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Abstract 

We introduce a shell ("GOY") model for turbulent binary fluids. The variation in the concentration between the two fluids 
acts as an active scalar leading to a redefined conservation law for the energy, which is incorporated into the model together 
with a conservation law for the scalar. The model is studied numerically at very high values of the Prandtl and Reynolds 
numbers and we investigate the properties close to the critical point of the miscibility gap where the diffusivity vanishes. 
A peak develops in the spectrum of the scalar, showing that a strongly turbulent flow leads to an increase in the mixing 
time. The peak is, however, not very pronounced. The mixing time diverges with the Prandtl number as a power law with 
an exponent ~ 0.9. The continuum limit of the shell equations leads to a set of equations which can be solved by a scaling 
ansatz, consistent with an exact scaling of the Navier-Stokes equations in the inertial range. In this case a weak peak also 
persists for a certain time in the spectrum of the scalar. Exact analytic solutions of the continuous shell equations are derived 
in the inertial range. Starting with fluids at rest, from an initial variation of the concentration difference, one can provoke a 
"spontaneous" generation of a velocity field, analogous to MHD in the early universe. 

Keywords: Binary fluids; Turbulence; Shell models; Intermittency; Continuum limit 

1. Introduct ion:  T urbu len t  f luid m i x t u r e s  

Binary fluid mixtures  provide  a beautiful  example  of  physical  systems where  it is possible to study the behavior  

in the l imit  o f  exceedingly  large values o f  the Prandtl number.  This  is the case for miscible  binary mixtures  jus t  

above the consolute  temperature  To, at which the diffusivity vanishes as a power  law (for a review, see [1]) 

D(T) = Do \ ~ j  (1) 

with an exponent  in the range 

/z ~ 0.63 - 0.74. (2) 
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Since D ( T )  -+ 0 at the critical point, the corresponding Prandtl number P r  = v / D  --, ~ and values as high as 106 

can be obtained experimentally [ 1 ]. Goldburg and coworkers [2-5] studied turbulent binary mixtures experimentally 

using light scattering techniques. One can measure both the variation of the mixing times and the growth of domains 

using these techniques and we return to a discussion of  the experimental results later. 

Our motivation for the present work is that we are able to formulate the theoretical equations behind binary fluid 

mixtures in terms of shell models where the known invariant quantities are conserved. In this way one can investigate 

the mixture at much higher values of  the Reynolds and Prandtl numbers, than is possible by standard numerical 

simulations. For instance, one can then study the scaling behavior of  the mixing time at very high values of the 

Prandtl number, a regime which might be experimentally accessible. Also, the shell model is known to include 

intermittency effects, which have not been treated in previous theoretical works on binary fluid mixtures. 

With the two fluids labelled A and B, respectively, a scalar field is defined as [6,7] 

7z(r, t) = (pA(r, t) -- p s ( r ,  t ) ) / p o ,  (3) 

where PA (r, t) and ,o8 (r, t) are the mass densities of  the two fluids and P0 is the mean mass density. In a phase plane 

determined by the temperature T versus the average of  the scalar 0P), there exists a "miscibility-gap" separating 

the miscible phase from the immiscible. Along this separating curve, the effective diffusivity D vanishes, because 

it separates a regime where the effective diffusivity is positive (i.e the miscible case) from a regime where it is 

negative (the immiscible case). Close to the 50-50 % concentrations of the two fluids, one finds in equilibrium 

(gr(r, t)) = 0. (4) 

For this case, as the critical point is approached from the miscible phase, the scalar is supposed to be "active" and 

influence the velocity equation of the Navier-Stokes equations quite substantially. The corresponding equations 
of motion were derived almost two decades ago by Siggia et al. [6] and Halperin and Hohenberg [7] and later on 

elaborated quite a lot by Ruiz and Nelson [8,9] 

- -  + (u-  V ) ¢  = D V 2 ¢ ,  (5) 
0t 
0 u  1 
- -  -'}-- (U' V)D = - - - V p '  - o/VlpV2~r -F vV2u -l- f, (6) 
Ot Po 

V .  u = 0. (7) 

Here v is the kinematic viscosity; f is the forcing and several terms involving 7z have been incorporated into an 

effective pressure p '  [6,7]. The term with coefficient ~ represents the "active" part of  the scalar. This term acts like 

a force of the form #AB Vgr where ktAB = --oeV2~ r plays the role of a local chemical potential difference between 

the A and B component of  the mixture [8,9]. The coefficient c~ has the dimensions of  the square of a transport 
coefficient and has been estimated to be of the order ~ ~ v 2 in [8]. 

The equations of motion (5) and (6) allow two quadratic invariants in the absence of  diffusivity, viscosity and 
forcing, i.e. in the limit D = v = 0, f = 0. The first is the squared integral of  the concentration fluctuations 

1 /"  2 
Ctot = ~ J d r0p( r ,  t)) (8) 

and the second is the total energy with a term relating to the active influence of the scalar 

,f Etot = ~ dr(]u(r ,  t)] 2 + otlVgz(r, t)12). (9) 
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In the case of  a passive scalar, i.e. when c~ = 0, one expects the energy spectrum E ( k )  and the spectrum of the 

scalar C ( k )  to have the usual behavior 

E ( k )  ~ k - 5 / 3 - ~ ,  C (k )  ~ k - 5 / 3 - × ,  (10) 

where - 5 / 3  is the Kolmogorov exponent [10] (and Obukhov-Corrsin [ 11 ] exponent for the scalar) and 5 and ~, are 

intermittency corrections in the two cases, respectively [12]. Ruiz and Nelson [8,9] also discuss the possibility of 

internal wave-like excitations, in the case of  large values of  c~, similar to linear wave excitations in MHD, which 

may change the spectrum to different scaling behavior as predicted by Iroshnikov [ 13] and Kraichnan [ 14]. We do 

not discuss this phenomenon here but reserve it for a forthcoming publication. 

An interesting feature of the equations of motion (5) and (6) should be noticed: If the initial velocity field u 

vanishes for t = 0, then if 

V~p ~ 0 and vzlp :~ 0, and/or Vp '  :~ 0 for t = 0, (11) 

it follows from Eq. (6) that a finite velocity field will appear. For small times it is given by 

u(x, t ) = - ( 1 V p ' ( x , O ) + o t V ~ p ( x , O ) V 2 ~ p ( x , O ) ) t + O ( t 2 ) .  (12) 

Here the pressure term should be such as to respect Eq. (7). Eq. (12) means that if initially the liquids are at rest, 

and experimental initial conditions respecting (11) are established, then one should see that the liquids start to move 

"spontaneously". This is a very clean effect of a non-vanishing "transport coefficient" c~, and it works irrespectively 

of  the magnitude of the diffusion coefficient D. This will be further discussed in Section 7. 

The paper is organized as follows. In Section 2 we derive the shell model for turbulent binary fluid mixtures and 

discuss the corresponding conservation law, the value of the coupling constants, etc. In Section 3 the numerical 

results obtained from integrating the model are presented. In particular we discuss the appearance of  a peak in the 

spectrum of the scalar. Section 4 contains the theoretical predictions of Ruiz and Nelson for the mixing times and the 

corresponding results from the shell model. In Section 5 we present the continuum version of the "GOY" model and 

exact analytic solutions in the inertial range, based on a scaling ansatz. In Section 6 the corresponding continuum 

equations for the binary mixture model are derived and in Section 7 the numerical results from integrating these 

equations are presented together with a comparison with the results from the discrete equations. Finally, Section 8 

offers concluding remarks. 

2. A shell model for binary mixtures 

Since the binary mixtures are particularly interesting to investigate in the critical regime where P r  --+ ~ and 

as we are concerned with the case of a strongly turbulent mixture (large values of  Re),  it is our goal to formulate 

an approximate scheme for Eqs. (5) and (6) in which this limit is accessible. Shell models in Fourier space fulfill 

these requirements. They have been introduced by Obukhov [15], Gledzer [16], Desnyansky and Novikov [17]. The 

key idea is to mimic the Navier-Stokes equations by a dynamical system with N variables u l, u2 . . . . .  Uu, each of 

which represents the typical magnitude of the velocity field on a certain length scale. The Fourier space is divided 

in N shells and each shell consists of  the set of wave vectors k such that kor n < [kl < kor n+l . The variable Un is 
the velocity difference over a length ~ kn I so that there is only one degree of freedom per shell [ 12]. Also models 

with a large number of  degrees of  freedom have been introduced and analyzed [ 18,19]. The most studied model is 
the "GOY" model introduced by Ohkitani and Yamada [20] which was found to be intermittent by Jensen et al. [21 ] 

and studied extensively in many other contexts [22-27]. This model uses a complex set of variables and has the 
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same type of quadratic nonlinearities and the same symmetries as the 3D Navier-Stokes equations. We shall apply 

the same approach in this paper by expanding the "GOY" model to include the term of the active scalar and at the 

same time conserve the two different quadratic nonlinearities (8) and (9). 

Firstly, we write down the shell model for the scalar equation (5) [8,28]. Using a complex field ~,, associated to 

shell n, the equation becomes 

t d , , , , , , , , + D k n  ~n  - + g n k n - I  Un 10n 2) = l [ e n k n ( U n - l O n + l  U n + l O n - l )  ( t ln-Z@n 1 + 
/ 

+ hnkn+I  (Un+l On+ 2 + u n + 2 O n + l ) ] ,  (13) 

where D is the molecular diffusion. The physical time scale of the model is determined by the constant kl = rko ,  

which represents the inverse scale of the largest eddy, and the related velocity lUll. This time scale is therefore the 

corresponding eddy-turn-over time 1/(kl lUl i). In the following, "time unit" thus means this time scale. 

The coefficients of the advective terms follow from demanding the conservation of Y~,, I~Pn 12 when the diffusivity 

is vanishing D = 0. A possible choice is 

1 1 1 
en = - ,  gn = - - ,  hn = - (14) 

F r r 

with 

el  = eN = gl  =- g2 = h N - I  = h N  = O. (15) 

The shell model equations for (6) will consist of two contributions; the first part is the usual "GOY" shell model 

[20] (with coefficients an,  bn ,  Cn) and the second part is the shell expression for the "active" term in the velocity 

equation (6) 

+ p k  Un = Ikn[anUn+lUn+ 2 q- b n U n _ l U n +  1 q- CnUn_ lUn_  2] 

• 3 * * * * * 
+ l O & n [ r n ~ n + l ~ n + 2  + Sn~n  l~n+! + t n ~ n  1~7-2] + f ~ n , 4  (16) 

with n = 1 . . . . .  N ,  kn ---- rn ko and boundary conditions 

bl = bN  = Cl = c2 = a N - I  = aN  = Sl = SN = tl = t2 = r N - I  = rN = O. (17) 

In order to ensure the conservation of the quadratic quantity 

Etot = Z ( l U n  [2 Jr- o tk2 l~n  I 2) (18) 
n 

in the limit without viscosity, diffusivity and forcing, v = D = f = 0, one multiplies Eq. (16) by un and multiplies 

Eq. (13) by ~p,, and then balances the terms. The nonlinear terms in u,z lead to the usual constraints of the "GOY" 
model [ 12] 

1 - ~  
an = 1, b,~ -- cn --  (19) 

r '  r 2 

For the second part of  Eq. (16) one balances the terms by the corresponding terms in the scalar equation. With the 
choice of the parameters (14) we then obtain the following conditions for the coefficients: 

rn = r 4 - r 2, Sn = r - r - 3 ,  tn = r  - 4 - r  -6. (20) 
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One observes that when the coupling constants for the scalar equation are given (14), then the coefficients of  the 
3 "active" terms are fixed. As these active terms are proportional t o  kn, we expect the effects of  this term to show up 

at the end of the spectrum for large values of  kn. 

3. Results from the shell model 

This section contains some of the numerical results obtained from integrations of the shell model for the binary 

mixture, derived above. In the simulations we use the standard separation between the shells, r = 2, such that 

kn = 2nko. We apply the "symmetric choice" of the "GOY" parameters, 3 = 1/2. In this case it is known that for 

the "GOY" model alone, the second quadratic invariant assumes the symmetry of  a helicity [22], and for that case 

the model is strongly intermittent and gives results in good agreement with experiments. We study the model with 

N = 14 and 19 shells, k0 = 2 -4, and the strength of the forcing term in (16) is f = 0.005 (1 + i). As argued by Ruiz 

and Nelson [8,9] the coupling constant of the active term or, has the dimensions of a square of  a transport coefficient 

and is in the order of magnitude 

ot ~ v 2. (21) 

The spectrum of the scalar for the shell variables is defined as 

C(kn)  = ( l~nlZ) /kn  . (22) 

The brackets stand for averages over initial conditions and time. Similarly, the energy spectrum is defined as 

E(k,)----  <lunl2)/kn. (23) 

Since the scalar equations (5) and (13) are not forced, C(kn)  --+ 0 in the long time limit. Nevertheless, it is possible 

to obtain intermediate averages over shorter times. This is in contrast to the case of the velocity spectrum E(kn)  

where the mean exists for t --+ ~ as the velocity equations (6) and (16) are forced. Firstly, we present results 

when the value of  the viscosity is v --- 10 -4, meaning that Re  ~ 104. For this value of  the viscosity, a shell model 

with N = 14 shells is employed. In order to observe the differences between a passive and an active scalar, we 

first consider the case ~ = 0. Fig. l(a) shows the corresponding spectrum C(k~) on logarithmic scales in the case 

P r  = 1. The spectrum follows quite closely the Obukhov law [11]. 

Next the Prandtl number is increased to P r  = 103. The spectrum, shown in Fig. l(b), is changed and scales 

for high value of k~ according to the Batchelor law C(kn)  ~ kn I , which means that with the increased value of 

the Prandtl number a viscous-convective regime is observed, as expected [8]. When the scalar becomes active, i.e. 

o~ # 0, by introducing the coupling term (21), the spectrum changes completely and a peak develops at the upper 

end of the spectrum as indicated on the evolution series, Fig. l(c). The series is initiated in a state where ~n is 

concentrated at a low kn value. This corresponds to a large scale disturbance, for instance where the fluids A and 
B are completely separated. After some time, a peak (or, perhaps more appropriate, a "shoulder") develops at large 

values of  kn a s  indicated in the figure (each curve is averaged over 200 time units). After further time the peak 

disappears and the spectrum ends up in C(kn) ~ kn  I . The final spectrum in Fig. l(c) represents again an almost 

stationary situation and does not change significantly during long time. Let us note in passing that time-averaging 

give results similar to ensemble-averaging, since the dynamics in the phase space of the un- and ~0n-field is strongly 
chaotic as determined by positive Lyapunov exponents [12]. 

This peak was predicted by Ruiz and Nelson [9] and also seen in numerical simulations using Markorvian closure 
equations. In fact, in those simulations the peak appears much more pronounced than compared to our results. We 
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Fig. 1. Results from numerical integrations of  the shell model (13) and (16). The parameters are: N = 14, k0 = 2 4, v = 10 -4.  The 
spectrum in (a) is averaged over 4000 time units; the other over 200 time units. In the case (a) the spectrum C (kn) has D = 10 -4 ,  Pr = 1, 
and o~ = 0. The dashed line in (a) has slope - 5 / 3 .  In the case (b) D = 10 -7 ,  Pr = 103, and ~ = 0, and the dashed lines have slopes 
- 1 and - 5 / 3 ,  respectively. (c) C(kn) for D = 10 -7  and ~ = 10 -8 .  The full curve shows the initial condition. Time progresses from the 
uppermost  spectrum to the lower. The interval between the curves are of  the order ~2000  time units. In (d) we show the spectrum at one 
particular time. The dashed line has slope - 5 / 3 .  

believe the reason is that the strongly intermittent motion could influence the dynamics in a way that the peak 
becomes less strong. Fig. 1 (d) shows one of the spectra in the series indicating the peak more clearly. Note that for 
low kn-values, the spectrum is still close to the - 5 / 3  law as indicated by the dashed line. The peak indicates that 
two miscible fluids close to the critical point mix very slowly at the small scales when the fluid is strongly turbulent. 
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Fig. 2. To the left, spectra C(kn) obtained from numerical integrations of the shell model, with parameters N = 19, k 0 = 2 -4 ,  v = 10 -6 ,  
D = 10 13, o~ ~ 10 12. The different spectra are averaged over four time units and the distance between the spectra are ~ 50 time units. 
Time progresses from the left to the right. The right-hand figure shows one particular spectrum. The dashed line has slope - 5 / 3 .  

The time for which the peak persists is strongly dependent on the Prandtl and Reynolds numbers. This time is called 
the mixing time [9]. 

Fig. 2(a) shows the development of the spectrum C(kn) for a lower value of the viscosity, v = 10 -6 corresponding 
to Re ~ 10 6. In this case D = 10 -13 leading to Pr  = 107. Again, starting from an initial condition concentrated on 

the small kn-values, one observes the occurrence of the peak at large kn-values. Fig. 2(b) shows one of the spectra and 

the dashed line corresponds to C (kn) ~ kn 5/3. In order to get a more clear picture of the peak, we plot (I On [) versus 

kn on logarithmic scales. For a usual Obukhov spectrum one should find (IOn l) ~ k~ 1/3, whereas for the viscous- 

convective regime (IOn I) ~ const, and the peak will therefore appear more pronounced. Fig. 3 shows the time 

development of the value of the scalar, where each curve is averaged over 800 time units (the time intervals between 

the curves are ~8000 time units). One observes that On is almost constant over the leftmost regime of the spectrum, 

corresponding to C (kn) ~ k n 1, whereas the peak is situated at the rightmost part of the spectrum. The peak slowly 

decreases in intensity (at a rate determined by the mixing time) but for high values of the Prandtl number this decrease 
occurs extremely slowly: the peak in Fig. 3 diminishes significantly only after about 106 time units. Simultaneously, 

the field as a whole slowly vanishes, 0,, --+ 0. This is of  course related to the fact that the passive scalar equation (13) 

is not forced and the input to the motion of  On is only driven by the advective term which includes u,,. Nevertheless, 

as Pr  --+ O, On ~ 0 slowly, which indeed is reflected in the corresponding value of  the mixing time. The presence 

of  a peak appears to be independent of  the initial state; one can either, as in Figs. 1 and 2, apply an initial disturbance 

which is concentrated at the small kn values, or choose states of On and u,  which are solutions to the passive scalar 

equations, i.e. in which a = 0. In all cases the result is a peak in On at large kn, so an initial perturbation at the large 

scales is not a necessity in order to observe the enhanced "delay" in the mixing of the two fluids. 
In comparison with previous work [8,9], it should be emphasized that in our case the peak is orders o f  magnitude 

smaller in height. In [9], the peak (after a short time) has a height of order some decades. In our case, as seen from 

the various figures, the height is only of order half a decade at most, and in many cases it is much less, which could 
make experimental observations difficult, as indeed appears to be the case [3,5]. 
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The corresponding velocity spectrum does not show any sign of  a peak, Fig. 4. On the contrary, the cut-off at high 

wave numbers in the spectrum in fact seems to move to shorter wave numbers (larger scales) as a result of the active 

coupling. The oscillations in the spectrum is on the other hand much more pronounced than for the usual "GOY" 

model. This is related to the fact that the motion for the present model is also strongly intermittent and leads to 

corrections to the Kolmogorov theory. A study of the intermittency effects is reserved to a forthcoming publication. 

4. The theoretical predictions by Ruiz and Nelson 

Ruiz and Nelson [8,9] have proposed a theory for the dependence of the mixing time on the hydrodynamical 

parameters. In the case of  the passive scalar, ot = 0, there is not a peak in the spectrum but an inhomogeneity created 

at the large scale will still persist for a mixing time which is composed of  three terms 

1 
"Cpass = to q - l n ( k ' d / k d )  + O(k,d) ~ .  (24) 

Here, the first term is the time it takes for a perturbation created at the large scale to reach the dissipative wave 

number kd (the Kolmogorov length). The second term is the time it takes for a perturbation to go from the dissipative 

wave number, through the "viscous-convective" regime down to the Batchelor wave number k~ = kd P r  1/2, and 
l 

the last term is the time actually needed to dissipate the disturbance at k d. The second term is found to be of the 

order In P r / 2 R e  1/2. For large values of  Re, the mixing time is therefore of the order to, unless In P r  >> Re 1/2 

in which case the second term dominates. In the case of an active scalar on the other hand, ~ ~ 0, a peak occurs 

in the spectrum at a specific wave number k*, and the last term will therefore dominate when P r  >> Re. The 
corresponding mixing time is [9] 

1 P r  
"t'active - -  D(k.)2 -- to Re" (25) 

Also, the wave number of the peak is predicted to be located at k* ~- koRe,  where k0 is the wave number of an 
initial perturbation. We observe from this theory, that for large values of the Prandtl number, the mixing time is 
much longer in the active case than in the passive case. 

We have tested the prediction of the theory given by Eq. (25) using the shell model introduced in the previous 

sections. Fig. 5 shows a plot of  the mixing time Tactive versus the Prandtl number for two different values of the 

Reynolds number. In the first case, Re ~ 106 and P r  in the range from 102 to 106 and in the second, Re ~ 104 

and P r  in the range 10-105. The mixing time is estimated in the following way. At the shell corresponding to the 

kn-value on which the maximum of the peak is localized, we monitor the value of (I ~nl), where the average is over 

a specific time interval. As this value decreases below a chosen gate ~o ,  the corresponding time is associated with 

the mixing time Z'active , at that particular value of the Prandtl number. Then the value of Pr  is changed and starting 

from the same initial conditions, using the same value of the gate, one obtains the new value of  "Cactiv e, and so on. The 
mixing time clearly diverges with the Prandtl number as a power law, "t'active ~ P r  ~. The best fit to the data produces 

a value/3 ~ 0.9 for Re ~ 106 (as indicated by the dashed line) and/3 ~ 0.95 for Re ~ 104. The prediction (25) of  
Ruiz and Nelson is valid in the limit P r  >> Re and this only holds for our data where Re ~ 104, SO the agreement 

with the theory is reasonable. It is however tempting to conjecture that the presence of intermittency might cause the 

exponent/3 to decrease below 1. The shell model presented here in Eqs. (13) and (16) exhibits strongly intermittent 
motion where the laminar periods are interrupted by bursts of  violent motion. The higher the Reynolds number, 
the more pronounced is the intermittency and since the largest deviations from the prediction (25) is observed at 

Re ~ 106, the effects of intermittency could diminish the value of mixing time due to the presence of  the long 
laminar periods. 
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Fig. 5. The mix ing  t ime ractive versus the Prandtl  number  Pr est imated from numer ica l  calcula t ions  of  shell  model  with the fol lowing 
parameters:  Upper  curve: N = 16, ko = 2 -4 ,  v = 10 4, o~ = 10 -8  and the gate g'G = 10-6 .  Lower  curve: N = 19, ko = 2 -4 ,  

v = 10 -6 .  c~ = 10 12, and the gate OG = 10-4 .  The slope of the dashed l ine is 0.9. 

Goldburg and coworkers investigated in several experiments the possible existence of the active coupling term in 

binary mixtures. In [2] the presence of an active term was expected because the mixing time was found experimentally 

to increase dramatically with the value of the Reynolds number. Nevertheless, the experimental data did not follow 

the prediction (25). Later experiments showed, however, that the long mixing times were caused by the fact that 

stirring of  the binary mixture cools it down below the critical temperature, into the region where the system is 

immiscible and phase separation is favored [3]. Subsequent measurements on phase separations and the correlation 

functions of temporal fluctuations did not show any sign of an anomalous peak in the spectra [4,5]. In [5] it was 

already argued that intermittency effects might strongly influence the critical fluctuations leading to correlation 

functions which are stretched exponentials. That intermittency effects are very important close to the critical point 

is in accordance with the results presented in this paper. Conclusively, one must therefore say that, in spite of  several 

experimental attempts, there is no clear evidence for the active coupling term in (6). We return to this point in 

Sections 7 and 8. 

5. The continuous cascade model for hydrodynamics 

The Kolmogorov scaling behavior is a static solution of  the energy cascade model. In this section we discuss 
time-dependent generalizations of  the simple k 5/3 Kolmogorov behavior of  the power spectrum, using a continuous 

version of the cascade model first discussed by Parisi [26]. Initially these spectra start out as an arbitrary power 
behavior k 2p-1, where p is some constant which can be selected as one wishes (if one includes necessary cutoffs 

in k-space), but it turns out that after a short time the large k behavior becomes of  the Kolmogorov type, with some 
time dependence. Thus, at a given time the spectra have a "two-slope" structure with a smooth interpolation. The 

solution is only valid in the inertial range, where diffusion can be ignored. 
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The simplest hydrodynamical  cascade model is given by the equation of motion [20], 

(dun /d t  + vkZun) * = - ik , ,  un+lun+2 - - u n - l u n + l  Un-lUn-2 + Fn, (26) 
r 

where Fn represents an external forcing. From the point of view of energy (i.e. ~ ]Un ]2) conservation the parameter 

6 is arbitrary, but it can be fixed by requiring conservation of  (generalized) helicity [22]. In our case we keep the 

parameter 6 arbitrary. 

Some years ago Parisi [26] studied Eq. (26) in the limit 2 r --+ 1, meaning that the distance between the shells 

goes to zero. Taking r =- 1 ÷ ~ it is easily seen that one gets 

( 0 )  
÷ vk 2 u* = - i ~ ( 2  - 3)k u 2 + 3ku + F(k )  + O(~2). (27) 

One might consider this equation to be a "model of  a model", and thus very academic. However, as we shall see, this 

model and, in particular, its generalizations, satisfy the same conservation laws as the corresponding discrete models. 

Therefore one can equally well consider the continuous version as a model in its own right, with the advantage that 

it is considerably simpler than the discrete versions. 

We can now scale ~(2 - 6) into time t and then let 3 ~ --+ 0. As just mentioned, the resulting model can be 

considered as being independent of the discrete version, since it satisfies the relevant conservation laws. Instead, 

one can consider Eq. (27) to be an approximation to the discrete model, to be supplemented by higher order terms 

in ~ if needed. 

We shall study Eq. (27) in the inertial range, where viscosity can be ignored. 4 Also, we disregard the possible 

forcing term, so it is then clear that the motion must die out after some time if diffusion is included. Hence we study 

the equation 

Ou*ot - ik (u 2 ÷ 3kuOU~ok} + O(E). (28) 

We now choose a special phase and make the ansatz u = i k P f ( k q t ) .  Inserting this in Eq. (28) we obtain q = 1 + p, 

i.e. 

u = i k P f ( k l + P t ) .  (29) 

This scaling was first considered by Parisi [26], except for the special case p = 1, which was introduced many 

years ago by Heisenberg [29]. It solves the discrete as well as the continuous model. 

A scaling of the type (29) is consistent with the well known invariance of the Navier-Stokes equations (see for 

instance [30]), 

l ~ )J, u --~ )~hu, t --+ ) l  ht, v -+ )~l+hv, (30) 

in the inertial range, where we can take v ---- 0. The reason for this is that the self-similarity (30) can be translated 

to k-space with 1 ~ 1 /k ,  and it then corresponds to the scaling (29) with p -- - h .  The main point is that the 

scaling variable k l+Pt is then an invariant. Also, in the scaling (30) / is usually interpreted as the scale of  an eddy, 

and the typical velocity of this eddy is then lu(x + 1) - u(x)]. This compares excellently to the velocity mode u,  

2 In [8] this limit was considered for a different type of shell model. The resulting equation is linear, in contrast to those considered in 
this paper. 

3 There exists the possibility of taking the more exotic limit ]~(2 - 3)] -~ a finite value, so that 13] approaches infinity. 
4 For the special case p = 1 we shall include diffusion later in this section. 
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used in k-space, where Un is the velocity increment over an eddy of scale I ~ 1/kn. Let us further note that for 

p = - h  = 1, diffusion can be included, since (30) then leaves v invariant. 

It should be emphasized that expression (29) has the explicit power k p in front to accommodate the self-similarity 

transformation (30) for u. However, the function f depends only on the quantity kl+Pt, which is invariant under 

the self-similarity transformations (30). In the absence of a solution for f ,  this function can be completely arbitrary 

from the point of view of  self-similarity, and hence, e.g. the time evolution cannot be predicted at all. This implies 

that a priori there is no agreement with K41 theory (see [30] for a general discussion of K41). Of course, having a 

solution for f changes the situation. 

Eq. (29) thus means that the velocity mode is initially assumed to be of the form k p. Physically, one can imagine 

that this initial condition is produced by some external force. In this sense the selection of initial conditions is 

equivalent to initial forcing. Also, p governs the initial correlation function (ui (x)uk(y)).  The cases p = 3/2  or 

1 correspond to Gaussian disorder in three and two dimensions, respectively, i.e. (ui (x) uk (Y)) cx ~ik ~3 (x  --  y) or 

~ikrZ(x - -  y ) ,  respectively. 5 This is because the k-space energy spectrum is given by 

E(k,  t) = lu(k, t)12/k = c o n s t  k D-I f dDx exp(ikx)(u(x,  t)u(0,  t)) ,  (31) 

in D dimensions. 

In order to have an convergent energy 

E = f dklul2/k,  (32) 

we obviously need an ultraviolet cutoff for p _> 1/2. Similarly, for p < 0 an infrared cutoff is needed. 

At  this stage we need a discussion of the boundary conditions associated with (27) and (28). From (27) we get 

energy conservation in the absence of forcing and viscosity provided 

klu(k , t ) l  3 --+ 0 f o r k - - +  0 a n d s .  (33) 

If this condition 6 is not satisfied for k ~ cx~ there is "diffusion at infinity" [26]. 

Inserting (29) in Eq. (28), we obtain the following equation for f :  

d f ( x )  _ (1 + 3 p ) f ( x )  2 x = kl+pt. (34) 
dx 1 + 3(1 + p ) x f ( x ) '  

This equation can be simplified by the substitution 

f ( x )  = g ( x ) / x ,  (35) 

and we get 

dg(x)  g(x)  + 2g(x)  2 
- -  - -  ( 3 6 )  

d l n x  1 + 3(1 + p)g(x)"  

The solution is given by 

g(x)(1 + 2g(x))  (1+3p)/2 = x/xo.  (37) 

5 Here we leave out a discussion of the consequences of div u = 0, which requires a projection operator in the definition of Gaussian 
randomness. This is of no relevance in the following. 

6 In the discrete version (26) there is, strictly speaking, a similar boundary condition if n goes to infinity. This is because when one 
checks energy conservation, sums of the type y~vc knuuU (the U'S have different indices) are encountered. Although there is a complete 
cancellation of these terms, the sums only exist in a strict mathematical sense if all terms of the type knuuu vanish for n ~ ~ .  
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Here x0 is an arbitrary constant which gives the strength of  the initial velocity mode, 

u(k, O) = ikP /xo. (38) 

When x ~ ~x~ we find from (37) that 

g(x)  --+ 2 -(l+3p)/3(l+p) (x /xo)  2/3(1+p). (39) 

Inserting this in (29) and (37) we get 

lu(k, t)l --+ 2 -  (1 + 3p)/3(1 + p)xo - 2/3(1 + p)t  - (1 + 3p)/3(1 + p)k  - 1/3. (40) 

Thus we see that irrespective of  the initial spectrum (38) the velocity approaches the Kolmogorov spectrum with 

a time-dependent amplitude for large values of k and/or time. Note that this decay law does not agree with the 

classical theory put forward by Karman and Howarth [31] and Kolmogorov [10] which is of course due to the 

non-triviality of the function f in (29) (see the general discussion on classical results on decay laws by Frisch [30]). 

There are a few special cases where Eq. (37) can be solved explicitly. The simplest is the case where p = - 1 / 3 ,  

where we get g(x)  ---- x /xo ,  leading to the time-independent Kolmogorov spectrum, 

]u(k, t)l = k -U3 /xo ,  for p ---- - 1 / 3 .  (41) 

This result is trivial, since it is easy to see that the original equation (28) has (41) as a static solution. 

A non-trivial result can be obtained by considering the case p = 1/3, where Eq. (37) becomes second order in 

g. Using (29) and (35) we then obtain 

l ( - l + ~ / l + S k 4 / 3 t / x o )  (42) lu(k, t)l = 4k~ 

For small but non-vanishing t, the slope in the corresponding power spectrum changes from - 1 / 3  to - 5 / 3 .  For 

k ~ ~ the boundary condition (33) is not satisfied. This is simply a consequence of  the fact that the Kolmogorov 

spectrum does not satisfy this condition. As mentioned before, we only expect the solution (42) to be relevant for 

the inertial range, where diffusion is negligible. For completeness we mention that the energy integrated to k = 

is given by 

E = v/-2/(xZ~v/7). (43) 

The energy content approaches zero as time goes on simply because the class of solutions (29) correspond to an 

inverse cascade moving towards smaller values of  k, ultimately reaching the value 0 except in the point k = 0, 

where it is given by 1/x 2. In "x-space" this means that small scale structures in time become structures of infinite 

extension, with no local energy. This shows up if we consider the "integral scale" l0 used in turbulence theory as a 
measure of possible large scale structures, 

( f )1  lo = T E ( k )  dk E(k)  with E(k )  = lul2/k .  (44) 

This quantity behaves like t 3/4, and in the general case it goes as t l/(l+p~. Hence, for large times the structures 

become very extended. 

Another case which can be solved is p = 1, since Eq. (37) then becomes a cubic equation for g. We find 

lu(k, t)l = e ( s ) / k t ,  (45) 
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where 

R(s) = g l 

and 

s = 27k2t/xo . 

(46) 

(47) 

The energy spectrum initially has the slope + 1. For small k the slope remains + l, but at larger values of k the slope 

turns into - 5 / 3 ,  in accordance with the universality of the Kolmogorov spectrum at large k's. Again there is an 

inverse cascade moving the energy towards smaller k's as time passes. 

The p = 1 case is interesting from the point of view of studying the effect of diffusion. The main feature is that 

in general the ansatz (29) is not consistent with the viscosity term on the left-hand side of Eq. (27). However, when 

p = 1, the powers of k nicely divide out on both sides of Eq. (27), leaving them as functions of the scaling variable 

x only. Instead of Eq. (34) we obtain 

d f (x )  4 f (x )  2 + v f ( x )  
- -  ( 4 8 )  

dx 1 + 6 x f ( x )  

The substitution (35) cannot be used to solve this equation because of the dissipative term. However, Eq. (48) can 

of course easily be solved numerically, and the result compared to the analytic solution (46). To see the effects 

expected, let us compute the diffusion cutoff defined by f2  ~ v f  (see Eq. (48)), using Eqs. (29), (35) and (39) 

applied to the case p = 1, 

XD ~ Xo1/Zv -3/2 o r  kD ~ V-3/axo1/4t- i /2,  (49) 

which is what one expects as far as the dependence on v is concerned. However, the time dependence should be 

noticed. The latter reflects the fact that we have an inverse cascade. The cutoff (49) is in qualitative agreement with 

what one obtains by comparing the analytic solution (46) with the numerical solution of (48). In Fig. 6 we give an 

example of a solution, where we plot the energy. It is clearly seen that there is a change from the initial slope + 1 

to -5 /3 .  
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Fig. 6. A double logarithmic (base 10) plot of the energy spectrum E(k,  t) as a function of k in the continuous model. In the left-hand 
figure we show 10 small values of time, from t = 0 (where the E goes like k) to t = 10 -2 .  In the right-hand figure we show E for 10 
values of  time between t = I and t = 1.1. In both cases time moves from the right to the left. The viscosity is v = 10 -2 ,  x0 = 1, and 
from (49) log~0 kD is of  order 2.5 (left) and 2 (right), in reasonable agreement with the figures. 
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For a general p the result (49) can be extended to 

kD ~ v-3/4xol/2(l+P)t -(l+3p)/4(I+p). (50) 

The behavior of kD as a function of v is thus universal, i.e. independent of  p, whereas the time dependence of  kD is 
clearly non-universal. 

Results (49) and (50) are to some extent consistent with Kolmogorov's scaling arguments as far as the v- 

dependence and as far as the time dependence are concerned. The energy should go as E(k)  ~ EZ/3k -5/3, where 

• is the kinetic energy per unit mass (anyhow put equal to one) and time, with • = d E / d t  ~ ku 3 for large k. 

Now from (40) ku  3 ~ t - ( I+3p) / ( I+p)  for large k. From Kolmogorov's arguments one expects the dissipation scale 
kD ~ v-3/4• 1/4, i.e. kD ~ v 3 /4 t - ( I+3p) /4 ( l+P) .  This is exactly result (50), also as far as the time dependence is 

concerned. Of course, the fact that • is not a constant in our case, does not conform to Kolmogorov's argument. 

In the case p ----1 it is possible to obtain an implicit equation for g(x)  even when diffusion is included. For v -¢0, 

proceeding like in Eqs. (34)-(37) and (46) we get that Eq. (37) is replaced by 

(/ / g(kZt)(1 + 2g(kZt)) 2 = --kZt exp - v  dx 1 . (51) 
xo 1 + 2g(x) 

0 

Therefore Eq. (45) is changed to 

lu(k, t)l = R(d ) / k t ,  (52) 

where R(d)  is given by (46), and where (/t / 
27k2t 1 

d -- exp - v  dx . (53) 
x0 1 + 2g(x) 

0 

This equation can be used iteratively, starting from the behavior for v = 0. To the lowest non-trivial order in v 

Eq. (52) becomes 

lu(k, t)l = R(27k2t e x p ( - v k 2 t ) / x o ) /  kt (54) 

for k2t small. It is interesting that (54) is a self-consistent solution of Eq. (51) for k2t small and large. Thus the 

decay of  the velocity at large k is exponential. For kZt neither small or large, the expression given by (46) and (53) 

indicates that an exact inclusion of  diffusion is rather complex, even in this simple model. 

It is very interesting that the scaling behavior for the case p ---- 1, i.e. u(k, t) = k f (kZt )  was first considered 

by Heisenberg in his model, where in the range from 0 to k, the action of all smaller eddies are assumed to be 

represented by an effective viscosity [29]. Although it is not obvious that the cascade model satisfies this assumption, 

the Heisenberg scaling appears as a solution. Physically the kZt-scaling can be understood [29] by assuming that 

the spectrum is determined by one length only, namely the length ~ 1/k0 of  the largest eddies. Let the velocity of 

these eddies be v0. On dimensional grounds it then follows that [29] 

d 
~ ( 1 / k o )  ~ vo, and (1/vo) ~ ko, (55) 

from which one gets ko ~ vo ~ 1/~,/~. This is exactly the scaling in the p = 1 case. However, the continuous model 
has an exponential decay for large k, in contrast to Heisenberg's model, which has a power behavior, presumed to 
be unrealistic [12]. 
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The solutions discussed above refer to the case when the phase is fixed. One can try to find solutions where the 

phase plays a dynamical role by making the scaling ansatz u = ikPf(k I+p) with f a complex function, in which 

case Eq. (34) is replaced by 

d / * ( x )  _ - 3 ( 1  + p)xf(x) d f (x)  (1 + 3p)f(x) 2. (56) 
dx dx 

For the case p = 1/3, introducing again the substitution (35) with g(x) complex, this leads to the result 

g*(x) + 2g(x) 2 = x/xo, x = k4/3t. (57) 

This equation has the previously discussed real solution corresponding to (42), as well as a new complex solution 

with 

Re g(x) = 1/4, Im g(x) = ~/(3 - 8x/xo)/4. (58) 

This solution is obviously only valid for x _< 3/8x0. Since x can take any value from 0 to cx~ the complex solution 

should be rejected. 

To summarize the results obtained so far, one can say that the continuous model gives interesting, non-trivial 

results. This model is most interesting for the case where p = 1, since then diffusion can be included. The initial 

condition l u(k, 0)l cx k then corresponds to an initial Gaussian disorder in two dimensions. Therefore we believe 

that this model may be of most relevance in two dimensions. This is consistent with the fact that the model has an 
inverse cascade. 

There exists a generalization to a model with helicity, namely the continuous version of  a model introduced by 
Biferale and Kerr [27], leading to [12] 

( 0  ) (4ku_OU+ Ou- ) +vk 2 (u+) * = - i k \  Ok +2ku+ Ok +(2+a)u+u - - c~ (u - )  2 . (59) 

There is a similar equation with + +-> - .  The energy and the generalized helicity are conserved, 

E--fd---~(lu+12+lu 1 2 ) ,  H=fd~k~(lu+12-1u 12). (60) 

Making the scaling ansatz 

u + =ikPf(kl+pt) and u -  = ik p h(kl+Pt), (61) 

one obtains from (59) by ignoring viscosity 

d f ( x )  2(1 + p)xf  dh/dx + (6p + 2 + c~)fh - ah 2 
- -  (62) 

dx 1 + 4(1 + p)xh 

There is a similar equation with f and g interchanged. These equations have a potentially much richer struc- 

ture than Eq. (34). We also mention that the discrete and continuous GOY equations have been generalized to 
magnetohydrodynamics, using a helicity decomposition [32]. 

6. T h e  c o n t i n u o u s  she l l  m o d e l  for  t u r b u l e n t  m i x t u r e s  

In Section 2 we discussed the shell model for binary mixtures. Proceeding exactly as in Section 5, we can now 

derive the continuous version of the relevant equations. Here we shall just give the results. For convenience we 
define cp ---- k~p, and after a rescaling of time the equations become 



and 

M.H. Jensen, P. Olesen/Physica D 111 (1998) 243-264 

04~* ( 
3"--t- 4- Dk2q6* = i k  -vq6 + (Ok ~k k 4- 2Vk Tk ) 

259 

(63) 

and 

and 

Jr(x)* = -2c t~(x)  2 - c((1 + 3a)~(x) 2 4- 3(1 4- a)xF)(x)~'(x)). (69) 

Here the scaling variable x is given by kl+pt. 
In general the scaling ansatz (67) is inconsistent with diffusion, and hence Eqs. (68) and (69) can only be used in 

the inertial range. However, as already seen in Section 5, the case a = 1 is an exception. In this case all powers of  k 

neatly cancel out even in the presence of diffusion. If  we assume that the functions ~ and ~ are real, the equations 

become 

-~'(x)/da(x) = (2~(x) + 2xfi'(x) + D)/(1 4- 4x~(x)) 

v'(x) = - ( 2 ~ ( x )  2 + 4cv(x) 2 + v~(x))/(1 -4-6cx~(x)), (71) 

where the scaling variable is now x = kZt. 
Eqs. (70) and (71) can be reformulated in a way which is similar to what was done in Section 5. From (70) we get 

~(0) exp - D  dx/(1 +4xO(x) )  . (72) 
~;(~2t) = ,/1 + 4kzto(~2t) 

o 

(70) 

0~- 4- vk2v* = ik 2ot~b 2 4- c v 2 + 3vk . (64) 

Here v is the velocity mode and c is an arbitrary constant. These equations conserve 

fd 2 / ~ t ~ n l  2 "--~ ~ - I ~ l  and Z( l t~nl  2 + otlqSnl 2) ~ ~-~k (Iv[2 4- ~[~b12), (65) 

provided we have the boundary conditions 

vlc~12/k -+ 0, klvl 3 --+ 0, k149q2v -+ O, (66) 

for k ~ cx~ and 0. Again there may be "diffusion at infinity", as discussed in Section 5. 

We can now look for scaling solutions of  Eqs. (63) and (64) in the inertial range. It turns out that they should 

have the form (analogously to MHD) 

~b(k, t) = ika~(kl+at) and v(k, t) = -ika~(kl+at). (67) 

These results have been found by requiring that powers of k on the two sides of  Eqs. (63) and (64) should cancel 

out. This fixes the powers in v and q~ to be identical. It is interesting that these results are again consistent with the 

exact self-similarity of  the Navier-Stokes equation (30), supplemented by ~ + ~-a  ~p, as can be seen from Eq. (6). 

From Eqs. (63) and (64) we then get 

- ~ ' ( x ) *  = (3a - 1)~(x)q3(x) + (1 + a)xdp(x)f/(x) + 2(1 + a)x~(x)(b'(x) (68) 
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Similarly Eq. (71) can be integrated to give the implicit equation 

(j O(k2t)(l + 2ck2tO(k2t)) 2 = ~(0) exp - v  dx 1 + 2cxf~(x) 1 + 

o 
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' (73) 

provided ~(0) does not vanish. This result is similar to Eq. (51), and a comparison shows that the last factor on 
the right above (containing ~2/~)  is very similar to diffusion. Thus in this particular model, the effect of q~ on the 
velocity field is essentially to provide some additional diffusion. Comparing with Section 5, we therefore expect that 

the Kolmogorov regime for the velocity mode kO becomes smaller, since the effective diffusion becomes stronger. 
In the inertial range Eqs. (72) and (73) can be explicitly solved analogously to what we did in Section 5. Eq. (73) 

has the solution 

fi(kZt) = R(27c~(O)k2t)/ck2t,  (74) 

where R is given by Eq. (46). Eq. (72) then gives 

~(kZt) ---- ~(0)/~/1 + 4R(27c~(O)k2t)/c.  (75) 

Like in Section 5 it is easy to see that for large k2t Eqs. (74) and (75) imply the Kolmogorov and Obukhov-Corrsin 
exponents for the velocity and for the field q~ = ~ ,  respectively. 

The advantage of the basic equations (70) and (71) is that they are just two ordinary coupled differential equations. 
Therefore, they are much simpler than the usual large number of coupled cascade equations. However, it should be 
remembered that the set-up is very special. We need to assume initial (t = 0) spectra which are linear in k. Thus, 
it is not possible to start, e.g. with an initial Gaussian spectrum. However, the results in the discrete cascade model 

reported in Section 3 indicate that the final results are independent of the initial state. However, in any case one may 
wonder whether the simplicity has not been achieved at the cost of loosing the physics of the problem. This will be 

discussed in the next section. 

7. Results in the continuous model 

In this section we shall compare the continuous cascade model with the discrete one by obtaining qualitative 
and quantitative results. From the scaling which we introduced for v and ~b, it is clear that the continuous model 

will produce an inverse cascade, whereby energy is transferred from large to small k-values. Such a phenomenon is 
known in magnetohydrodynamics (MHD) for the magnetic energy [33] and in an MHD discrete cascade model [25], 
where it is presumably due to an inverse cascade in the three-dimensional magnetic helicity (for another shell-model 

on this point, see [34]). The continuous cascade model for MHD [32] gives results very similar to the discrete model. 
In this connection, it is of  interest that the basic equations used for turbulent mixtures are rather analogous to the 
MHD-equations. 

We begin by a qualitative discussion of the results expected, based on Eqs. (72) and (73). If diffusion is ignored 
(and c~ = 0) these equations are explicitly solvable. Eq. (74) implies that ~ is given exactly like the velocity u in 
Section 5, so 

xf~(x) o~ x 1/3 (76) 

for large values o fx  = kZt in a range, where diffusion can still be ignored. From Eq. (75) we then see that the quantity 
C(k) = ~ 2 / k  = (o2/k behaves like k -5/3 with the Obukhov-Corrsin exponent (with some time dependence). If 
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Fig. 7. A double logarithmic (base 10) plot of the spectrum C(k) as a function of k in the continuous model for (a) l0 small values of 
time, from t = 0 (where the C goes like l /k)  to t = 10 2, and (b) for 100 times larger. Time moves from the right to the left. 

the Prandtl number P r  = v / D  is large, diffusion in the first place acts on the velocity. Thus, xfi starts to decrease, 

and from (75) it follows that ~ approaches its initial value, i.e. C(k)  goes like 1/k (with some time dependence), 

which is the Batchelor behavior. Therefore, without doing any numerical calculations, we see from Eqs. (73) and 

(75) that C(k)  must change slope from - 5 / 3  to - 1 .  When k becomes so large that the diffusion governed by D is 

operative, of course C(k)  decays exponentially, according to Eq. (72). If, on the other hand, Pr  is of order 1 or less, 

it follows by the same reasoning as given above (based on Eqs. (72) and (73)) that only the - 5 / 3  slope materializes 

itself, before the exponential decays set in. This is in agreement with the results obtained in the discrete model, as 

discussed in Section 3. 

We have made some numerical calculations, using the values 

v = 10 -1 , D = 10 -7,  ot = v 2, Pr  = 1 0  6 .  (77) 

The initial values are given by ~(0) = 1 and ~(0)  = 0.0001. We also took the constant c in Eq. (71) to be 1/2. The 

results are presented for the spectrum C(k) = ~ 2 / k  = ~r2/k and the velocity mode k~5. In Fig. 7 we show C(k)  for 

relatively low and for relatively large times. The initial behavior is linear in k (from our initial condition that ~(0) 

is a constant). From Fig. 7 we see this behavior for t = 0. When t increases, the slope changes to - 5 / 3  in a range 

of k-values from approximately 10 to slightly less than 102. From Fig. 8 for the velocity mode, we see that at a 

k-value around 100, the velocity decreases rapidly. Therefore, as one can see from Eq. (72) and as one can also see 

from Fig. 7(a), after the initial decrease with slope - 5 / 3 ,  the spectrum C(k) increases until it regains the Batchelor 

slope - 1. Ultimately, for k slightly above 104 one sees that C(k)  starts to decrease exponentially. This repeats itself 

at later times, as is also seen from Fig. 7, but when time increases, the "velocity of  change" k / t  cx 1/v/} - decreases, 

so the curves for the 10 different times in Fig. 7 are much closer at later times. In the region where C increases 

(between slope - 5 / 3  and slope - 1 ), there are very short range correlations in x-space. This could be a rudimentary 

version of an intermittency fluctuation. 

We have also investigated the question of equipartition. For small k the kinetic energy dominates. Around the 

value of k where the peak appears, there is equipartition in essentially only one point. The energy E 0 = otk~p 2 

then dominates for larger values, where the kinetic energy becomes very small compared to E 0. It should also be 

noticed that the peak is time dependent, and moves towards smaller values of  k with a "velocity" k~ t = 1/,,/7. 

Finally, we have studied the influence of the parameter ~. It seems that the continuous model differs from the 

discrete one with respect to this point. For the various values of P r  and v we have studied, we find that the influence 
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Fig. 8. Double logarithmic plot (base 10) for the velocity mode v(k, t) = kf; as function ofk for (a) 10 time values between 0 (where 
v(k, O) = k) and 10 -2, and (b) for 100 times larger times. 
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Fig. 9. A log-log plot (base 10) of the scaling function ~2 = (v(k, t ) / k )  2 as a function of the scaling variable x = k2t for the initial 
conditions ~3(0) = 0 and q3(0) = ~(0) = 0.0005. 

of a is only rather marginal,  and we do not find any really spectacular effect of  c~. It would therefore be interesting 

to study the case where the initial velocity is zero (or very small). In this case there is no effect (or only a slight 

effect) if we have a passive scalar, so with o~ non-vanish ing  one will see an effect (almost) entirely due to ce. This 

problem can be analyzed from Eqs. (72) and (73) by replacing ~(0) by O(e) and performing the l imit ~ --~ 0 in 

such a way that fi approaches zero. We can also study this by analyzing Eq. (71) near x = 0, using the boundary  

condi t ion ~5(0) = 0. We get from (71) (compare with Eq. (12)) 

fi(x) ~ -2or(p(0) 2 x + O(x2). (78) 

Thus the velocity scaling function must  be negative and l inear for small values of the scaling variable x = k2 t .  

We have also studied this problem numerically.  In Fig. 9 we show the result ing scaling funct ion ~)2 = i)(k, t ) 2 / k  2 

as a funct ion of the scaling variable. The values of  v and P r  are as used before, but init ially we assume ~ (0) = 0, and 

q~(0) = ~p (0) = 0.0005. Al though the velocity-scal ing function is very small, there is clearly an effect. However, 

the result ing back-reaction on q~ is small  in most  cases. This can be seen from Eq. (72), since the velocity field in 

the denominator  on the r ight-hand side is small. However, there may exist initial condit ions where this is not  true, 
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and where xfJ(x) may approach - 1 ,  causing 7 / to  diverge. In such a case stabilizing terms of higher orders in 7/ 

must be included in the basic equations (5) and (6). Disregarding this possibility, the density function 7/is  rather 
insensitive to velocity fluctuations, when the kinematic viscosity v is much larger than the viscosity D of  7/. This 

effect is somewhat similar to what has recently been seen in MHD [32,35] for large "Prandtl" numbers (i.e. for the 

kinematic viscosity much larger than the Ohmic diffusion). 

From an experimental point of view it would be interesting to study the case where the initial velocity vanishes 

or is small, and where some initial distribution (e.g. random) is established with a non-constant gradient of 7/. The 

fluids should then be set "spontaneously" in motion. The gradient field is analogous to the magnetic field in MHD. 

Therefore, such an experimental set-up would be somewhat analogous to the study of primordial magnetic fields in 

the early universe (see [25,32]), where the magnetic field can induce a velocity field. It would clearly be of  interest 

to investigate this analogy in an earthbound laboratory. 

To conclude this section, we do not find the large peak predicted in [9] for increasing Prandtl numbers. There 

is a small time dependent peak of magnitude less than a half decade, as can be seen, e.g. from Fig. 7. This is to 

be contrasted with a peak of  several decades in [9]. Whether this is a shortcoming of the continuous model is, of 

course, an experimental question. However, our results are not so different from those of the discrete GOY model, 

discussed in Section 3, where the peak is of  the same order of magnitude as found here. However, the nature of the 
peak is different in the two cases, since the a dependence differ, as mentioned above. 

8. Conclusions 

The main result of  the present paper is that intermittency effects are likely to play an important role in turbulent 

binary fluids. The influence of intermittency is not small; compared to previous studies of  non-intermittent binary 

fluids [8,9] the peak in the concentration spectrum is much less pronounced and less persistent because the fluc- 

tuations tend to "surround" and diminish the peak. It is therefore not easy to see the effect of  the active coupling 

term (6) from the spectra, in accordance with experiments [3-5]. The transport coefficient a in (6) presumably has 

its most dramatic effect in the case where the initial velocity vanishes. Here the existence of a non-vanishing 

implies the "spontaneous" generation of a velocity field, provided there is an initial variation in the gradient of  7/. 

The observation of such an effect would have an analogy in MHD, where an initial ("primordial") magnetic field 

induces a velocity field, which may be of relevance in the early universe. On the other hand, if such an effect is 

not observed in binary mixtures, this would indicate that the active coupling term (6) is probably not present. If so, 

binary mixtures would not be analogous to MHD. 

Also, we see that the continuous model gives results which are rather similar to the discrete model. In the 

continuous case there also exists a time-dependent peak. 
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