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Abstract 

A simple two-dimensional model for quasigeostrophic flow is contrasted with the two-dimensional incompressible Euler 
equations. The model arises under the assumptions of fast rotation, uniform stratification and uniform potential vorticity. It is 
found that the more local feed-back of the quasigeostrophic model gives rise to strongly nonlinear front formation, as opposed 
to two-dimensional Euler, where the steepening process of mature fronts obeys a nonlocal, nearly linear mechanism. 
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1. Introduction 

The behavior of the ocean and the atmosphere in the 

mid-latitudes may be considered as a small departure 

from the fast rotation of the Earth as a solid body. This 

provides the ground for the quasigeostrophic approxi- 

mation, which formally expands a solution to the full 

equations of fluid dynamics around such uniformly ro- 
tating state (see for instance [11]). The resulting equa- 

tions, though much simpler than the full set, are still 
complex enough that it is not always clear what they 

imply about the nature of their solutions. Therefore 
further simplifications have been sought in particular 
contexts, looking for more tractable models. 

We study one such model, based on postulating 
a uniformly stratified ocean or atmosphere, and a 
nearly uniform potential vorticity. This model has 
been proposed for atmospheric turbulence by Blu- 
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men in [2], a study continued by Pierrehumbert et al. 

[12]. Constantin, et a1.[5,6] have applied it to study 
frontogenesis, where they explored the model's strong 

mathematical connections to the three-dimensional 

(3D) incompressible Euler equations. 
In this article, we compare the (2D) quasi- 

geostrophic (QG) model with the 2D incompressible 

Euler equations, to which it is linked by a formal 
resemblance. Interesting elements of such compari- 

son have been studied by Held, et al. [8]. Here, we 

concentrate on the similarities and differences in the 

process of front formation. It has been shown in [6] 

that front formation in the 2D QG model is analogous 
in a deep sense to vortex stretching in 3D Euler. How- 
ever, the model is still 2D and, as such, shares many 
features of 2D Euler, particularly in what regards 
conserved quantities. 

The article is organized as follows: In Section 2, a 
sketch of the derivation of the 2D QG model is pro- 
vided. In Section 3, the model is compared to 2D Eu- 
ler, with emphasis on the conserved quantities and the 
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scaling properties of the stretching term. In Section 3, 

a numerical example shows how the different scaling 
properties of both models affect the mechanisms rul- 
ing the evolution of mature fronts, which are mostly 
linear in 2D Euler and strongly nonlinear in the QG 
model. The conclusions of this comparison are sum- 
marized in Section 4. 

The simplified model with which we will concern 
ourselves here considers solutions in which the poten- 
tial vorticity q is initially constant and, due to (2), re- 
mains constant forever. For simplicity, we will make 

this constant equal to zero, and we will assume that 
the value of N in (3) is uniform and constant, which, 
after rescaling z in (3), yields Laplace's equation for 

2. A t w o - d i m e n s i o n a l  m o d e l  for  q u a s i g e o s t r o p h i c  

f low 

a21p " a 2 ~  a21ff 
ax----- T + ~ + ~ = 0. (4) 

The long-scale dynamics of the atmosphere and the 
ocean in the mid-latitudes is governed by a balance 
between the Coriolis force and the pressure gradients. 
The mathematical expression of this "geostrophic" 
balance is 

Next we focus on the surface of the Earth (or the 
bottom of the sea), assumed flat, where the velocity 
field is purely horizontal. Invoking (1), we can identify 
the pressure with a stream function, defined so that 

u = v ± ~ p ,  ( 5 )  

- f v  = Px, f u  = Py, (1) 

where u and v are the x- and y-components of the ve- 
locity, P is the pressure and f the vertical component 
of the rotation of the Earth. It follows from (1) that 
the horizontal component of the velocity field is tan- 
gent to the isobars. Given any pressure distribution, 
the equations in (1) allow us to compute the velocity 
field. However, these equations do not provide any in- 

formation on the dynamics of the pressure distribution 
itself. In order to find equations ruling the evolution 
of the pressure, one needs to go one order further in a 

formal expansion in the small parameter E, the Rossby 
number, which measures the ratio of the inertial terms 
to the Coriolis force. Such an expansion yields (see 
for instance [11]), at zeroth order, the geostrophic bal- 
ance, and at first order, the conservation of potential 
vorticity 

D__qq = 0, (2) 
Dt 

where D/Dt stands for the horizontal total derivative 
0/at  + u a /ax  + v a /ay  and q for the potential vorticity 

q = ~ + ~ + ~ z  ~ . (3) 

Here ~p is the horizontal stream function and N the 
buoyancy frequency. 

where the perpendicular gradient V ± is the vector with 
components ( -8y ,  ax). But the vertical derivative of 
the pressure is proportional to the potential tempera- 

ture 0, so 

a¢ 
- -  = 0 ,  (6) 
az 

and the potential temperature itself is advected by the 
fluid: 

D0 
- -  = 0. (7) 
Dt 

Eqs. (5) and (7) involve the horizontal derivatives of 
~p, while Eq. (6) involves its vertical derivative. These 
derivatives, however, are related by a Neumann map, 
since ~p satisfies Laplace's equation (4) for z > 0. 
Then 

0 --  a lp  _ ( _ . 4 ) 1 / 2  lp, (8) 
az 

where .4 stands for the 2D horizontal Laplacian, and 
its square root is the pseudo-differential operator de- 

fined in Fourier space by (__.4)1/2 l~(k) = Ikl~(k). 
Putting (7) and (8) together, we get the following sys- 
tem for 0 and ap: 

D0 00 
- -  -}- V -  V 0  = 0 ,  V = V ± I / e  = ( - - l ~ y ,  ~ r X ) ,  

Dt at 
(-.4)1/27z = 0. (9) 
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This is the 2D QG model, previously studied in 
[2,6,8], with which we will concern ourselves in this 

article. 

3. Comparison with two-dimensional Euler 

The equations in (9) are formally analogous to the 
2D incompressible Euler equations in vorticity form. 
In this section, we investigate to which extent this 

analogy holds. 
The 2D incompressible Euler equations may be 

written in the form 

Dw 009 
- + v .  V w = 0 ,  v = V ± ~ ,  z3~/=o). 

Dt 0t 
(10) 

Here o9 is the vertical component of the vorticity vector 

tO = 13 x - -  U y : ~ /  x x "1"- l[t y y . (11) 

The formal analogy between (9) and (10) is clear. 
In both cases, a scalar is advected by a divergence-free 
velocity field: 

DO 
- -  ~ 0 ~  
Dt 

v = V ± ~ p .  

Do) 
= 0. (12) 

Dt 

(13) 

This already implies that, for any function F, the fol- 
lowing integrals over the whole domain are conserved: 

f F(O), f F(o)). (14) 

In particular, choosing F as the characteristic function 
of an interval, we see that both equations preserve the 
area between two contour lines of the advected scalar. 

In both cases the scalar is "active" [3], in the sense 
that its distribution determines the velocity field. There 
exists an important difference between the two cases, 
however, in the relation between the active scalar and 
the stream function: 

( - A )  1/2 ~p = 0, za~ = o). (15) 

These relations can be represented in Fourier space as 

Ikl~ = 0, Ikl2~b = ~b (16) 

and, in physical space, as 

517 

= - / ' / 0  (x + y _ . . .  ) dy, 

d [Yl ' /  ~ = ~ -  o)(x + y) log lY[ dy. (17) 

For the QG model, the Fourier modes of the velocity 
and the potential temperature satisfy 

[~]2 = i~'12. (18) 

Therefore the kinetic energy 

is conserved, as follows from applying Plancherel's 
formula to write the energy in Fourier space, invoking 
(18) to translate the ~'s into 0's, returning to physi- 
cal space, and utilizing (14) with the particular choice 
F = ½0 2. Thus, the energy for the QG model is ac- 
tually a redundant conserved quantity deduced from 
(14). On the other hand, the kinetic energy is also pre- 
served by 2D Euler, but for a different reason. For 2D 
Euler, we may integrate the kinetic energy by parts 

into 

for which it is a well-known straightforward exercise 
to show conservation. A similar computation for the 
QG model shows that the quantity 

is conserved. This quantity, however, is not the kinetic 
energy; thus, the structure of the conserved quantities 
in both equations is similar. 

The next level of analogies and differences concerns 
the possibility of development of singularities. For 2D 
Euler, as is well-known classically [10], no finite time 
singularities may arise from smooth data. For the QG 
equations, however, the possibility of singularities is 
an open question, related, as we will see below, to 
that of singularities of 3D Euler. As both 0 and w are 
advected by the fluid, it is not these quantities but their 
derivatives which might blow-up. As it turns out (see 
[1] for a similar constraint on 3D Euler), it is enough 
to look at first derivatives (see [6] for the proof.) tn 
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other words, if the QG model (9) develops finite time 
singularities, the gradient of 0 has to blow-up. In face 

of this fact, let us write down the equations that the 

gradients of 0 and w satisfy. These equations, which 

can be found simply differentiating (9) and (10), are 

DV±0 
- -  - -  V v .  V ± O  ( 1 9 )  

Dt 

and 

D v i w  
- -  - V v  • V ± o g .  ( 2 0 )  

Dt 

These equations represent convection of the gradients 

of 0 and w, and "stretching" caused by the deformation 

matrices Vv. These matrices have the representations, 
for the QG case, 

dy 

(21) 

and for 2D Euler, l/ 
Vv(x) = ~ V±o)(x + y) ® V(log lYl) dy. (22) 

The relation between stretched and stretching vari- 

ables is given, in the QG case, by a singular, principal 

value integral, and for 2D Euler, by a convolution with 

a locally integrable kernel. Thus singular behavior ap- 
pears more likely in the QG model, where potential 

singularities provoke a stronger feed-back. 
This difference in feed-backs can be observed qual- 

itatively in the relations (16) between the active scalar 

and the stream function in Fourier space. The long- 

wave (small Ikl) behavior of o) affects 7: more strongly 
than 0 does; for short waves, however, as the ones 

corresponding to a localized singularity, these effects 
switch, 0 acting far more strongly than o) on 0 .  

Surprisingly, this more local feed-back of the QG 

model is analogous not to 2D but to 3D Euler. To see 
this, let us write the 3D incompressible Euler equations 
in stream-vorticity formulation: 

Dto 
- ( V v )  w ,  ( 2 3 )  

Dt 

where to is the vorticity vector, and v, the velocity, is 
a 3D divergence-free vector field. The vorticity is the 
curl of the velocity field: 

w = V x v. (24) 

Conversely, v can be determined from to by the Biot- 
Savart law 

v(x) -- 4zr V± x to(x + y) dy. (25) 

Then the gradient of v is given by a singular principal 

value integral operator acting on co. This makes (23) 

analogous to (19), if we identify to with V±O. This 

analogy has been carried out in great detail in [6], to 
which we refer the interested reader. 

Therefore, the formal analogy between the 2D QG 

model and 2D Euler breaks down when one studies 
the development of sharp fronts (elongated vortex fil- 

aments in 2D Euler.) The nonlinear feed-back is far 

less likely to saturate at an early stage in this devel- 
opment for the QG model than for 2D Euler. Indeed, 

the mathematical structure of the QG model is surpris- 

ingly close to that of 3D Euler, for which the collapse 

of vortex tubes is a strongly nonlinear event. This col- 

lapse may even give rise to a blow-up of vorticity in 
finite time, as some numerical evidence [9] seems to 

indicate. Similar evidence has been collected in [6] for 

the much simpler QG model. 

4.  A n u m e r i c a l  e x a m p l e  

How does the more local feed-back of the QG model 

manifest itself in actual solutions? To answer this ques- 
tion, we have run a numerical example, contrasting the 

QG model with 2D Euler. The initial data are the same 
ones that we used in [5] to study front formation, for 
the QG model 

O(x, y, 0) = sin(x) sin(y) + cos(y) (26) 

and for 2D Euler 

w(x, y, 0) = sin(x) sin(y) + cos(y). (27) 

We solved Eqs. (9) and (10) with these initial data, 
using a spectral collocation method (see [5,6].) The 
velocities v(O) and v(og) were computed in Fourier 
space, using (13) and (16), and the products v. VO and 
v- Vo9 were computed in physical space. An exponen- 
tial filter of high frequencies, like the one developed in 
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Fig. 1. Contour lines of 0 for the 2D QG model, at time t = 6, with initial data 00 = cos(y) + sin(x) sin(y). A grid of 512 x 512 
points has been used for this computation. 

[7], was used to avoid aliasing effects. A fourth-order 

Runge-Kutta method was adopted as time-advancing 

routine. 

The contour lines of  0 and 09 at time t ---- 6 are 

displayed in Figs. 1 and 2. The smooth data (26) and 

(27), with a saddle point at the origin, soon develop 

sharp elongated fronts, resembling antiparallel vortex 
filaments in 3D Euler. At time t = 6, both models 

have developed fronts which we may call "mature", 

in the sense that, although both fronts continue steep- 

ening, they do so by mechanisms which remain stable 

over relatively large time intervals. Our claim is that 

these mechanisms are nonlocal and linear for 2D 
Euler, and local and nonlinear for the QG model. To 

substantiate this claim, we observe that the filaments 
near the origin for 2D Euler in Fig. 2 are nearly 

perfectly antiparallel, having essentially forgotten the 

two dimensionality associated with the initial saddle 

point. Instead, the filaments in Fig. 1, though straight- 

ening up, do so in a manner which preserves more of  

the initial two dimensionality. 

It has been shown rigorously in [6] that, for non- 

linearity to survive a stretching and straightening pro- 

cess, this process has to be balanced by a packing of  

contour lines in such a way that 2D effects remain ac- 

tive. Although it is very difficult to measure this sub- 

tle balance in fronts which are barely resolved by the 

computation, it is apparent that the ones in Fig. 1 are 

far more likely to satisfy such balance than those in 

Fig. 2. The intuition behind this geometrical balance 
is the following: A purely ID front has an associated 

velocity field which runs parallel to the front, and can- 
not therefore affect it. Par consequence, the continu- 

ing stretching of  fronts such as the one in Ftg. 2 has 
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Fig. 2. Contour lines of w for 2D Euler, at time t = 6, with initial data w 0 = cos(y) + sin(x) sin(y), computed on a grid of 512 × 512 
points. 

to be caused by nonlocal effects. Instead, if a front is 

nearly 1D but also very steep, in such a way that the 

resulting velocity field transversal to the front does not 

vanish, a local, nonlinear self-feeding process remains 
possible. 

In order to go beyond the qualitative comparison 
of contour lines in Figs. 1 and 2, we use rigorous 
mathematical diagnostics for singularity formation 

(see [6,10]). We plot in Figs. 3-5 the time evolution 
of the maximum gradient of  0 and to. In Fig. 3, we 
see how both gradients grow at an increasingly fast 
rate. The fact that Vto in 2D Euler grows initially 
much faster than V0 in the QG model is due to the 
larger velocities induced nonlocally in the former 
(compare (21) and (22).) Fig. 4 displays the same 
evolutions in a semi-logarithmic scale. We see here 
how the initial nonlinear growth in 2D Euler rapidly 

saturates, giving rise to a purely linear, exponen- 
tial growth, manifested through a straight line in 

the semi-logarithmic plot. This exponential growth 

shows that, for 2D Euler, our numerical results are 
consistent with the fact that no singularities occur at 
finite time (see [10]). The growth in the QG model, 
though initially slower than its 2D Euler counterpart, 
is always strongly nonlinear and faster than exponen- 

tial. Finally, Fig. 5 shows the same evolutions in a 
log-log scale, with the origin of  time at t = 8.25, the 
conjectured critical time of this experiment, in which 
the solution to the QG model may become singular. 
Now the growth in the QG model fits a straight line 
with slope -~-,  corresponding to a singular behavior 
of  V±0 proportional to (8.25 - t) -5/3. The exponen- 
tial curve for 2D Euler bends downward in this plot 

instead. 
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Fig. 3. Maximum values of IV±01 and IV~wl as functions of 
time. The rate of growth of IV±wl is initially faster. 
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Fig. 4. Same as Fig. 3, in semi-logarithmic scale. The growth 
of Iv-Lw[ soon saturates to an exponential; the one of IV-I-01, 
instead, is always faster than exponential. 

5. Conclusions 
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Fig. 5. Same as Figs. 3 and 4, in log-log scale, showing the 
behavior of [V±01, which grows like 1 / ( 8 . 2 5 -  t) 5/3. This 
seems to indicate a collapse near time t = 8.25. However, the 
grid resolution fails before that time. 

opment, the QG fronts behave in a way much more 
reminiscent of stretching vortex filaments in 3D Euler. 

In this article, we have looked at the analytical sim- 
ilarities and differences between 2D Euler and the QG 
model, and performed a numerical experiment to de- 
termine how the differences manifest themselves in 
the process of front formation. Theory and experi- 
ments agree, in that the stronger nonlocal effects on 
the induced velocity field of 2D Euler give rise ini- 
tially to faster growing fronts, which switch very early 
to a nearly linear regime, while the QG fronts, ex- 
hibiting an initially slower rate of growth, are capable 
of sustaining a long nonlinear self-stretching process, 
which may end up in a finite time collapse. Additional 
geometric, analytic and numerical diagnostics of this 
strongly nonlinear behavior can be found in [6]. 

The incompressible 2D Euler equations and the 2D 
QG model, despite their formal similarity and a large 
number of common conserved quantities, have fronts 
with very different behavior. The stronger local feed- 
back of the QG model gives rise to a sustained nonlin- 
ear steepening of the fronts; similar fronts in 2D Euler 
end up growing only linearly, due to velocity fields 
created nonlocally. Thus, in their final stages of devel- 
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