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Energy and potential enstrophy flux constraints in quasstiephic models

Eleftherios Gkioulekds

aUniversity of Texas-Pan American, Department of Mathersafi201 West University Drive, Edinburg, TX 78539-2999

Abstract

We investigate an inequality constraining the energy aneérgil enstrophy flux spectra in two-layer and multi-
layer quasi-geostrophic models. Its physical significaadbat it can diagnose whether any given multi-layer model
that allows co-existing downscale cascades of energy ateshfial enstrophy can allow the downscale energy flux to
become large enough to yield a mixed energy spectrum wheroiminank =2 scaling is overtaken by a subdominant
k=53 contribution beyond a transition wavenumkigsituated in the inertial range. The validity of the flux inatity
implies that this scaling transition cannot occur withie thertial range, whereas a violation of the flux inequality
beyond some wavenumblgrimplies the existence of a scaling transition near that wam@er. This flux inequality
holds unconditionally in two-dimensional Navier-Stokesiulence, however, it is far from obvious that it contintes
hold in multi-layer quasi-geostrophic models, becauseltbsipation rate spectra for energy and potential ensyroph
no longer relate in a trivial way, as in two-dimensional Nawstokes. We derive the general form of the energy and
potential enstrophy dissipation rate spectra for a gelzedksymmetrically coupled multi-layer model. From this
result, we prove that in a symmetrically coupled multi-lageasi-geostrophic model, where the dissipation terms for
each layer consist of the same Fourier-diagonal linearatpeapplied on the streamfunction field of only the same
layer, the flux inequality continues to hold. It follows tleahecessary condition to violate the flux inequality is the us
of asymmetric dissipation whereftérent operators are used oiffdient layers. We explore dissipation asymmetry
further in the context of a two-layer quasi-geostrophic elathd derive upper bounds on the asymmetry that will
allow the flux inequality to continue to hold. Asymmetry isroduced both via an extrapolated Ekman term, based on
a 1980 model by Salmon, and vidi@rential small-scale dissipation. The results given arthematically rigorous
and require no phenomenological assumptions about theéahexnge. Sicient conditions for violating the flux
inequality, on the other hand, require phenomenologicpbthyeses, and will be explored in future work.

Keywords: two-dimensional turbulence, quasi-geostrophic turbcgetwo-layer quasi-geostrophic model, flux
inequality

1. Introduction

It is now well-known that in two-dimensional Navier-Stokesbulence, most of the energy tends to go towards
larges scales and most of the enstrophy tends to go towaalkstrales, sometimes forming an upscale inverse energy
cascade with energy spectrum scalingka®® and a downscale enstrophy cascade Withscaling [1-3], wherék
is the wavenumber. Kraichnan [1] arguedfeliently from Fjgrtgft [4], that the direction of the two cages can
be justified via a thermodynamic argument in which we inteewithout proof, the assumption that the energy and
enstrophy fluxes should tend to revert the energy spectrom & cascade configuration to the absolute equilibrium
configuration. The existence of forcing and dissipatiorests this tendency, thus keeping the system locked in a
steady-state forced-dissipative configuration away frbsolute equilibrium.

Less well-known is the fact that there is a serious error Withoriginal Fjgrtgft argument: Fjgrtaft claimed
that the twin detailed conservation laws of energy and ephir alone imply that in every triad interaction group,
more energy is transferred upscale than downscale. Howaveore rigorous analysis shows that there exist triad
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interaction groups in which more energy is sent downscae thpscale, and it is not obvious, without additional
considerations, which group is dominant [5, 6]. Aside frdris matter, the fundamental problem that underlies every
other proof that utilizes only the twin conservation lawseofstrophy and energy, is that an additional assumption
needs to be introduced to overcome the symmetry of the Eqleatens under time reversal. Typical assumptions,
such as the tendency of the energy spectrum to revert towdbsejuilibrium, or the tendency of an energy peak to
spread, typify ad hoc constraints imposed implicitly onittigal conditions that are needed to break the time reversa
symmetry [7]. In Ref. [7] we counterproposed a very simpld arathematically rigorous proof that avoids the need
for any ad hoc assumptions by considering the combifiiedteof the Navier-Stokes nonlinearity and the dissipation
terms. The only assumption used by this proof is that thdarigrspectrum is restricted to a finite intervi [k;] of
wavenumbers, however even that assumption can be relasedi® extent, although not entirely eliminated [8, 9].

The essence of the argument in Ref. [7] is to show that foryewevenumbek not in the forcing range, the
energy fluxiTe(K) and the enstrophy fludg(K) satisfy the inequalitk®ITg (K) — IIg(K) < 0. Here I1g(K) represents the
amount of energy per unit volume transferred from the wawdmers in the (k) interval to the wavenumbers in the
(k, +o0) interval, andllg(K) is defined similarly for the enstrophy. From this inequalite then derive the following
integral constraints foflg (k) andIIg(k):

K
f glle(g) dg < 0, Vk € (kp, +0), (1)
0
f q‘3HG(q) dg >0, Yk e (0, ky). (2)
k

These constraints imply a predominantly upscale trandfenergy and a predominantly downscale transfer of en-
strophy. The original flux inequalitf®TIe (K) — IIg(K) < O itself can also be directly interpreted as a tight constrai
on the downscale energy flux.

The flux inequality is directly relevant to the cascade sppsition hypothesis that was initially proposed in the
context of two-dimensional Navier-Stokes turbulence [ilT], according to which, for the case of finite small-scale
dissipation viscosity, the downscale enstrophy cascadedsmpanied with a hidden downscale energy cascade, as-
sociated with an accompanying small downscale energy flug.siféss that the existence of this small downscale
energy flux is not in doubt. The two distinct hypotheses aa¢ tta) the downscale energy flux is part of a downscale
energy cascade that coexists with the downscale enstr@smade; (b) given two coexisting cascades of energy and
enstrophy the corresponding energy spectra and structnogidns will combine linearly. The first hypothesis can be
accounted for by the argument given in section 3.2 of Ref], [@@ere it is shown, leveraging an old argument by
Kraichnan [1], that triad interactions with scaling expohe3 transfer energy without transferring enstrophy and triad
interactions with scaling exponenb transfer enstrophy without transferring energy. Consatjy, there is nothing
in the Navier-Stokes nonlinearity to prevent a linear sppsition of two sets of triad interactions, one with scaling
exponent-3 and one with scaling exponenb, which would give rise to coexisting constant fluxes of ggemd en-
strophy and presumably coexisting cascades. The secomthagis follows from the linear structure of the statidtica
theory of randomly forced Navier-Stokes equations; thediity is lost by most attempts at closure modeling. These
hypotheses are controversial because coexisting casbadesiot been observed in the two-dimensional turbulence
energy spectrum. One the other hand, they have recentlydizsmved in models of stratified turbulence [12, 13],
and Tung and Orlando [14] have provided evidence that thayatso be observed in two-layer quasi-geostrophic
turbulence, which is just one step away from two-dimendituraulence.

The key insight to take from Refs. [10, 11] is that the obshititst of the subdominant downscale energy cascade
is not decided by the nonlinearity, the conservation lawshe relationship between the energy and enstrophy spectra
alone. The correct mechanism is that the nonlinearity, ¢oetbwith the configuration of the dissipation terms,
determine the relation between the dissipation rate spetenergy and enstrophy. This relation determines whether
or not the aforementioned flux inequality is satisfied, whithurn decides the observability of the subdominant
downscale energy cascade. If the downscale energy flux iagstavith thek=> term is strong enough, then a
scaling transition in the energy spectrum fr&m to k>3 should occur near a transition wavenumket +/nuv/cu,
with n,y the downscale enstrophy flux amsg, the downscale energy flux. The validity of the flux inequafity
all wavenumberk in the downscale inertial range of two-dimensional NaBérkes turbulence implies that the
downscale energy flux,, is too weak to cause an observable scaling transition amgati¢hin the inertial range. On
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the other hand, it is far from obvious that the flux inequalifyf remain unconditionally valid in quasi-geostrophic
models. A violation of the flux inequality beyond some waveitnerk; in quasi-geostrophic models would imply the
occurrence of a scaling transition near that wavenumber.

The goal of the present paper is to extend the flux inequalityuasi-geostrophic models. We will specifically
focus on vertical discretizations of the quasi-geostropibdel, namely tha-layer model, and the special case of the
two-layer model, with all layers having the same thickn@s$erms of pressure coordinates, on both models. From
a physical standpoint, both models sacrifice the surfacsigyestrophic dynamics at the bottom boundary, but they
are otherwise good models of atmospheric turbulence fdesaown to an estimated length scale of 100km [15].
| should like to emphasize from the beginning that in spitewe§y mathematical or phenomenological similarities,
extending the flux inequality to quasi-geostrophic modslseither obvious nor straightforward. An overlooked
fundamental dference between two-dimensional Navier-Stokes turbulandequasi-geostrophic turbulence is that
there are many more possible configurations for the digsip&trms in quasi-geostrophic models than there are in
two-dimensional Navier-Stokes. Dissipation terms arealiglignored because physical intuition alone may suggest
that they should not have afffect on the nonlinear dynamics in inertial ranges. This liheeasoning ignores that
the actual configuration of the dissipation terms can séillehunexpectedi¥ects on thenagnitudeof the energy and
potential enstrophy fluxes passing through the inertiadeaThese flux #ects are the underlying matter of interest
motivating the investigation initiated by the present pape

The original motivation underlying the aforementioned ruital investigation [14] of the two-layer quasi-geostrip
model was to show that it can reproduce the Nastrom-Gageggapectrum of the atmosphere [16—-19]. However, the
Nastrom-Gage controversy, reviewed to some extent in pueypapers [6, 20], is not the main concern or motivation
of this paper. Our main interest in this problem stems fromftillowing considerations: first, quasi-geostrophic
models are simple enough that they could be accessibleéstigation via theoretical techniques developed for two-
dimensional turbulence [21-26]. Furthermore, the polyitnf being able to study a downscale energy cascade
arising in the context of a two-dimensional model is pattdy exciting from the point of view of the turbulence
theorist, because it ties into the open question of why thendoale energy cascade of three-dimensional turbulence
has intermittency corrections but the inverse energy cksoétwo-dimensional turbulence does not [27, 28]. Is it
an the dect of dimension number or cascade direction? In light ohsygestions, an observable downscale energy
cascade in a two-dimensional system is interesting in andeif.

Mathematical results concerning the flux inequality in duggsostrophic models can be organized into two cat-
egories: (a) sfiicient conditions for the satisfaction of the flux inequaliithin the entire inertial range; and (b)
suficient conditions for violating the flux inequality beyondse transition wavenumbdéy within the inertial range.
Results of the first type can be proved rigorously without ad phenomenological assumptions on the behavior of
the energy and potential enstrophy spectra. Results ofttns type require the introduction of phenomenological
assumptions about the distribution of energy and poteatisirophy between layers. Consequently, the scope of this
paper has been limited to what we can prove rigorously. Mokeepful results that can be obtained by introducing
phenomenological hypotheses will be explored in futurelipabons. Because the details of our argument are very
technical, we will now summarize the main argument of thespas follows.

For the generalized case of ardlayer model, we consider the general case sfraamfunction dissipatiocon-
figuration, where for each layer the dissipation terms arergby a linear dierential operator applied on the stream-
function of the same layer, without entangling any strearofions of any other layers. The dissipation rate spectra
for both energy and potential enstrophy are derived undeigéneral configuration. Then, we specialize to the case
of symmetric streamfunction dissipatiomhere we assume that the corresponding dissipation apeiate identical
layer-by-layer. We will show that under symmetric streanafion dissipation the flux inequality is satisfied for all
wavenumbers in the inertial and dissipation range. We rwtethis result is non-trivial since, beyond establishing
cascade directions, it also implies bounds on the subdarhd@vnscale energy flux, that are tight enough to keep
the underlying downscale energy cascade hidden. For tlesofdise two-layer quasi-geostrophic model, we consider
an asymmetric configuration of dissipation terms and eistabésults of the form that if the asymmetry idfstiently
small, the flux inequality will remain valid. As was previdygxplained, we limit ourselves to results of this form
because this is as far as one can go with rigorous proofs frstrpfiinciples.

From a physical standpoint, asymmetry in the dissipatiomvéen the two layers usually originates from the
Ekman term, modeling theffect of friction with the surface boundary layer. Howevern; feasons that will be
discussed more extensively at the conclusion of this papewyill introduce an additional source of asymmetry via
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the small-scale dissipation terms by employing an incréaseosity or hyperviscosity céigcient at the bottom layer
relative to the coféicient at the top layer. We believe that this asymmetric sisedle dissipation can facilitate a
breakdown of the flux inequality, thereby allowing the dowade energy flux rate to be Siciently strong to yield the
transition tok=>'2 scaling in the inertial range. We will see that asymmetrialscale dissipation indeed tightens the
bounds on the parameter space wherein the flux inequalifitisfied.

Another aspect of the dissipation term configuration, thiflthbe shown to have significant impact on the flux
inequality, concerns the modeling of the Ekman term. In actipformulation of the two-layer quasi-geostrophic
model, it is usually assumed that Ekman dissipation is dégetonly on the streamfunction field of the bottom po-
tential vorticity layer. However, an alternate formulatiof the two-layer quasi-geostrophic model by Salmon [29],
requires that the Ekman term at the lower layer be dependhetiitcostreamfunction fields of both layers. To explain
why, one must recall that the two-layer model is an extrenngéoa discretization of the full quasi-geostrophic madel
which consists of a relative vorticity equation, a tempemtequation, and additional constraining conditions. In a
general multi-layer model, the relative vorticity equasaare discretized in horizontal layers that are interlacittl
the discretization layers of the temperature equationsisTfor the case of the two-layer model we have altogether
5 physically relevant layers: the surface boundary layeresponding approximately to 1Atm, the lower relative
vorticity layer at 075Atm, the temperature midlayer ab®tm, the upper relative vorticity layer atZbAtm, and the
top boundary layer at 0Atm. The potential vorticity equatiare derived from the relative vorticity equations by
eliminating the temperature field from the system of equetishereby placing the potential vorticity field and the
corresponding streamfunction field at th@ ®Atm and 075Atm layers. As noted by Ref. [29], the Ekman dissipa-
tion term is dependent on the streamfunction field at theaserboundary layer near 1Atm, which can be linearly
extrapolated from the streamfunction field at the lower apdeu layer (075Atm and 025Atm correspondingly).
Consequently, even though the Ekman term is still placedhemower-layer, owing to the linear extrapolation of the
surface streamfunction field, it is dependent on the streaation field of both the lower and upper layers.

It should be noted that for physical reasons, the potentigticity layers need to remain fixed at2Atm and
0.75Atm respectively. This corresponds to the physical agsiom that the two fluid layers have equal thickness,
which is a necessary assumption for atmospheric modelidlg Jhe surface layer driving Ekman dissipation, on the
other hand, can be placed anywhere between the surfacedagétm and the lower streamfunction field layer at
0.75Atm. When the surface layer and the lower streamfuncéiger coincide, this corresponds to the usual standard
Ekman term. When the two layers dot coincide, it corresponds to the more general casexthipolated Ekman
dissipation For the present paper, we retain generality by parametgtize placement of the surface boundary layer
via an adjustable paramei@rand show that our main propositions are valid for the eméirgje of the parametar
We will see that an increasing separation between the Eknndiace layer and the bottom potential vorticity layer
tightens the bounds on the parameter space wherein the #auatity is satisfied. For oceanographic modeling, as
well as for the purpose of satisfying basic scientific clitigst would be interesting to consider two-layer quasi-
geostrophic models with layers having unequal thicknes® B mathematical complications, we will not pursue this
generalization in the present paper. Nevertheless, theriapce of symmetric vs. asymmetric Ekman dissipation in
the context of oceanographic modelling is a relevant prolileat has been investigated by a previous study [31].

Admittedly, both Salmon’s idea of extrapolated Ekman gigson and the idea of fierential small-scale dissipa-
tion, proposed in this paper, can be considered contrale@®n the other hand, in the context of investigating the flux
inequality, it is important to be thorough about considgéwery interesting configuration of the dissipation tenms,
determine how much impact various choices of dissipatiom teonfigurations have on the robustness of the flux in-
equality. Furthermore, as will become apparent from theltesf this paper, the dissipation configurations explored
here are good candidates for a dissipation filter that coidihte the flux inequality and ensure a controlled down-
scale energy dissipation rate in numerical simulationsdkeeeds the restrictions that are typical in two-dimemalio
turbulence.

The paper is organized as follows. In section 2 we give theegomg equations for the generalized multi-layer
model and discuss its conservation laws, the definition efehergy spectruri(k), potential enstrophy spectrum
G(Kk), and their relationship via the streamfunction spect@yy(k). In section 3, after a brief recapitulation of the
flux inequality for the simple case of two-dimensional Naa&tokes turbulence, we establish the flux inequality
for a generalized multi-layer quasi-geostrophic modelarrsymmetric streamfunction dissipation. In section 4, we
consider asymmetric dissipation configurations for thegpease of a two-layer quasi-geostrophic model, where we
derive various sfficient conditions for satisfying the flux inequality. Consilons and a brief discussion are given in
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section 5.

2. The generalized multilayer model and conservation laws

Following Ref. [20], we write the governing equations foe teneralized multi-layer model in matrix form:

‘9;“  I(War Q) = o + o, ®)
dy, = Z Dopiip, 4)
B

with J(.. 9.) the Jacobian af, andq, defined as

L )
ox 0y Oy ox’

Herey, represents the streamfunction at thtayer,q, represents the potential vorticity at thdayer, 7,4 is a linear
operator encapsulating the dissipation terms, fnid the forcing term acting on the-layer. The indexx takes the
valuesa = 1,2, ..., nrepresenting the layer number, for a model involuirigyers. Sums over indices, such as in the
sum over the indeg in the dissipation terms above, are assumed to run overalidd, 2, . . ., n, unless we indicate
otherwise. It is also assumed that the streamfunetjpand the potential vorticitg, are related via a linear operator
Z,p according to:

qa(X’ t) = Z Zzﬁl/’ﬁ()(, t)~ (6)
B

‘](ll’m qa) =

The above equations encompass both the two-layer quasirgpbic model and the multilayer quasi-geostrophic
model, on the assumption that we neglectgheffect, arising from the latitudinal dependence of the CasipBeud-
oforce. This is a reasonable assumption for Earth, espediabe restrict our interest to a thin strip of the Earth’s
surface, oriented parallel to the equator. Waite [32] hasvshthat the relationship between the potential vorticity
and streamfunction remains approximately linear in modélstratified turbulence with small buoyancy Reynolds
number, but becomes quadratic in the limit of large buoyd®eynolds number. Baroclinic instability is accounted
for by the forcing termf,, and implicit in the entire argument is the assumption thé&brices the system at large
scales only. This assumption, originally proposed by Salf@28, 33], is the only physical assumption implicit in the
theoretical framework of the flux inequality, and it has beerroborated numerically [14, 34].

For the sake of simplifying our analysis, we assume that eldi$i are defined in an infinite two-dimensional
domain. Then we can write the streamfunctioand the potential vorticity in terms of their Fourier transforms,
andd, as follows:

0o = [ Bulk.Dexpik-) )

Qo(X.1) = fRZ Ao (k. t) exp(k - x) dk. 8

We assume that the operai#t is diagonal in Fourier space. This means that the relatibmédsn the streamfunction
and the potential vorticity, in Fourier space, reads:

Go(k, 1) = D Lag(IkIFa K, ). (9)
B

Here||k|| represents the 2-norm of the vecktorWe also assume thét,z is symmetric withLz(K) = Lg.(K) for all
wavenumber&. For quasi-geostrophic models, the matrjx(k) is non-singular for all wavenumbeks> 0, due to
being diagonally dominant, and we assume that to be the case abstract formulation given above. Consequently,
there is an inverse matrb(l(k) which defines the inverse operal:ﬁﬁfl To accommodate a possible singularity at
k = 0 we assume that at wavenumlket 0, in Fourier space, the correspondmg field component ig @lfdields.
This is equivalent to subtracting the mean field and consigemly the field fluctuation around the mean.
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2.1. Conservation laws

We will now show that the generalized layer model, in the abseof dissipation, conserves the total eneegy
and the total potential enstropi®/under very general conditions on the operaifyg, For any arbitrary scalar field
f(x,y) we write the corresponding volume integral using the feit@ notation:

(= [ focy) axay. (10

We define the total enerdy over all layers, and the layer-by-layer total potentialteopzhy G,, for layera, askE =

- Y ol¥abe.) andG, = (g2). The minus sign ensures thatis positive definite when the operator spectruga(k)
satisfies the condition given by Eq. (A.1) and Eq. (A.2) cstesitly with Egs. (39)-(41) and the sign conventions used
by Refs. [20, 29, 33]. Specifically, we will show that the putel enstrophy is conserved on a layer-by-layer basis
unconditionally regardless of the details of the operafgy. Conservation of the total ener@y over all layers, on the
other hand, requires that the operafdy; besymmetricandself-adjoint To define the self-adjoint property, consider
two arbitrary two-dimensional scalar field$x, y) andg(x, y). We require that every component of the operaifg
must satisfy( f(Z,z0)) = (L f)g) for any two fieldsf(x, y) andg(x, y) for all layer numbers andg. This self-
adjoint property, so defined, follows as an immediate comsrde of our previous assumption that the operafgy

is diagonal in Fourier space. In the proof given below, havgthere is no need to use the stronger assumption of
diagonality.

The proof is based on the following properties of the norindacobian term. I&(x,y) andb(x,y) are two-
dimensional smooth scalar-fields that vanish at infinitgntlive can show thagJ(a, b)) = 0, using integration by
parts. This result also holds for the case of fields definedfini@ box with periodic boundary conditions, if the
volume integral in Eq. (10) is restricted over the box. Theanote that, as an immediate consequence of the product
rule of differentiation, given three two-dimensional scalar figlfls y), b(x, y), andc(x, y) we have

(J(@b, )y = (ad(b, c)) + (bI(a,c)) = 0, (11)
from which we obtain the identity
(ad(b,c)) = (bJ(c,a)) = {cJ(a, b)). (12)

Now, let us go ahead and drop the dissipation and forcingtamd write the time-derivative of the potential vorticity
de 3Sq, = —J(¥a, Ge)- Then, the time derivative of the streamfunctignreads:

ot =) L MO0/00) = - > LI, ). (13)
B B
Differentiating the total potential enstropBy, for the o layer with respect to time and employing the identity
given by Eg. (12) immediately gives:
dGa/dt = 2«%(3%/30» = _2<<QHJ(l/las qa)» = _2<<l//a‘](qm qa)» =0. (14)

Here, we note that from the definition of the Jacohién,, q,) = 0. This establishes the layer-by-layer conservation
law of potential enstrophy, unconditionally, as claimead show the energy conservation law, wéelientiate the
total energ)E with respect to time and obtain:

dE/dt = —(d/at) > (Wala) = = D ((0Wa/0AY = ) (¥a(00a/5D) (15)
= Zﬁ«qaoz'j;'lxw, o)) + i«w(wm%)» (, (16)
= Zﬁ«a(wﬁ, UL tu) + ) (eI (Warr Y)Y (17)
= Zﬁ«wﬁ, )L ) = %«J(wﬁ, 0p)s) (18)
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= > (s ¥p)ap) = 0. (19)
B

Note that the self-adjoint property is applied at Eq. (1 g $he symmetric property is applied at Eq. (18). This
concludes the proof.

2.2. Definition of spectra

We define spectra for the energy and potential enstrophygulkabracket notation introduced in Ref. [20]. Con-
sider, in general, an arbitrary two-dimensional scaladfi€k). Let a<¥(x) be the field obtained frora(x) by setting
to zero, in Fourier space, the components correspondingtemumbers greater th&n Formally,a<k(x) is defined
as

2t = [ [ ako T expiio- (x - xaatio (20)
R2 R2 47'1'2
with H(x) the Heaviside function, defined as the integral of a deltation:
1, if if xe (0, +o0)
H(x) =3 1/2, ifif x=0 . (21)
0, if if X € (—o0,0)

We now use two filtered fields<¥(x) andb<*(x) to define the bracke®, by, as:

@bl = g [ o (a005%00) (22)
1 f dQ(A) ([a° (kAe)b(kAe) + a(kAe)b" (kAe)] ) (23)
2 Jaeso)

Here,&d(k) andb(k) are the Fourier transforms afx) andb(x), SO(2) is the set of all non-reflecting rotation matrices
in two dimensionsgQ(A) is the measure of a spherical integeails a two-dimensional unit vector, ald represents
an ensemble average. The star superscript denotes a cocapiggate. Note that Eq. (22) is the definition of the
bracket, and Eq. (23) follows from Eq. (22) as a consequehte bracket satisfies the following properties:

(a, by = (b, ), (24)
(&, b+ ) = (a,b) +(a ck, (25)
(@a+Db,c) =(a,c)+(bC). (26)

Moreover, everydp)-component of the operatd#,; is self-adjoint with respect to the bracket:
(Zupa,b), = (a, Zusb), = Lop(K) (@ b, (27)

and the same property is also satisfied by every componen¢ dfiterse operatoi”{;ﬁl:

(Ziab), = (a Zb), = LK) @by (28)

Using the bracket, we define the energy specti(k) = — Y, (¥, 0o, and we also define the layer-by-layer
potential enstrophy spectru@y, (k) = (0., d.) and the total potential enstrophy spectrGk) = >, G, (k). Unlike
the case of two-dimensional Navier-Stokes, where the @pisyr and energy spect@(k) and E(k) are related via
a simple equationG(k) = k’E(K), in the generalized layer model, the potential enstrogfgcsum and the energy
spectrum are related indirectly, as shown below:

Define the streamfunction spectr@rz(k) = <zpa, wﬁ>k. Then, via the properties of the bracket above, the energy
spectruni(k) reads

E(k) == Z Wa, Qa>k == Z <wm Z faﬁ‘/’ﬁ>
@ ﬁ

a

== > Lap(K) (Vo U5), (29)
k ap
,



== > Lap(KICap(K), (30)

af

and the potential enstrophy spectr@y(k) reads

G(K) = ) (G Gl = <Z Loplp Zzw (31)
a @ B Y k

= Z L(zﬁ(k) <lpﬁ’ Z Ztywy> = Z Lrlﬁ(k) L(w(k) <¢[3’ l/’7>k (32)
af Y kK By

= > Lap(W Ly (KCsy (K. (33)
apy

Thus, they are related only indirectly via the streamfunrcpectrunC,g (k).

We note that fore # B, C,3(k) may take positive or negative values. For the case g we defineU,(k) =
(Wa» Yol Which is always positive (i.el,(k) > 0), andU (k) = 3, U,(K). Then we note that sindg, (k) + Ug(K) +
2C5(K) = (wa =Yg, Yo wﬁz‘k > 0, we get the arithmetic-geometric mean inequalj§,2(K)| < U,(K) + Ug(k). We
can use this inequality to show that if the matiiys(k) satisfies the diagonal dominance condition

Las(K) > 0, fora # B, (34)
D L <0, (35)
B

then the energy spectrui(k) is always positive. We give the proof in Appendix A. Both thv-layer quasi-
geostrophic model and the multi-layer quasi-geostroplodeh satisfy this diagonal dominance condition. As for
the layer-by-layer potential enstrophy spec&gk), it is immediately obvious that they are unconditionallyays
positive, regardless of the form of the mattiy(K), since by definitiorG, (k) = (0a, Qo k-

3. Flux inequality for the n-layer model

We now turn to the main issue of identifyingfigient conditions for satisfying the flux inequalikgITe (k) —
(k) < O for quasi-geostrophic models. Let us recall that the gniug spectrumiig(K) is defined as the amount
of energy transferred from the, () interval to the k, +0) interval per unit time and per unit volume. Likewise, the
potential enstrophy flux spectruii; (k) is the amount of potential enstrophy transferred from €)&)(interval to the
(k, +o0) interval, again per unit time and volume. Assuming a fordessipative configuration at steady state and that
there is no forcing in thek( +o0) wavenumber interval, the energy and potential enstrogmsterred into thek( +oo)
interval eventually are dissipated somewhere in thatwafett follows that we may write the flux spectf: (k) and
IIg(K) as integrals of the energy and potential enstrophy disipaate spectr®g(k) andDg(K):

e = [ De(da (36)

fs0 = [ Dol 37
which implies that

ene®-11a(9 = [ De( - Datalda= [ Aada (38)

whereA(k, g) will be used as an abbreviation fak, q) = k?Dg(q) — Dg(q). We see that a sficient condition for
establishing the flux inequality is to show thafk, q) < 0 for all wavenumber& < g. It is also easy to see that
A(k,q) > O for all wavenumberg; < k < q is suficient for establishing the violation of the flux inequality fall
wavenumberg > k;.



For the case of two-dimensional Navier-Stokes turbuletiheedissipation rate spectita (k) andDg(K) are related
via Dg(K) = k?De(K). This immediately givea(k, q) = k?Dg(q) — De(q) = (K2 — g?)De(q) < O for all wavenumbers
k < g (sinceDg(K) > 0), which in turn gives the flux inequalit?TIg (k) — IIg(k) < 0. The physical interpretation of
this inequality is that when we stretch the separation ofescia the downscale range, the energy dissipation rate at
small-scales vanishes rapidly. As a result, most of thetagenergy cannot cascade downscale although, as noted
previously [10, 11], a small amount of energy is able to doA®we have seen in the previous section, for the case
of quasi-geostrophic models, the energy and potentiat@pisy dissipation rate spectra no longer have a direct and
simple relation with each other, so the validity of the flugguiality needs to be carefully re-examined.

For the general multi-layer quasi-geostrophic model, giationship between the potential vorticitigsand the
streamfunctiong,, is given by

01 = V21 + k(W2 — v). (39)
q(y = Vzwa - /lark%(wa - 'ﬁ(y—l) + /l(zk%(wrwl - Wa), for 1 <a< na (40)
Onh = Vzl//n - /lnkgz(‘ﬂn - lﬁn—l)- (41)
Here kg is the Rossby wavenumber angandy, are the non-dimensional Froude numbers, given by
lhy p2—p1
e==———— forl<a<n,
2 hrz Pa — Pa-1
lhy p2—p1
o= ——, forl<a<n,
2 hrz Pa+l — Pa

with p,, the average density of layer andh, the average height of layer(in pressure coordinates). The definition of
the non-dimensional Froude numbers was adjusted witt2a@imerical factor, from the one given by Evensen [35],
to ensure agreement with the formulation of the two-layersingeostrophic model given by Salmon [29] for the case
n = 2. The components of the corresponding mélttix(k) are given by

—K? — ik, ifo=1
Loa(K) =4 =K = (Ao + pa)k&,  ifl<a<n
—k? — Anka, if @=n,

Loas1(K) = paki, forl<a <n,
Low-1(K) = 2,K3, forl<a <n.

In the present paper we limit ourselves to the special casesgimmetrically coupled multi-layer quasi-geostrophic
model, where we assume that the layer thickrigsis the same for all layers, thereby yielding a symmetric iratr
Log(K) such that , 4+1(K) = Lo+1o(K) forall1 < a < n.

To consider the flux inequality for this generalayer model, we begin with writing the dissipation rai@s(k)
andDg(K) for the energy and potential enstrophy in terms of the sifaaction spectrunC,z(k). We assume that the
dissipation operatiot¥,s is diagonal in Fourier space and that the Fourier transfdrthedissipation ternZ,zys
reads:

(Dapip)(X. 1) = fR f Das(IKI)¥s(k, t) explk - x) dk. (42)

Then, in Appendix B we show that the energy dissipation raecsumDg (k) and the layer-by-layer potential
enstrophy dissipation rate specba, (k) are given by

De(l) = 2 )" Dap(KICap(K), (43)
a
Do, (K) = ~2 ), Lap(K)Dar (KICpy (K). (44)
By

Note that in order for the dissipation terms to be truly giasive, the dissipation spectis (k) andDg(k) need to be
both always positive for all wavenumbéesiFrom the general form of the above equations this is notilsealvious.
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However, for simpler configurations of the dissipation @fpers, the above expressions (k) andDg(k) simplify
considerably, thereby making it possible to establish thay are both always positive. These expressions also
underscore the mainfliérence between two-dimensional Navier-Stokes turbulandeguasi-geostrophic turbulence
and the reason why the flux inequality becomes a non-triviablem in the latter case. Unlike two-dimensional
turbulence, and in spite of the twin conservation laws ofrgnand potential enstrophy, the dissipation rdbegk)
andDg(K) are no longer related by any simple relation of the f@a(k) = k?Dg(k).

We restrict our attention to the case where the dissipati@naiors at every layer involve only the streamfunction
of the corresponding layer, with no explicit interlayemtes. This can be arranged in terms of a linear oper@tpr
applied to the streamfunctiah,. If D, (k) is the spectrum of the positive-definite operaity; then for the case of a
dissipation termtl, = Z,., we haveDyz(K) = 6,5Dp(K), with 6.5 given by

ww={5 tazh- )
We designate this case stseamfunction-dissipatiomhe Dg(k) andDg, (K) simplify as:
De(k) = zzﬁ] Das(K)Cas(K) = 2%} 5opDa(KCap(K) = 2 ) Da(K)Caa(K) = 2 > Da(Ua(K), (46)
Dg, (k) = -2 ; Lop(K) Dy (K)Cpy (K) = —2 ; Lap(K)5ay D, (K)ICp, (K) = -2 ; Lap(K)D(K)Cop(K). (47)
y y

Note that forD,(k) > 0, it follows thatDg(k) > O, but it is not obvious that the same result extend®¢p(k).
However, if we further assume that the same operator is wsalflayers, i.e D, (k) = D(k), then we have the more
specialized case afymmetric streamfunction-dissipaticend the dissipation rate specta (k) and Dg(k) can be
simplified further to give:

De(k) = 2 ) Da(KUa(K) = 2D(K) D" Ua(k) = 2D(QU(K), (48)

= 2D(KE(K). (49)

De(K) = ', D, (K) = =2 > Lap(Dp(K)Cap(k) = 2D(K) |~ D, Lap(KICap(K)
a af o

Now, D(K) > 0 implies bothDg (k) > 0 andDg(K) > 0.
It follows that, under symmetric streamfunction dissipatiA(k, g) is given by

A(k,6) = K°De(0) ~ D (@) = K°D(a)U(q) ~ D(Q)E(q) = D(A)[K*U () - E(q)], (50)

and sinceD(q) > 0, the validity of the flux inequality is dependent on the sigithe factork?U(q) — E(q). That sign
is in turn intimately related with the expressigg(k, q) defined as:

Yok @) = K2+ " Lop(@). (51)
B

Note that for the case of two-dimensional Navier-Stokgg) becomes a £ 1 matrix withL11(Q) = ¢?, thusy.(k, q) =
k? — g2, which is negative whek < ¢. For more generalizettlayer quasi-geostrophic models, the expressidk, o)
continues to be given by, (k, g) = k¥ — g> which remains negative whén< ¢ for all layerse. We will now show
that:

Proposition 1. In a generalized n-layer model, under symmetric streantfonaissipation d = + 2y, with spec-
trum D(K) > O, we assume thatk(d) > Owhena # 8, and Lys(q) = Lg(0), andy,(k, ) < 0when k< ¢ for all a. It
follows that:

A(k, @) < D(@) ) va(k. )Uq(0) < O.
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Proof. We begin by recalling from Appendix A, th&(qg) can be rewritten as

E(@) = - ) Lap(@Ua(d) - % D Lap(@[2Cap(@) — Ua(@) - Up(@)]- (52)
ap

af
a#p

It follows thatk?U(q) — E(q) satisfies:

KPU(Q) - E(@) = K )" Ua(0) + D Lap(A)Ua(@) + % D Lap(@[2Cap(0) — Ua(@) - Ug(a)] (53)
a af aafﬁ
<KD U@+ ) Lap(@Ua(@) = (K + 3 Los(@))Ua(ed (54)
@ af @ B
= > Ya(k U.(Q). (55)

The inequality uses the assumptibg(q) > 0 combined with the arithmetic-geometric mean inequal@yz2q) <
U.(0) + Ug(q) of the streamfunction spectra. It follows that

Ak, 6) = D(A)[K*U(q) - E(@)] < D(6) ) va(k, Ua(d) <O, (56)

sinceD(q) > 0,U,(q) = 0, andy,(k, g) < 0, thereby concluding the proof. O

The above result establishes the unconditional validitheflux inequality for generalizedlayer quasi-geostrophic
models under symmetric streamfunction dissipation. We twit the conditiohz(q) > 0 is needed to establish that
the energy spectrum@(k) is always positive, and all physically relevant quasi-geaphic models will also satisfy the
conditiony,(k,q) < 0 for allk < g. As we have already argued, for any generdédyer quasi-geostrophic model,
we havey,(k, ) = k? — ¢? for all layersa, so the assumption is mathematical and does not impose arsjcph
constraints in the model's formulation. No other restdng are needed by the above proposition. Physically, this
means that under symmetric streamfunction dissipati@béhavior of any generalizedayer model will be similar
to two-dimensional turbulence, where the subdominant doaie energy cascade is too weak to cause a transition
from k=3 scaling tok=>'2 scaling in the downscale inertial range.

4. Flux inequality in a two-layer model

The previous results, derived over a genarkdyer quasi-geostrophic model also apply to the spec&d oéa two-
layer quasi-geostrophic model. Consequently, the fluxuaéty will be satisfied by any two-layer quasi-geostrophic
models under symmetric streamfunction dissipation. Weneilv concentrate on investigating the validity of the flux
inequality in two-layer quasi-geostrophic models withrasyetric dissipation.

Since the details of the argument below are very technicalpwmyvide a brief outline. In section 4.1 we write
the governing equations for the two-layer quasi-geosimpiodel and define the two novel features of the proposed
configuration of the dissipation termextrapolated Ekman dampingontrolled by the parametgr andsmall-scale
differential dissipationwhich is controlled by the parametar. In section 4.2 we derive the general form of the
energy dissipation spectruBPe(k) and the potential enstrophy dissipation spectibgik) for the most general dis-
sipation term configuration. In section 4.3 we derive Primns2, which gives a sficient condition, via Eq. (102),
for satisfying the flux inequality, in terms of the dissiatiterm configuration, which is completely described by the
spectraD;(k), D2(k), d(k), and the parametgr. The proposition is very abstract and general, as it acsoianta
very wide range of possible configurations. In section 4.4demve, from proposition 2, a series of corollaries for
four special cases of interest: (a) the case of streamfumdissipation with both extrapolated Ekman damping and
differential small-scale dissipation, given by Eq. (107); {i® tase of streamfunction dissipation wittifeliential
small-scale dissipation but without extrapolated Ekmasigation, given by Eq. (108); (c) the case of streamfunctio
dissipation with extrapolated Ekman dissipation but withdifferential small-scale dissipation, given by Eq. (109);
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(d) the case of the standard symmetric streamfunctionggiiein without any special features, given by Eq. (110). A
careful comparison is given between thésient conditions to satisfy the flux inequality for each of flour cases.
Finally, section 4.5 gives a fiierent set of sflicient conditions to satisfy the flux inequalities in termgiué stream-
function spectra. Future work should combine these cantitivith some phenomenological model of the energetics
of the two-layer model to extract useful information.

4.1. Model formulation
The two-layer quasi-geostrophic model can be formulatéerims of two potential vorticity equations of the form

0
% + I ar) = f1+dy, (57)
0
L+ ) = o+ (58)
with the relationship between the potential vorticitigsqg, and the streamfunctions, ¥ given by
K&
G = V1 + - (2= y), (59)
2
G = VA2 — k—;(lﬂz - y1). (60)

Herequ, ¥1 correspond to the top layer ang, v» correspond to the bottom layer. As explained in the intréidag
we situate the top layer g = 0.25Atm and the bottom layer g, = 0.75Atm. In terms of the generalized layer
model, Eq. (59) and Eq. (60) correspond to an operaigmwith spectrunilz(k) given by

a(k)  b(k)

1= "Tb aliy

: (61)

with a(k) andb(k) given bya(k) = k? + k&/2 andb(k) = —k3. Using diferential hyperdtusion at the small scales and
extrapolated Ekman dissipation at the bottom layer gives

dy = v(—-1)PHiv2Pr2y,, (62)
dz = (v + AV)(-1)PHV2PH 2y, — v VA, (63)

Here we assume that the hypdfdsion is stronger at the lower layer, witly > 0 being the additional hypeifdiusion
codficient added to the lower-layer (the reader should not cenfie coéicient Ay with the previously defined
functionA(k, @)). Furthermore, the Ekman term is given in terms of the stfeactiony s at the Ekman surface layer
which is linearly extrapolated from; andy, and it is given byys = Ay, + pdya, with 2 andu given by

1= Ps— P2 andy = pz—ps. (64)
P2 - P1 Ps— P1
In other wordsy s is defined so that, plotted on a pressure-streamfunctiorepthe three pointg, vs), (P1, Y1), (P2, ¥2)
are colinear. Usingp; = 0.25Atm, p, = 0.75Atm andps = 1Atm givesA = 3/2 andu = —1/3. It is worth noting that
for any arbitrary placement of the top and bottom layer thtisBes O< p; < p2 < ps, Wwe can show thatl < u < 0.
This constraint op is all that is needed to derive the main results of this paoathe precise placement of the surface
layer is not important for our argument below. On the otherhanoving the potential vorticity layers around would
necessitate non-symmetric generalizations of the opet#tp, which may be interesting for oceanographic model-
ing, but not necessary for atmospheric modeling, and bettemdcope of this paper. We will therefore assume that
p; andp; are fixed but allowps to vary asp, < ps < 1Atm, which in turn corresponds tel/3 < u < 0.
The dissipation term configuration given by Eq. (62) and E8) Corresponds to setting the generalized dissipation
operator spectrurD,z(k) equal to

D:1(K) 0

DI =1,d09 Do +d®)|"

(65)
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with D1(q), D2(q), andd(q) given by
D1(k) = vk?**2 andDy(K) = (v + Av)k?P*2 andd(k) = Avek?. (66)
Note that foru = 0 anda = 1, this reduces to the simpler case of streamfunction ditisip.

4.2. Dissipation rate spectra for the two-layer model

We may now leverage Eq. (43) and Eq. (44) to calculate theggnend potential enstrophy dissipation rate
spectrunDg (k) andDg(K) in terms of the streamfunction spectda(k), U, (k), andC;2(K). For the case of the energy
dissipation rate spectrulg(k), noting thatD1,(k) = 0, a simple calculation gives

De(K) = 2D11(K)U1(K) + 2D22(K)U2(K) + 2D21(k)C21(K) (67)
= 2D13(K)U1(K) + 2D25(K)U2(K) + D21(K)[2C12(K) — U(K)] + Das(K)U (K) (68)
= [2D11(K) + D21(K)]U1(K) + [2D22(K) + D21(K)]U2(K) + D21(K)[2C12(K) — U (k)] (69)
= ADKU1(K) + AP (K)U2(K) + AD(K)[2C15(K) — U(K)], (70)

with AD(k), AL (k), andAD (k) given by

AP(K) = 2D11(K) + Day(k) = 2Dy (K) + ud(K), (71)
A(K) = 2D22(K) + D21(K) = 2D5(K) + 2d(K) + ud(K), (72)
AD(K) = Day(K) = pd(K). (73)

We note that terms involving the streamfunction cross-patCi2(k) have been reorganized in terms @&2(k) —
U(k) so that we can take advantage of the inequaly,&) — U(k) < 0. For the potential enstrophy dissipation rate
spectrumDg(k), we take advantage of the symmetry assumpltigitk) = Lg,(K) to rewrite Eq. (44) as

Dok = -2 3 Lup(KDey (G309 = ~2. 3" LaKIDay (KT, () = ~2 3 (LDYsy (KICpy (K. 74)
apBy aBy By

The components ol D)(Kk) are given by

__[a b(K)][Di(K) 0
0N =1p19 a] [ud( D+ d(k)] (79)
__[a(k)D1(K) + ub(K)d(k)  bK)[Da(K) + d(k)]] (76)
b(k)D1(K) + pa)d(K)  a(k)[D2(K) + d(K)] |’
and it follows thatDg (k) is given by
Da(K) = —2((LD)11(K)U1(K) + (LD)22(K)U2(K) + [(LD)12(K) + (LD)21(K)]C12(K)} (77)
= —{[2(LD)112(k) + (LD)12(K) + (LD)212(K)]U1(K) + [2(LD)22(K) + (LD)12(k) + (LD)21(k)]U2(K)
+ [(LD)12(K) + (LD)21(K)][2C12(K) — U(K)]} (78)
= AD(KU1(K) + A2(K)U2(K) + AD(K)[2C12(k) — U (K], (79)
with AD(k), AD(k), AD (k) given by
ADK) = ~[2(LD)11(K) + (LD)12(K) + (LD)21(K)] (80)
= 2[a(k)D1(K) + ub(K)d(K)] + b(K)D1(K) + za(k)d(k) + b(k)[D2(K) + d(K)] (81)
= [2a(k) + b(k)]D1(K) + b(k)Do(k) + [2b(K) + a(k)]xd(K) + b(k)d(k), (82)
AL(K) = ~[2(LD)22(K) + (LD)12(K) + (LD)21(K)] (83)
= 2a(K)[D2(K) + d(K)] + b(K)D1(K) + pa(k)d(K) + b(K)[D(K) + d(K)] (84)
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= b(K)D1(K) + [2a(k) + b(K)]D2(K) + [2a(K) + b(K)]d(K) + pa(k)d(K), (85)
AS(K) = ~[(LD)12(K) + (LD)21(K)] = b(K)D1(K) + pa(k)d(K) + b(K)[D2(K) + d(K)] (86)
= b(K)[D1(K) + D2(K)] + b(K)d(K) + a(k)d(K). (87)

The above expressions f@e(k) and Dg(k) are the point of departure for the investigation of the flagquality
under the general case of streamfunction dissipation witfapolated Ekman dissipation andfdrential small-scale
dissipation.

4.3. Syicient conditions in terms of dissipation gbeients

As we have discussed previously, to satisfy the flux inetyifillg (k) — IIg(K) < 0 for a given wavenumbek,
it is sufficient to show than(k, g) < 0 for all wavenumber& < ¢. Using our previous expressions for the energy
dissipation rateDg(k) and the potential enstrophy dissipation r&Xg(k), we can calculateé(k, q). Consequently,
A(K, q) is given by

A(k, 6) = K’De(q) - Dg(0) (88)
= Ax(k, )U1(q) + Aa(k, Q)U2(0) + As(k, )[2C12(q) - U(G)]. (89)
with A1 (k, g), Az(k, q), andAs(k, g) given by

Au(k.q) = KAD(q) - AD(q) (90)
= K2[2D1(q) + ud(q)] - [2a(q) + b(@)] D1(a) - b(a)D2(a) - [2b(q) + a(g)]ud(q) — b(g)d(a) (91)
= [2K? - 2a(q) - b(q)] D1(a) - b(6)D2(a) - b(a)d(a) + [K* - 2b(q) - a(a)]ud(a). (92)
Ao(k.q) = K*AD(q) - A2(q) (93)

= k2[2D5(q) + ud(q) + 2d(q)] - b(a) D1(a) — [2a(q) + b(a)] D2(0)
— [2a(q) + b(a)]d(q) — xa(a)d(q) (94)
= —b(0)D1(q) + [2k — 2a(q) - b(a)] D2(q) + [2k? — 2a(q) — b(a)]d(a) + u[k? — a()]d(a). (95)
As(k, q) = KPAD(q) - AD(q) = Kud() - b(@)[D1(q) + D2(a)] - b(G)d(q) - xa(a)d(q) (96)
= —b(0)[D1(a) + D2(A)] - b(a)d(q) + u[k? - a(@)]d(a). (97)

We observe that);(q) > 0 andU,(q) > 0 and Z;,(q) — U(Qg) < 0, consequently the sign af(k, ) depends on the
sign of the coéficientsAs(k, 0), Ax(k, q), andAg(k, ). For the argument below we may assume thhk u < 0 and
Di1(qg) < D2(q). HereD1(q) < D»(q) corresponds to flierential small-scale fiusion (i.eAv > 0) andD;(q) = D2(q)
corresponds to symmetric small-scale dissipationAi.e- 0). We begin our argument with the following lemma:

Lemma 1. Assume that(m) < 0 and K — a(g) — b(q) < 0. Assume also streamfunction dissipation with both
differential small-scale dissipation and extrapolated Ekméssigation with—1 < u < 0. Then A(k,q) > 0, and
furthermore, if D(q) < D2(q), then we also haveAk, ) < 0.

Proof. We recall thatAs(k, q) is given by

As(k, 6) = ~b(@)[D1(0) + D2(A)] — b(a)d() + u[k* ~ a(@)]d(a). (98)

Since, by definitionD;(q) > 0, andDy(q) > 0, andd(q) > 0, and sincéd(q) < 0, andk? — a(q) = [k? — a(q) — b(g)] +
b(q) < k? — a(q) — b(g) < 0, andu < 0, it follows that all contributing terms t8a(k, g) are positive and therefore
As(k,g) > 0. For the case ofx(k, g), let us assume first thelt; (q) < D2(q). We rewriteAx(k, q) as follows:

Ag(k. 0) = ~b(a)D1(q) + [2k* ~ 2a(q) — b(a)] D2(q) + [2k* ~ 2a(q) ~ b(@)]d(q) + u[k* - a(g)ld(q) (99)
= ~b(a)[D1(0) ~ D2(a)] + 2[k* - a(a) ~ b(q)] D2(0)
+2[K* ~ a(a) - b(g)]d(a) + b(q)d(a) + u[k* ~ a(a) - b(@)]d(q) + xb()d(q) (100)
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= ~b(@)[D1(a) ~ D2(A)] + [K* ~ &(q) — b(@)I[2D2(0) + (2 + w)d(@)] + ( + 1)b(A)d(q)- (101)

Sinceb(q) < 0, andk? — a(qg) — b(g) < 0, andu + 2 > 0, andu + 1 > 0, we see that all contributing termsAg(k, q)
are negative and therefofg(k, ) < 0. This concludes the proof. O

Proposition 2. Assume streamfunction dissipation with botffedéential small-scale dissipation and extrapolated
Ekman dissipation with-1 < u < 0. Assume also that?k- a(q) — b(q) < 0, and Kg) < 0, and Dy(q) > 0, and
D2(q) = 0, andAD(q) = D2(q) — D1(q) = 0, and also that B(q), AD(q), and dq) satisfy

2D4(q) + pd(q) S b(g)
[D2(q) — D1(9)] + (u + 1)d(g) = k? —a(q) — b(a)’

Then it follows that(k, g) < 0.

(102)

Proof. We recall thatA(k, g) is given by

Ak, g) = Au(k, q)U1(q) + Aa(k, q)U2() + As(k, 9)[2C12(q) — U(a)]. (103)

Using the previous lemma, from the given assumptions abegehaveA;(k, q) < 0 andAs(k,q) > 0. Now let us
rewrite A1 (k, ) as

Au(k, ) = [2k* ~ 2a(q) — b(6)]D1(a) — b(@)D2(q) - b(a)d(a) + [K* — 2b(q) — a(q)]ud(a) (104)
= 2[K* - a(q) -~ b(@)] D1(a) ~ b(@)[D2(q) ~ D1(q)] ~ b(c)d(a)

+ [k ~ a(q) ~ b(g)]ud(q) - ub(g)d(a) (105)

= [K* - a(0) ~ b(@)][2D1(q) + kd(a)] — b(@)[D2() ~ D1(a) + (u + 1)d(a)]. (106)

Sincek? — a(q) — b(g) < 0 andD(q) — D1(q) + (u + 1)d(q) > 0, it follows thatA(k, g) < 0 if and only if Eq. (102) is
satisfied. Thus, since we also know thhi(g) > 0, andU»(q) > 0, and Z,(q) — U(q) < 0, it follows that all terms
contributing toA(k, ) are negative, and therefadk, q) < O. O

4.4. Discussion of gficient conditions in terms of dissipation gbeients

We will now use Proposition 2 to extractfigient conditions to satisfy the flux inequality for the fousslpa-
tion term configurations, outlined in the beginning of thestion, in terms of the dissipation term ¢beients. Our
goal is to explore the restrictiveness of these conditionsfch configuration. For the first dissipation configura-
tion, we consider streamfunction dissipation with botiadiential small-scale dissipation and extrapolated Ekman
dissipation, with the surface layer placed at 1Atm. Mathiéradly, this corresponds to usir;(q) = vg?*?, and
d(g) = (3/2ved? (sinced = 3/2), andD,(q) — D1(q) = Avg?®*2, andu = —1/3. Itis easy to show that, given these
choices, Proposition 2 gives the following statement

AvOPP +ve 2K
Ayg?P — vg ké

= A(k, ) < 0. (107)

Note that the hypothesis given by Eq. (107) requiresthat 4vg?°, which ensures that both sides of Eq. (102) are
positive. We may then invert both sides of Eq. (102) in thecpss of obtaining Eq. (107). On the other hand, for
ve > &P, Eq. (102) is violated, as its left-hand side becomes negathile its right-hand side remains positive.
More precisely, in Eq. (102), the right-hand side is posifior q > k, the denominator of the left-hand side satisfies
D,(q) — D1(q) + ( + 1)d(q) > O by the given choices fdD4(q), D2(q), d(q), andu, and the constraintz < 4vg?P is
needed to ensure that the numera®t@)+ud(q) is not negative, so that it can be possible for Eq. (102) tedlbisfied.
Consequently, we see that increasing eitheor Av indicates a tendency towards violating the flux inequalltge
role of differential difusion is very important here since, fav > 0, the left-hand-side of the hypothesis in Eq. (107)
will approachAv/(4v) and remain bounded for large wavenumbgravhereas fornv = 0, the same left-hand-side
will vanish rapidly to zero with increasing wavenumlzpr As a result, violating the flux inequality may become
easier under dierential small-scale dissipatiaxy. On the other hand, the role ef becomes even more dramatic,

15



since increasinge from 0 towards 492° will result in a hyperbolic blow-up of the left-hand-sidetbe hypothesis of
Eqg. (107), thus yielding an even more rapid violation of thypdithesis.

Now, let us consider the second dissipation term configunatihere we eliminate extrapolated Ekman dissipation
but retain diferential small-scale dissipation. This corresponds tmsimgu = 0 andA = 1 (i.e. the Ekman term
is now at the lower layer and not extrapolated into the serfager), withD1(q) = vg?**?, andd(q) = veg? (since
A = 1), andD,(q) — D1(q) = Avg?P+2. Proposition 2 will now reduce to the statement given by

AvOPP +ve P -k
4yq2P ké

where the hyperbolic blow-up is no longer possible fi@ential small-scale dissipation however maintains its te
dency towards violating the flux inequality for increasikgsince the left-hand-side in the hypothesis of Eq. (108) stil
approacheayv/(4v) in the limit of large wavenumbeig and does not vanish. Comparing Eq. (107) with Eq. (108),
we see that the presenceygf in the denominator of the left-hand-side fraction of Eq. L& due to the use of
extrapolated Ekman dissipation.

It is also interesting to consider the third dissipatiomteonfiguration in which we eliminate fiiérential small-
scale dissipation but retain extrapolated Ekman disgipafihis corresponds to choosing- —1/3 andAv = 0, with
D1(q) = Do(q) = vg?P*+?, andd(q) = (3/2)vecf (sinced = 3/2). The statement of Eq. (107) can be simplified to read

— Ak, q) <O, (108)

VE_ o2 — k2
PG+ (P - k)
Now, let us compare Eq. (109) against the fourth dissipagom configuration where bothftiérential small-scale

dissipation and extrapolated Ekman dissipation are e#itsiuh (i.e.u = 0 andAv = 0, with D1(g) = D»(q) = vg?P+?,
andd(q) = veq? (sinced = 1)). The corresponding flicient condition is given by

= Ak, Q) <O. (109)

V_E<M:>A(k ) <0 (110)
4yqger ~ k% Q) = ©.

We see that in the absense of both extrapolated Ekman dissind diferential small-scale dissipation, the
suficient condition to satisfy the flux inequality is easily séigd since the left-hand-side of Eq. (110) vanishes with
increasing wavenumbeywhereas the right-hand side increases quadratically qvithhe only way to frustrate the
suficient condition and hope to be able to violate the flux ineiqpa by adjusting the hyperdissipation dheient
v with increasing numerical resolution, such tlngkg(/(4vq,2n‘§xz) remains constant, withmax the maximum resolved
wavenumber. Such an adjustment of hyperdissipation waethdecessary in the Tung-Orlando simulation [14] of
the two-layer quasi-geostrophic model, opening it to @isth [36, 37]. On the other hand, thefiscient conditions
for the other three cases indicate that the need for this ddradljustment may be diminished. Extrapolated Ekman
dissipation alone stabilizes the growth of the right-haite ©f the sifficient condition in Eq. (109) but does not
stop the left-hand side from vanishing. This situation iesiderably improved, as can be seen from Eq. (107) and
Eg. (108), when we introduceftierential small-scale dissipation. In fact, under the fiostfiguration, corresponding
to Eq. (107), all it takes to violate the izient condition is to ensure thag > 4vg?® for all wavenumbersj in the
inertial and dissipation range.

It should be stressed that in the above discussion, the hgpes given by Eq. (107)—(109) aréfgtient conditions
but not necessary conditions. A violation of Eq. (102) wilkare that the term;(k, q)U1(q) gives a positive contri-
bution toA(k, ). However, according to Lemma 1, the contributionsfefk, q)U2(q) and As(k, g)[2C12(q) — U(Q)]
will remain negative, so the sign ofk, g) is dependant on which term gets to be dominant. Therefossfar from a
foregone conclusion that a violation of the flux inequalgypossible under the dissipation configurations considered
above. However, the significant tightening of thdfigient condition with the introduction of extrapolated Ekma
dissipation and dierential small-scale dissipation indicates that a violatf the flux inequality may be becoming
easier to achieve, under these configurations.

4.5. Syicient conditions in terms of streamfunction spectra
We would now like to consider statements providingfisient conditions for satisfying the flux inequality, for-
mulated in terms of the streamfunction spediirdq), U2(q), andCi2(q), for the dissipation configuration given by
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Eq. (62) and Eq. (63), i.e. streamfunction dissipation witterential small-scale dissipation and extrapolated Ekman
dissipation. These conditions constrain the spect@ypiq) with respect tdJ;(g) andU»(q), and they imply corre-
sponding constraints on the distribution of energy andmi@kenstrophy between layers, to be explored in future
work. Furthermore, they are independent of the detailedhitiefis of the dissipation term operator spectra given by
D1 (k), D2(K), andd(k).

We will derive propositions for three separate cases. Hitipn 3 corresponds to streamfunction dissipation
without differential small-scale dissipation and without extrapal&kman dissipation. Proposition 4 corresponds to
streamfunction dissipation with bothféirential small-scale dissipation and extrapolated Eknissightion. Finally,
Proposition 5 corresponds to streamfunction dissipatiith @extrapolated Ekman dissipation but withouffdiential
small-scale dissipation. We will see that the correspamdanstraints on the streamfunction spect@yz(q) become
tighter upon introducing dlierential small-scale dissipation, extrapolated Ekmasifligion, or a combination of both.

The first step towards deriving the propositions below isetarite A(k, q) in terms ofD1(q), D2(q), andd(q) as
follows

A(k, g) = Bi(k, q)D1(q) + Ba(k, @)D2(0) + Ba(k, g)d(q), (111)
with By (k, g), B2(k, q), andBs(k, g) given by
Ba(k, ) = [2k* - 2a(q) - b(q)]U1(q) — b(e)U2(q) — b(a)[2C12(q) = U(C)] (112)
= 2[k* - a(g)]U1(q) - 2b(a)C1(q), (113)
Ba(k, 6) = —b(q)U1(a) + [2k* — 2a(q) - b(e)]U2(q) - b(@)[2C12(q) — U(a)] (114)
= 2[K* - a(@)]U(q) - 2b(q)C1x(q), (115)
Ba(k, q) = —b(@)U1(a) + [K* — a(q) — 2b(q)]uU1(a) + [2K* = 2a(q) — b(q)]U2(q)
+ u[k — a(g)]Uz(q) — b(@)[2C12(q) — U(Q)] + u[k* — a(a)][2C12(q) — U(q)] (116)
= 2[K* - a(q)]U2(q) - 2b(q)C12(q)
+ u[k — a(@)][U1(a) + Uz(q) + 2C12(a) — U(a)] — 2ub(g)U1(q) (117)
= 2[K* - a(g)]U(q) - 2b(a)C12(q) + [k — a(q)]2C12(q) — 2ub(a)U1(a). (118)

We now use the above equations to derive the following pridipas:

Proposition 3. Assume that%- a(q) — b(g) < 0 and Kg) < 0. We also assume the dissipation configuration given
by Eq.(65)with u = 0, and dq) > 0, and Di(g) = D2(q) = D(g) > O (i.e. symmetric small-scale streamfunction
dissipation with a standard Ekman term). It follows that k(@) < U2(q), thenA(k, q) < 0.

Proof. We write A(k, g), under the assumption of symmetric small-scale dissipdtie. D1(q) = D2(q) = D(K)), as

A(k, q) = [Ba(k, ) + Ba(k, )] D(q) + Bs(k, q)d(q). (119)
We note that from the given assumptions, we have
Ba(k, ) + Ba(k, ) = 2[K* = a(q)]U1(q) — 2b(q)C12(q) + 2[k* - a(6)] U2(q) — 2b(6)C12(a) (120)
= 2[K* — a(@)]U () - 4b(q)C12(q) (121)
= 2[k* - a(a) - b(q)]U(q) - 2b(A)[2C12(a) ~ U(a)] < O, (122)

usingk? — a(q) — b(q) < 0, b(q) < 0, and Z15(q) — U(g) < 0. From the hypothesi8;,(g) < U»(q), we can also show
that

Ba(k, q) = 2[K* — a(q)]U2(q) — 2b(6)C12(q) (123)
< 2[K* - a(q)]U(q) - 2b(q)Ux(q) = 2[k* - a(q) - b(g)]Uz(q) < O. (124)
Sinced(q) > 0 andD(q) > O, it follows thatA(k, g) < O. O
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Proposition 4. Assume that (@) < 0 and K — a(g) — b(g) < 0. We also assume the most general dissipation
configuration given by Eq65) with D1(q) > 0, and Dx(q) > 0, and dq) > 0, and-1 < u < 0 (i.e. streamfunction
dissipation with both gferential small-scale dissipation and extrapolated Ekmisigation). It follows that

1. If C12(q) < 0, thenA(k, q) < O.
2. If C12(q) < min{U1(0), U2(a)} and Ui(q) + 1U2(q) > O, thenA(k, g) < 0.

Proof. To show (a) we first note th&? — a(q) = [k? — a(g) — b(q)] + b(g) < k? — a(q) — b(g) < 0. Combined with the
given assumptions, we find thBi(k, q), B2(k, ) andBs(k, q) satisfy

Ba(k, 0) = 2[k* — a(q)]U1(0) ~ 2b(A)C12(q) < 2[K* - a(@)]U1(q) < O, (125)
B2(k, 6) = 2[k* — a()]U2(q) — 2b(q)Cr2(0) < 2[K* ~ a(@)]U2(d) < O, (126)
Ba(k, ) = 2[K* - a(q)]U2(q) — 2b(q)C12(q) + u[k* — a(a)]2C12(q) — 2ub(6)U1(0) (127)

< 2[K* - a(q)]U2(0) ~ 2ub(g)U1(q) < O. (128)

Here we used the inequalitie®b(g)C12(q) < 0, andu[k? — a(g)]2C12(q) < 0, and 2b(g)U1(q) < 0, that follow from
the given assumptions. It follows thatk, q) < 0.
To show (b) we use the given assumptions to show that

Bu(k, ) = 2[k* — a(@)]U1(q) — 2b(q)C12(q) < 2[k* — a(a)]U1(q) — 2b(q)U1(q) (129)
< 2[K* - a(g) — b(q)]U1(q) < 0, (130)
Ba(k. q) = 2[K* — a(a)]U2(q) — 2b(q)C12(0) < 2[K* — a()]U2(q) — 2b(q)U>(q) (131)
= 2[k* — a(g) — b(q)]U2(q) < 0. (132)

The above two inequalities fd; (k, g) andBy(k, g) are based on the assumptidis(g) < U1(g) andCi(q) < Ux(q).
We also show thaBs(k, q) is bounded by

Ba(k, q) = 2[K* - a(q)]U2(q) — 2b()C12(q) + u[k* — a(q)]2C12(q) — 2ub(q)U1(q) (133)
< 2[K* - a(q)]U2(q) - 2b(q)U>(q) + [k — a(q)]2U1(q) — 2ub(q)U1(q) (134)
= 2[K* - a(q) - b(q)]U2(q) + 2u[k* — a(q) - b(g)]U1(q) (135)
= 2[K* - a(q) - b()I[U2(q) + xU1(q)]. (136)
Sincek? — a(g) — b(g) < 0 and by hypothesitl;(g) + uU»(q) > 0 it follows thatBs(k,q) < 0, and consequently
Ak, g) <0. O

Proposition 5. Assume that%- a(q) — b(g) < 0 and K(q) < 0. We also assume the dissipation configuration given
by Eq.(65)with -1 < 4 < 0 and Dy(q) = D»(q) > 0, and dq) > O (i.e.streamfunction dissipation with extrapolated
Ekman dissipation with and symmetric small-scale disgipat It follows that if G»(q) < min{U1(q), U2(q)} then
Ak, q) < 0.

Proof. Under the assumption of symmetric small-scale dissipdtienD1(q) = D2(q)), we may rewriteA(k, g) as

Ak, q) = [Ba(k, q) + Ba(k, q)] D(q) + Bs(k, q)d(q). (137)
We note that from the given assumptions, we have
Bu(k, ) + Bz(k, q) = 2[k* — a(@)]U1(q) — 2b(G)C12(q) + 2[K* - a(@)]U2(q) — 2b(6)C12(q) (138)
= 2[k* - a(q)] U (q) - 4b(q)C1(a) (139)
= 2[K* - a(q) - b(q)]U(q) - 2b(A)[2C12(q) — U(q)] <O, (140)
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usingk? — a(qg) — b(g) < 0, b(qg) < 0, and £1,(g) — U(q) < 0. We also have

Ba(k, ) = 2[K* - a(q)]U2(q) — 2b(q)C12(q) + u[k* — a(a)]2C12(q) — 2ub(6)U1(a) (141)
< 2[k* - a(q)]U2(a) — 2b(A)U2(q) + u[K* — a(@)]2C12(q) ~ 2ub(q)C12(q) (142)
= 2[k* - a(q) — b(@)]U2(a) + 2u[k* ~ a(q) — b(6)]C12(0) (143)
< 2[k* - a(q) — b(q)]U2(a) + 2u[k* — a(q) - b(a)]U2(q) (144)
= 2(1+ p)[K* ~ a(d) — b(a)]U2(q) < 0. (145)

Here, on the first line we used the assumpti@ag(d) < Ui(q) andCix(q) < Ux(q) to argue that-2b(q)Cio(q) <
=2b(q)U2(q) and —2ub(q)U1(q) < —2ub(q)Ci2(q). The remainder of the argument continues to apply the given
assumptions and it is easy to follow. We conclude t(t g) < 0. O

Proposition 3 shows that under symmetric small-scale stiwaction dissipation alone, using standard as op-
posed to extrapolated Ekman dissipation, the inequélipfg) < U»(q) implies A(k,q) < O for all wavenumbers
k < g. We already know tha€i»(qg) is mathematically restricted via the arithmetic-geoncetnean inequality
2|C12(0)] < Uz(q) + Uz(g) over an interval of values intersecting with the constr&im(g) < Ux(q), so the ac-
tual constraint orC,,(q) is tighter. From Proposition 4 and Proposition 5 we see ithadtiding either extrapolated
Ekman dissipation or ffierential small-scale dissipation on top of streamfuncti@sipation makes the ficient
conditions more restrictive. This is, of course, expected eonsistent with the preceding discussion of the conse-
guences of Proposition 2. In particular, Proposition 4 shtivat for the more general dissipation term configuration
of streamfunction dissipation with bothfféirential small-scale dissipation and extrapolated Eknissightion, if the
streamfunction spectru@ »(q) is negative for all wavenumbegs> k, then the flux inequality is satisfied at wavenum-
berk. It also shows that the restriction on the streamfuncti@cspmCi,(q) can be stretched as far as the wider
inequalityCi2(q) < min{U1(q), U2(q)} if we choose to introduce the restrictibh (q) + xU2(q) > 0 on the streamfunc-
tion spectrdJ(g) andUx(q). In proposition 5 we eliminate fierential small-scale dissipation but retain extrapolated
Ekman dissipation. This eliminates the restrictidr(q) + uU»(q) = 0 whereas the restriction on the streamfunction
spectrumCi2(q) remains the same as in Proposition 4. This shows that thectes U1(q) + uU2(q) > 0 origi-
nates from dferential small-scale dissipation, and sincé negative, it constitutes a non-trivial constraint on the
streamfunction spectid;(q) andU;(qg). As a result, the dficient conditions of Proposition 5 are rigorously wider
than the sfficient conditions of Proposition 4. It goes without sayingtthliminating both dferential small-scale
dissipation and extrapolated Ekman dissipation revertsagk to Proposition 3 where the statedfi®ient condition
is clearly wider than that of Proposition 5. Specifically; fo= 0, the inequalityJ;(q) + uU2(q) > 0 reduces to the
trivial inequalityU,(g) > 0. Furthermore, in the proof of proposition 5, for= 0, we no longer need the constraint
Ci12(0) < Ui(q) to show thatBs(k, q) < 0, and only the constraif®;2(q) < U,(q) is needed by the remainder of the
proof.

5. Conclusions and Discussion

We have derived rigorous §icient conditions for satisfying the flux inequalk§Tlg (k) — Ig(k) < O for a general
n-layer quasi-geostrophic model with constant layer-tyetahickness, under symmetric streamfunction dissipatio
By symmetric streamfunction dissipation we mean that ferglayer the dissipation term is given by the same linear
Fourier-diagonal operator, applied only on the streamfondield of the same layer. It follows that under symmetric
configurations of the dissipation termrslayer quasi-geostrophic models will indeed have a phemahogy similar
to two-dimensional Navier-Stokes turbulence. Asymmetdissipation configurations, wheref@irent dissipation op-
erators are used onftirent layers, have been considered for the special casevoflayer quasi-geostrophic model,
dissipated with general streamfunction dissipation wittwghout extrapolated Ekman dissipation andfetiential
small-scale dissipation. We have demonstrated that if dggek of asymmetry in the dissipation terms between the
two layers is bounded as described by Proposition 2, thefiukénequality will continue to be satisfied. Our results
on the non-trivial dependence of the dissipation rate saeaftenergy and potential enstrophy on the energy and
potential enstrophy spectra via the streamfunction speate also very relevant to the correct formulation of adlesu
models for multi-layer quasi-geostrophic systems.
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One limitation of the current investigation is that we haigebarded the beta term, mainly to avoid the math-
ematical dfficulties associated with the anisotropic nature of the tefiihis elimination can be tolerated, from a
physical standpoint, as long as the beta term is active ortlyd forcing range and the baroclinic forcing at the same
forcing range is powerful enough to overshadow the beta.t&siong as the fect of the beta term remains limited
to large scales (i.e. planetary and synoptic scales), itnwil contribute to the integrals of Eq. (36) and Eqg. (37) and
the results reported in this paper will remain entirelyfliéeted. The only other physical assumption inherent in these
results is that forcing via the baroclinic instability iglited to large scales. The propositions 1-5 are mathentigttica
rigorous and do not require these assumptions, howeversthargtions come into play at the very last step where
the conclusion of propositions 1-5 (i.A(k, q) < 0) is used to infer the flux inequality itself. On the other iano
phenomenological assumptions about any spectrum are theeday step of the argument.

For the case of the two-layer quasi-geostrophic model, we kaen that, starting from a streamfunction dissi-
pation configuration, adding either extrapolated Ekmasipiiion or diferential small-scale dissipation (or both)
tends to tighten the $ficient conditions for satisfying the flux inequality. Thisggests that the flux inequality
k2T (k) - Tg(K) < 0 may be more easily violated under these more general digsipconfigurations. A violation
of the flux inequality beyond a wavenumbemvould then allow a downscale energy flux large enough to tésal
transition fromk 3 to k=5/3 scaling in the energy spectrum near the wavenurkJéo, 11, 38]. However, while there
is a plausible physical motivation for using extrapolatéain&an dissipation, there is no obvious physical motivation
for introducing an asymmetric configuration of the smaldealissipation terms. We would therefore like to expand
on the reasons why we believe that this is an idea worth pugsui

Any kind of small-scale dissipation in quasi-geostrophid®ls is not physical but is tolerated mainly because it
is intended to model the dissipative mechanisms that eixsshaller scales where quasi-geostrophic dynamics breaks
down and three-dimensional dynamics becomes dominantibbirg [39] estimates that quasi-geostrophic dynamics
break down at a length scale of about 100km. However, théngctrhnsition wavenumbdg of the Nastrom-Gage
spectrum [16-19], and consequently the breakdown of theifflequality, occurs at a greater length scale of about
1000km to 700km in wavelength, which is still within the qisgeostrophic regime. The hypothesis underlying the
guasi-geostrophic modeling of atmospheric turbulenchas the locality of the coexisting downscale potential en-
strophy cascade and downscale energy cascade shields rilienthie three-dimensional dominated regime at the
smallest scales. Both cascades are furthermore protegthe lsontinuing conservation of potential enstrophy under
the stratified turbulence dynamics that becomes dominactdegs less than 100km. The above considerations suggest
the hypothesis that three-dimensionfieets will not contaminate the nonlinear quasi-geostrogiiiamics driving
the coexisting cascades of potential enstrophy and eneriipeiquasi-geostrophic regime, which allows us to model
small-scale three-dimensional processes, as seen froqutse-geostrophic regime’s point of view, via small-scale
hyperditusion terms applied to all layers. That said, there is thelnoal efect that the anomalous energy sink, pro-
vided by the three-dimensional regime, can inflict on thesggaostrophic regime, and that is to boost the downscale
energy dissipation rate, thereby increasing the downseegy flux passing through the quasi-geostrophic regime
of length scales and moving the transition wavenunkbeeep into the inertial range. This is why we propose that
if differential small-scale dissipation can be shown to achieveqaivalent &ect, then it should be accepted as a
more realistic configuration, for modelling purposes. Ashage mentioned in the introduction, the main weakness
of multi-layer quasi-geostrophic models is that they djare the surface quasi-geostrophic dynamics at the lowest
layer. Perhaps, asymmetric small-scale dissipation caéndagyht of as a crude way to compensate for the absence of
surface quasi-geostrophic dynamics.
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Appendix A. Proof that E(k) isalways positive

In this appendix we show that if the matiixs(k) satisfies the following conditions:

Log(K) > O, fora # B, (A1)
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D LK) <0, (A.2)
B

then the energy spectrub(k) will be always positive withE(k) > 0.
We begin by rewriting Eq. (30) as follows:

E() == > Lap(WCap() = = )" Laa(Ua(k) = > Lap(K)Cap(K) (A-3)
af 43 af
a#f
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The assumptioh.g(k) = Lg.(K) is used in the key step between Eq. (A.4) and Eq. (A.5). We tfwitU, (k) > 0,
sinceU,(K) is always positive, and from the arithmetic-geometric mawequality, Z,z(k) — U, (K) — Ug(k) < O.
Combining these with the assumptions given by Eq. (A.1) aqd &.2), we see that both terms in our expression for
E(K) are positive and therefoig(k) > 0.

Appendix B. Derivation of dissipation rate spectra

In this appendix, we will show that the energy dissipatiote igpectrunDg (k) and the layer-by-layer potential
enstrophy dissipation rate specba, (k) are given by

De(k) = 2> Dup(KICap(K), (B.1)
o
Da, (K) = =2 ) Lop(K)Day (K)Cpy (K). (B.2)
By

The proof mirrors the argument used in Ref. [20] to deriveahergy forcing spectrum and the potential enstrophy
forcing spectrum for the same model. We begin by writing theegning equation for the streamfunction figig as

OV _ _ _
-+ ; Lot I G) = ; LA D, + ; 23, (8.3)

Differentiating the streamfunction spectr@y (k) with respect to time gives

ICs(K) [y, g
- () o 50, @

and we may write a governing equation @y(k) in the form:

9Cqp(K)
ot

+ Top(K) = =Dap(K) + Fop(K). (B.5)
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Here,T,4(K) is the contribution from the nonlinear Jacobian tefyg(K) is the contribution from the dissipation term,
andJ,4(K) is the contribution from the forcing term. The dissipatterm D,z(k) can now be obtained by replacing
in Eqg. (B.4) the streamfunction time-derivatidg, /ot with the dissipation terny,;, f(;ﬁl.@ﬁy%. This gives

Dop(k) = - <Z z;,l.@yalﬁ&, l!/ﬁ> - <l//a, Z %}1.@.,51//5> (B.6)
¥$ Kk Yo k
== Z[L(_y;(k)Dyé(k)Cﬁé(k) + Lﬁyl(k)Dya(k)Caé(k)]- (B.7)
Yo

We may now easily write the dissipation rate spe@ggk) and Dg(k) by applying onD,z(k) the linear operators
indicated by Eq. (30) and Eq. (33). We therefore find that tiergy dissipation rate energy spectrima(k) is given
by

De(K) = - Zﬁ Lap(Q)Dap(K) = ;[Lﬂﬁ(k) L21(K)Dys(KIC5(K) + Lap(IL;1(K)Dys(KICos (K] (B.8)
_ ;[; Lﬁa(k)L;i(k)]Dy(s(k)cﬁa(k) + ;;[; Laﬁ(k)L;yl(k)]Dy(;(k)Cm;(k) (B.9)
= BZ; 84y Dy5(K)Cas(K) + Z; SayDys(KICas(K) (B.10)
- gy: Dps(KICps(K) + Z; éy(j(k)cﬁ(k) = 22/3] Dap(KICaps(K). (B.11)
0 Y a

The layer-by-layer potential enstrophy spectrDg) (K) is likewise given by

Da, (K) = > Lap()Lay (D, (K) = = > Lap(K)Lay (L5} () Die(KICye(K) + L HK)Die(KICie (K] (B.12)

By Byoe
= = > 6asLay (D5 (KICye(K) = ) SasLap(K) D (k) Cpe(K) (8.13)
yoe PBoe
= = D" Ly (Due(KICe() = > Lap(K)Dae()Cpe(K) (B.14)
ye Be
= -2 )" Lop(KDar (NG (K). (B.15)
By

The corresponding conservation laws read

OE(K) = Olle(k) _

TR —Dg(K) + Fe(k), (B.16)
IG(K) = olg(k)
—C T S —Dg(K) + Fa(K). (B.17)

We see that positiv®g(k) and Dg(k) correspond to the case where the dissipation terms asedisgipative. This
concludes the argument.
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