ycr,
gives

λ
∂y
∂t

= λ
∂x
∂t

− λ
∂

∂t
(λλ̈)

1
2
x3ω −

λλ̈

2
3x2λ

∂x
∂t
ω

−
λλ̈

2
x3

λ ∂
∂t (λλ̈)

2λλ̈
+ α

λ
∂y
∂t

y
+ (1 − α)

λ ∂x
∂t

x


.

Solving this for λ ∂y
∂t and using the notation (96) and the relation

λ ∂x
∂t = −λ̇x, we arrive at λ ∂y

∂tµ = −λ̇x +
λλ̈
2 3λ̇x3ω +

λλ̈
2 λ̇x

3(1 −

α)− λ ∂
∂t (λλ̈)

1
2x

3ω −
1
2x

3λ ∂
∂t (λλ̈). Finally, from Eqs. (51) and (31)

(see also (39)) we obtain easily

1
λλ̈
λ
∂(λλ̈)

∂t
= 2λ̇ ln−1


1
λλ̈

[
1 + O


1/ ln


1
λλ̈

]
and

1
xcr
λ
∂xcr
∂t

= −λ̇ ln−1


1
λλ̈

 [
1 + O


1/ ln


1
λλ̈

]
. (101)

Collecting the above estimates gives the first relation in (97).
Nowwe present an explicit form of the function χ entering the

definition of ψ , (26), and introduced in (22). Due to Eq. (29) we
have

χ =

−λλ̈x2(ω + 1/2)µ−1, x < xcr
−

2ycr
x

+ λλ̈x2(ω + 1/2)

ν−1, x > xcr.

(102)

Next, we give here an explicit expression for the expression
∂χ/∂x − 2χ/x. We compute

∂χ

∂x
−

2χ
x

= −
λλ̈x2

µ


1 − α

x
+
ασ

yµ
−
αλλ̈x2

2yµ

× (ω + 1/2)

3 −

x
y
σ

µ


, (103)

for x < xcr, and

∂χ

∂x
−

2χ
x

=
6ycr
x2ν

+
λλ̈x2

ν


1 − α

x
−
α

y
σ

ν


+
αλλ̈x
2yν2

×

−2ycr + λλ̈x3(ω + 1/2)

 
3 +

x
y
σ

ν


, (104)

for x > xcr.
Note that the function y, Eq. (29), is chosen so as to cancel the
term −2λλ̈x/(λ2(1 + y2)) arising from the last term in expression
(26) (see the first term on the r.h.s. of (97) and the first term on the
r.h.s. of (17)). Using Eqs. (26), (103) and (97) and using the relation

y
x

−
σ

µ
=
λλ̈x2

2


αx
y − 3ω + 1 − α

µ
− ω


,

we obtain the following expression for the function ψ in the
domain x ≤ xcr:

ψ = ψ1 + ψ2, with

ψ1(y, t) := −

[
4λ̇2 + 8λλ̈


ω +

1
2

]
x3

µy2(1 + y2)2
, (105)

and

ψ2 =
λλ̈x5

y2(1 + y2)


λ̇2

µ


2xy (ω − α)

(1 + y2)µ
−
αx2

y2
σ 2

µ2
+

6αx
µy

+ 3(1 − α)− 2(3ω + 1 − α)


(1 + σ)yx
µ(1 + y2)

− 1 −
2ν − 1
µ



+
λλ̈

µ


αx
y


αx
y − 3ω + 1 − α

µ
− ω +

ω + 1/2
µ


3 −

x
y
σ

µ



−
4 (ω + 1/2)2 xy
µ(1 + y2)

− (3ω + 1 − α)


. (106)

Note that in the region 1 ≤ y ≪ ycr = O


1
√

λλ̈


, ω, σ , µ, ν =

O(1) and x = O(y). Using this we conclude that in the region
0 < y ≪ ycr, the estimates (42) hold.

Now, using Eqs. (102), (26), (103) and (99), we find expression
for functionψ in the domain y ≥ ycr. In fact, to obtain the equation
on the parameterλweneed to knowonly the part ofψ in {y ≥ ycr},
proportional to λ̇2. For this reason we write out only this part:

ψ = 2λ̇2
x3

y4


2x
y
σ 2

ν2
+

2σ
ν

+
λλ̈x2

2ν


αx2

y2
σ 2

ν2

+
6αx
yν

− 3(1 − α)−
2(2µ− 1) (3ω + 1 − α)

ν


+ term proportional to λλ̈. (107)

Now, we show Eq. (34) which was stated in Section 3. Indeed, the
definitions of σ and ν and the second equation in (29) imply that
for y ≥ ycr

σ

ν
∼

3λλ̈x2

2
ln(λλ̈x2), σ ∼ λλ̈x2 ln(λλ̈x2),

y ∼ λλ̈x3 ln(λλ̈x2).

Using these relations andEq. (107),we arrive at the desired relation
(34).

Appendix C

In this appendix we derive Eq. (51) from Eq. (50). To this end,
we calculate two simple integrals. For the first one, we have∫

∞

0

dyy3

(1 + y2)3
=

1
2

∫
∞

0

dxx
(1 + x)3

=
1
4
. (108)
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For the second integral, we compute∫
∞

0

dyy3 ln y
(1 + y2)3

=
1
4

∫
∞

0

dxx ln x
(1 + x)3

= − lim
ε→0

1
4

∫
∞

ε

ln xd


1
x + 1

−
1
2

1
(x + 1)2


= lim

ε→0


1
8
ln ε +

1
4

∫
∞

ε

dx
x


1

x + 1
−

1
2

1
(x + 1)2


= lim

ε→0


1
8
ln ε +

1
8

∫
∞

ε

dx
[
1
x

−
1

x + 1
+

1
(x + 1)2

]
=

1
8
. (109)

Using the values of these two integrals, we obtain Eq. (51) from
Eq. (50).

Appendix D

In this appendix we compute the partial derivatives of energy
E = E(α, β) w.r.t. parameters α, β . Using expression (62), we
obtain

∂E
∂β

= 4
∫

∞

0
dρ

ρ

(1 + y2)2


∂y
∂t

∂

∂β


∂y
∂t


+
∂y
∂ρ

∂

∂β


∂y
∂ρ



+
y
ρ2

∂y
∂β

−
2y

1 + y2
∂y
∂β


∂y
∂t

2

+


∂y
∂ρ

2

+
y2

ρ2


(110)

and

∂E
∂α

= 4
∫

∞

0
dρ

ρ

(1 + y2)2


∂y
∂t

∂

∂α


∂y
∂t


+
∂y
∂ρ

∂

∂α


∂y
∂ρ



+
y
ρ2

∂y
∂α

−
2y

1 + y2
∂y
∂α


∂y
∂t

2

+


∂y
∂ρ

2

+
y2

ρ2


. (111)

Recall the notation σ := 1−
λλ̈x2
2


3 ln

√

λλ̈
β

yαx1−α


+ 1 − α

,

ω := ln

√

λλ̈

β
yαx1−α


, µ := 1 +

αλλ̈x3

2y
, and

ν := 1 −
αλλ̈x3

2y
, (112)

and let

µcr := 1 +
αλλ̈x3cr
2ycr

and νcr := 1 −
αλλ̈x3cr
2ycr

. (113)

From Eq. (29) we find
∂y
∂β

=
λλ̈x3

2β
1
µ
, x < xcr,

∂y
∂β

=
λλ̈

2β
1
ν

[
2x3cr
µcr

− x3
]
, x > xcr,

(114)

and

∂ycr
∂β

=
λλ̈x3cr
2β

1
µcr
.

Using Eq. (114) and assumptions (39) (or differentiating (51)) and
(40), we obtain readily, in the leading approximation in 1/ ln


1
λλ̈


,

the time derivative of ∂y
∂β

:

∂

∂t


∂y
∂β


= −

λ̇λλ̈x3

2βλν2

[
3 +

αλλ̈x4

2y2
σ

µ

]
, x < xcr,

∂

∂t


∂y
∂β


= −

λ̇λλ̈

2βλν


3 +

αλλ̈x4

2y2
σ
ν

ν


2x3cr
µcr

− x3


−
6x3cr
µcr


, x > xcr.

(115)

In a similar way, we find the derivative of yw.r.t. α:
∂y
∂α

= −
λλ̈x3

2
ln
 y
x


µ

, x < xcr,

∂y
∂α

=
λλ̈

2
1
ν

x3 ln
y
x


− 2x3cr

ln


ycr
xcr


µcr

 , x > xcr,
(116)

and

∂ycr
∂α

= −
λλ̈x3cr
2

ln


ycr
xcr


µcr

.

Taking the time derivative of Eq. (116), we obtain

∂

∂t


∂y
∂α


= −

λ̇λλ̈x3

2λµ2


λλ̈x3

y


ω +

1
2


− ln

y
x


3 +

αλλ̈x4

2y2
σ

µ


, x < xcr, (117)

∂

∂t


∂y
∂α



= −
λ̇λλ̈

2λν

−
3 +

αλλ̈x4
2y

σ
ν

ν

2x3cr
ln


ycr
xcr


µcr

− x3 ln
y
x


+

6x3cr ln


ycr
xcr


µcr

−
x3

yν


2ycr − λλ̈x3


ω +

1
2

 ,
x > xcr. (118)

Note that the main contribution to the partial derivatives (110)
and (111) comes from the domain x ∼ xcr. Both derivatives are
sums of terms proportional to λ̇2 and to λλ̈. The coefficients for
these terms are of the order of 1. As result, since we assumed that
|λλ̈| ≪ λ̇2, we have to find in the expressions for (110) and (111)
only the terms proportional to λ̇2.

Using Eqs. (114)–(118)we canwrite the r.h.s. of (110) and (111)
in a more explicit form

1
4
∂E
∂β

= λ̇2
∫ xcr

0

dxx5λλ̈
2βy4

σ
1 +

αλλ̈x3
2y

3
×


3 +

αλλ̈x4

2y2
σ

1 +
αλλ̈x3
2y

−
2xσ
y



− λ̇2
∫

∞

xcr

dxx2λλ̈
2βy4

σ
1 −

αλλ̈x3
2y

2
×


 1

1 −
αλλ̈x3
2y


3 +

αλλ̈x4

2y2
σ

1 −
αλλ̈x3
2y


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×

 2x3cr
1 +

αλλ̈x3cr
2ycr

− x3

−
6x3cr

1 +
αλλ̈x3cr
2ycr


+

2x
y

σ

1 −
αλλ̈x3
2y

 2x3cr
1 +

αλλ̈x3cr
2ycr

− x3

 , (119)

1
4
∂E
∂α

= λ̇2
∫ xcr

0

dxx5λλ̈σ

2y4

1 +
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2y
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
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√
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
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

− ln
y
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αλλ̈x4

2y2
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2y


+

2x
y

ln
y
x


σ



+ λ̇2
∫

∞
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2
×
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2y


3 +
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2y2
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2y



×

2x3cr ln


ycr
xcr


1 +

αλλ̈x3cr
2ycr

− x3 ln
y
x


−

6x3cr ln


ycr
xcr


1 +

αλλ̈x3cr
2ycr

+
x3

y

1 −

αλλ̈x3
2y


×


2ycr − λλ̈x3


ln

√

λλ̈

β
yαx1−α


+ 1/2



+
2x
y

σ

1 −
αλλ̈x3
2y

2x3cr ln


ycr
xcr


1 +

αλλ̈x3cr
2ycr

− x3 ln
y
x

 . (120)

Let α = α(β) be a solution of Eq. (61). We find numerically
(see Appendix E) that β changes on the interval (0, β0], where
β0 = 1.0405 (the corresponding value ofα isα0 = 0.65436). Using
expressions for ∂E

∂α
and ∂E

∂β
, derived above, we show numerically

that the function

Φ :=
∂E
∂β

+
∂E
∂α

∂α

∂β
(121)

is negative forβ = β0 and forβ → 0,with E(α, β)having absolute
minimum at β = β0.

Appendix E

Numerical calculationswith the help of Eq. (59) show that there
is a point (α0, β0),

β0 = 1.0405, α0 = 0.6543626,

so that Eq. (61), I(α, β) = 0, has no solution for α < α0 and for
β > β0. Moreover, the solution of the equation I(α, β) = 0 for β
determines a double-valued function β = β(α), whose branches
coalesce at α = α0 and have different derivatives there (see
Eqs. (122) and (123)). Moreover, I(α, β) = 0 has the unique
solutionβ0 atα = α0. Hence the solution of the equation I(α, β) =

0 for α also leads to a double-valued function α = α(β).
Numerical calculations give the following expansions for the
lowest branch,

β = β0 − β1(α − α0)− β2(α − α0)
2, (122)

α > α0, and for the distance, ∆, between the branches along the
α-axis,

∆ = γ1(β0 − β)− γ2(β0 − β)2, (123)

where

β1 = 2.54732, β2 = 13.8297, (124)
γ1 = 0.08029, γ2 = 0.42736. (125)

(Solving (122) for α gives the lower branch of the function α =

α(β). Adding (123) to this solution gives the upper branch of α =

α(β).)
To find the second ‘‘end’’ point on the α-interval we check the

point α = 1 where the dependence of y on x in Eq. (29) can be
found in an explicit form. To do this, we note that (32) and (33)
with α = 1 imply that

γ =

√

λλ̈ycr
β

, β2
=

8
27γ 2 ln γ

and λλ̈ycr2 =
8

27 ln γ
. (126)

We also have ycr/xcr = 2/3. For α = 1 solvability condition of Eq.
(29) is

γ > e1/2. (127)

Indeed, set

y = ycrz, z = 1 + δ,
x
ycr

=
3
2

+ τ . (128)

In the range 0 < δ ≪ 1 we have

2
3
τ 2 = δ


1 −

1
2 ln γ


. (129)

From this equation we see that β should satisfy the inequality
given in Eq. (127).

Now we set y = ycrz. For z < 1 we obtain from the first equa-
tion in (29), with α = 1, and from (126) the following cubic equa-
tion for the ratio x

ycr

4
27


x
ycr

3 ln(γ z)
ln γ

−
x
ycr

+ z = 0. (130)

Solution of Eq. (130) in the range z < 1 is

x
ycr

= 3


ln γ
ln(1/(γ z))

1/2

× sinh


1
3
ln


z


ln(1/(γ z))

ln γ
+


1 + z2

ln(1/(γ z))
ln γ


(131)

for γ z < 1 and

x
ycr

= 3


ln γ

ln(γ z)
sin


1
3
arctan

z
√
ln(γ z)/ ln γ

1 − z2 ln(γ z)/ ln γ


(132)

for γ z > 1.
In the range z ≥ 1 the ratio x/ycr solves the following cubic

equation (see the second equation in (29))

4
27

ln(γ z)
ln γ


x
ycr

3

−
x
ycr

+ 2 − z = 0. (133)

Let z0 be the solution of equation

1 = (z0 − 2)2
ln(γ z0)
ln γ

. (134)
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We split the semi-interval z > 1 into two sub-intervals. In the
interval 1 < z < z0 we have

x
ycr

= 3


ln γ

ln(γ z)
sinφ, (135)

where

φ =
π

6
+

1
3
arctan


1 − (2 − z)2 ln(γ z)/ ln γ
(2 − z)

√
ln(γ z)/ ln γ


,

1 < z < 2,

φ =
π

3
+

1
3
arctan


(z − 2)

√
ln(γ z)/ ln γ

1 − (z − 2)2 ln(γ z)/ ln γ


,

2 < z < z0. (136)

In the range z > z0 we have

x
ycr

=
3
2


Q 1/3

+
ln γ

ln(γ z)
Q−1/3


(137)

where

Q = (z − 2)
ln γ

ln(γ z)
+


(z − 2)

ln γ
ln(γ z)

2

−


ln γ

ln(γ z)

3

. (138)

Using Eqs. (131) and (138) we obtain with the help of numerical
calculations, that Eq. (61) at α = 1 has a solution only as β goes
to zero. This means that α = 1 is the second end point of the α-
interval.
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