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Abstract

We investigate the generalized Störmer problem, which includes electromagnetic and gravitational forces on a charged
dust grain near an axisymmetric planet. For typical charge-to-mass ratios neither force can be neglected. The effects of the
different forces are discussed in detail. Thus, including the gravitational force gives rise to stable circular orbits lying in a
plane entirely above/below the equatorial plane. A modified third Kepler’s law for these orbits is found and analyzed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the early milestones of space physics was Störmer’s theoretical analysis of charged particle motion in
a purely magnetic dipole field[1,2]. This seminal study provided the basic physical framework that led to the
understanding of the radiation belts surrounding the Earth and other magnetized planets. The radiation belts are
now known to be composed of individual ions and electrons whose motion is often well described by magnetic forces
alone. These classical results are also relevant to the dynamics of charged dust grains in planetary magnetospheres.
However, the much smaller charge-to-mass ratios produce a more complex dynamics, as planetary gravity and the
corotational electric field must also be taken into account[3–7].

In a series of recent papers[8–11] equilibrium and stability conditions were derived for charged dust grains
orbiting about Saturn. These orbits can be highly non-Keplerian and include both positively and negatively charged
grains, in prograde or retrograde orbits. The first article was restricted to equatorial orbits, while the second treated
nonequatorial “halo” orbits, i.e. orbits which do not cross the equatorial plane. Both assumed Keplerian grav-
ity, an ideal aligned and centered magnetic dipole rotating with the planet, and concomitant corotational electric
field (nonzero in an inertial frame). The third paper dealt with the effects of planetary oblateness (J2), magnetic
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quadrupole field, and radiation pressure. While the first two forces were found to have a negligible effect on par-
ticle confinement, the effects of radiation pressure can be large for distant orbits. Interestingly,J2 and radiation
pressure can act synergistically to spread out the distribution of 1�m grains in the E-Ring[12]. The final paper
in this series allowed the surface potential of a grain, and hence its charge, to adjust to local photoelectric and
magnetospheric charging currents. It was concluded that stable halo orbits were mostly likely to be composed of
rather small(≈ 100)nm positively charged grains in retrograde orbits. A dust grain “road map” was drawn for
the Cassini spacecraft now en route to Saturn, showing where to expect dust grains of a given composition and
radius.

This paper presents a more comprehensive treatment of dust grain dynamics, but under the simplified assumptions
of Keplerian gravity, pure dipole magnetic field, constant charge, and no radiation pressure. Some of the results were
already presented in the letters[8,9]; here we fill in the details of the necessary calculations and also present some
new results. Our primary goal is a mathematically rigorous yet simplified derivation of equilibrium and stability
conditions which highlights the relative importance of the several different forces acting on an individual grain.

As is well known, there are no stable circular orbits for the Störmer problem of charged particle motion in a pure
dipole magnetic field. It is the addition of planetary gravity and spin that gives rise to stable families of equatorial
and nonequatorial orbits. We begin with a general discussion of charged particle motion in axisymmetric geometry,
which is then specialized to the motion of charged grains in a planetary magnetosphere. Equilibrium conditions
are derived first for equatorial orbits, then for halo orbits. Next we take up the issue of stability for each family of
equilibrium orbits. Results are presented for four distinct problems: the classical Störmer problem (CSP) in which
a charged particle moves in a pure dipole magnetic field, the rotational Störmer problem (RSP), with the electric
field due to planetary rotation included, the gravitational Störmer problem (GSP), with Keplerian gravity included
but not the corotational electric field, and the full system (RGSP) including both fields. For each case one must also
consider each charge sign in prograde or retrograde orbits. Our results may be summarized as follows:

CSP. No stable circular orbits, equatorial or nonequatorial exist. However, under adiabatic conditions important
families of guiding center orbits confined to a potential trough called theThalweg exist. Such trajectories lie
outside the scope of the present paper.

RSP. Stable equatorial relative equilibria exist for both charge signs. There are no halo orbits.
GSP. Stable equatorial relative equilibria exist for both charge signs. Positive halos are retrograde and negative
halos are prograde. Both types are stable wherever they exist.

RGSP. Stable equatorial relative equilibria exist for both charge signs. There is a range of positive charge-to-mass
ratios without stable equatorial relative equilibria. Negative halos are prograde, while positive halos can be pro-
or retrograde. For stability the frequency must be sufficiently different from twice the rotation rate of the planet.

Therefore halo orbits do exist with and without the corotational electric field. However, the corotational electric
field is required in order to sustain stable positive prograde halos.

2. Charged particle dynamics in axisymmetric geometry

The equations of motion of a particle of massm and chargeq in R
3, r = (x, y, z)t are, in Gaussian units:

mr̈ = q

c
ṙ × B − ∇U(r),

where the potentialU(r) generates the gravitational and electric forces. Let us denote byR a rotation about the
z-axis and assume that the magnetic fieldB and the potentialU are invariant with respect to this rotation:

B(Rr) = RB(r), ∇U(Rr) = R∇U(r).
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In particular this is true for the fieldB = ∇ × A of a magnetic dipole of strengthM along the positivez-axis
centered in the planet, with vector potential (in the Coulomb gauge):

A(r) = M
r3




−y

x

0


 , r2 = x2 + y2 + z2.

The relevant inner part of the magnetosphere of, e.g. Saturn is a highly conducting plasma and may therefore be
assumed to be in a state of rigid corotation with the planet with uniform angular velocityΩ. The plasma atr has
bulk velocityV = � × r. The MHD condition for the field being frozen to the flow (i.e. rigid corotation) can be
written asE + (1/c)V × B = 0. A more detailed model including the interaction of Ionosphere and Magnetosphere
is discussed in[13]. The resulting corotational electric field in the inertial frame is given by

E = −1

c
(� × r) × B.

This electric field is accounted for by a stream functionΨ in the potential energyU , determined by

qE = q

c
B × (� × r) = −γΩ∇Ψ, Ψ = x2 + y2

r3
,

whereγ = qM/c. Note that the corotational electric field is unipolar,∇ × E = 0, and is therefore not induced
by a changing magnetic field. Moreover, it is perpendicular to the magnetic field,E · B = 0, with ∇ · E =
2γΩ(2z2 −x2 −y2)/r5, so that there is a space charge distribution originating from the redistribution of charges in
the plasma. A full derivation of the forces generated from a rigidly rotating and perfectly conducting magnetosphere
can be found in[13].

In an inertial frame the potential now reads

U(r) = −σg
µm

r
+ σrγΩΨ,

where the parametersσg andσr serve as markers for the gravitational and electric forces in order to track the origin
of the various terms after scaling away excess parameters. Usually we considerσr = σg = 1; the CSP[1] has
σr = σg = 0. The caseσr = 0 andσg = 1 has also been studied by Störmer[1,2] we shall refer to it as the GSP.
While it is simpler than our case, it will turn out that the most important physical effects can already be seen in this
subcase. Another interesting special case isσg = 0 andσr = 1. This takes into account the effect of the electric
field in the rotating plasma, but the particle is still massless. We call this case the RSP. It will turn out that in this
case halo orbits do not exist.

The Hamiltonian of the above equations of motion is

H = 1

2m

(
p − q

c
A(r)

)2 + U(r). (1)

Owing to the symmetry of the problem thez-axis is an invariant set. Because it is singular in coordinates adapted to
the symmetry of the problem it is best analyzed in Cartesian coordinates. The magnetic field is parallel to this axis,
so that for motion on this axis there is no Lorentz force. For initial conditions in the setx = y = px = py = 0
the equations of motion in Cartesian coordinates show that the derivatives ofx, y, px, py are zero; hence it is an
invariant set, on which the Hamiltonian is purely gravitational,Hz = p2

z /2m − µm/z. Depending on the initial
conditions in the invariant set a particle either collides with the planet or escapes to infinity; there are no stationary
points on this axis.
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In cylindrical coordinates(ρ =
√
x2 + y2, φ = arctan(y/x), z) H becomes

H = 1

2m

(
p2
ρ + p2

z + 1

ρ2
(pφ − γΨ )2

)
− σg

µm

r
+ σrγΩΨ (2)

with the dipole stream functionΨ = ρ2/r3. For systems withS1 symmetry a stream functionΨ independent of
φ can always be introduced. The corresponding vector potential is( sinφ,− cosφ,0)tΨ/ρ, the magnetic field is
(xΨz, yΨz,−ρΨρ)

t/ρ2, and the electric field isΩ(xΨρ, yΨρ, ρΨz)
t /ρ.

We may distinguish three types of constants in the problem:

• Parameters describing the planet’s massµ = GM and spin rateΩ. They are the most fixed parameters.
• Parameters describing the dust particle’s massm and charge, measured byγ = qM/c.
• The angular momentumpφ and total energyh = H are constants of the motion determined by the initial

conditions. Fixing bothh andpφ defines a region of possible motion in configuration space.

We now introduce a convenient scaling to reduce the number of parameters. Time is measured by the inverse
frequency of the planetary spin rateΩ. Distances are measured in terms of the radius of the Keplerian synchronous
orbit:

R =
( µ

Ω2

)1/3
,

while mass is measured in units of the particle massm. The scaled Hamiltonian is then

Ĥ = 1

2

(
p̂2
ρ + p̂2

z +
(
p̂

ρ̂
− δ

ρ̂

r̂3

)2
)

− σg

r̂
+ σrδ

ρ̂2

r̂3
, (3)

where the variables with hat are measured in the new scale. From now on we drop all hats. The essential dimensionless
parameters are

p = pφ

Rδ

γ
and δ = Ωγ

mµ
= q

m

M

c

Ω

GM
= ωcΩ

ω2
k

,

whereωc = qB0/mc is the cyclotron frequency,B0 the planetary magnetic field on the equator,ωk = √
GM/R3

s the
Kepler frequency, withRs the planetary radius, and the parameterp is just the angular momentumpφ measured in
the new units. The single parameter for the dust grain isδ, which is essentially the charge-to-mass ratio. Recall that
thez-axis is oriented so thatΩ > 0. In the following we will loosely talk about positive/negative charge when we
mean positive/negativeδ. This correspondence is correct if the magnetic dipole momentM is positive, i.e. the spin
and the field are aligned. This is true for Saturn, the main application that we have in mind. Our results are valid in
both cases.

3. Relative equilibria

3.1. Equatorial orbits

Here we shall find it advantageous to work in spherical coordinates(r =
√
ρ2 + z2, θ = arccos(z/r), φ), rather

than the cylindrical coordinates of[8,9]. The Hamiltonian becomes

H = 1

2

(
p2
r + p2

θ

r2

)
+ Ueff , (4)
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where the effective potentialUeff is the part of the Hamiltonian independent of the non-constant momentapr and
pθ :

Ueff(r, θ, p) = (pr − δ sin2θ)2

2r4 sin2θ
− σg − σrδ sin2θ

r
. (5)

The equations of motion are then

ṙ = pr, θ̇ = pθ

r2
, φ̇ = ∂pUeff , (6)

ṗr = p2
θ

r3
− ∂rUeff , ṗθ = −∂θUeff , ṗφ = 0. (7)

In order to facilitate the calculation of the partial derivatives ofUeff we introduce the frequency

ω(r, θ) = φ̇ = ∂pUeff = p

r2 sin2θ
− δ

r3
. (8)

In analyzing circular relative equilibria it is preferable to employω rather thanpφ as parameter, as it is the sign
of ω that determines whether the orbit is rotating in the same direction as the planet (prograde) or opposite to
it (retrograde). Recall that in the scaled variable frequencies are measured in terms ofΩ; henceω = 1 means
synchronous motion. From now on we will eliminatep in favor ofω = ω(r, θ) in the potential to get

Ueff = 1

2
ω2r2 sin2θ − σg

r
+ σrδ sin2θ

r
. (9)

It is important to notice that when calculating derivatives ofUeff with respect tor andθ we have to treatω as a
function ofr andθ . The derivatives ofω (re-expressed in terms ofω) are

∂rω = −2
ω

r
+ δ

r4
, ∂θω = −2 cotθ

(
ω + δ

r3

)

so that

∂rUeff = −ω2r sin2θ + 1

r2
(δ(ω − σr) sin2θ + σg), (10)

∂θUeff = −1

r
cosθ sinθ(ω2r3 + 2ωδ − 2σrδ). (11)

If all partial derivatives with respect tor, θ , andp are zero there is no motion at all. The latter is justω, which we set
to zero. Then(11) requiresθ = π/2. The other possibilityθ = 0, π is the coordinate singularity, and it has already
been treated usingHz. The uncharged caseδ = 0 is not of interest here. Forθ = π/2 andω = 0 (10) reduces to
σg = σrδ. Therefore particles at rest can occur anywhere in the equatorial plane but only whenδ = σg/σr. Therefore
δ = 1 can be considered as the case where electrical and gravitational forces are balanced. In the CSPσr = σg = 0
both equations are automatically satisfied onceω = 0. In this case we can place a particle at rest anywhere in space;
since there is no potential there are no forces if there is no motion. In any case it is true that for these trivial solutions
at rest the angular momentump is nonzero; fromω = 0 and(8) we findp = δ/r. The energy is zero for all these
equilibrium points.

The system has a discrete symmetry: the equations of motion are invariant under the map(θ, pθ ) → (π−θ,−pθ).
The set that is invariant under this map is the equatorial plane with no transverse momentum,(θ, pθ ) = (π/2,0). As
always this is also an invariant set for the dynamics. The physical reason for this is thatB(r) is parallel to thez-axis
if r = (x, y,0), so that for motion within the equatorial plane there is a Lorentz force, however, with direction in
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the plane. Moreover,E(r) is perpendicular toB(r), and thereforeE(r) lies in the equatorial plane ifr = (x, y,0).
The Hamiltonian restricted to the equatorial plane reads

Hxy = 1

2

(
p2
r + 1

r2

(
p − δ

r

)2
)

− σg − σrδ

r
.

This is an integrable system with one effective degree of freedom that can be solved in terms of elliptic functions.
The effective potential in the equatorial plane is

Uxy(r) = 1

2

(
p

r
− δ

r2

)2

− σg − σrδ

r
= 1

2
ω2r2 − σg − σrδ

r
.

The minimare of Uxy(r) correspond to circular orbits in the equatorial plane because the right hand sides of all
the equations of motion exceptφ̇ = ω are zero. The calculation of critical points ofUxy(r) leads to the solution
of a cubic polynomial inr given byr2∂rUxy. If instead we eliminatep in favor of ω we obtain a much simpler
polynomial

P(r, ω) = ω2r3 − ωδ + σrδ − σg. (12)

SolvingP = 0 for r yields a generalization of Kepler’s third law for equatorial orbits:

re(ω)3 = σg + δ(ω − σr)

ω2
, (13)

which for δ → 0 reduces to the ordinary Kepler’s law. The corresponding angular momentump can be calculated
from (8) and ispe = ωr2

e − δ/re. The radiusre is positive if

ω ≤ σr − σg

δ
and δ ≤ 0 (14)

or

ω ≥ σr − σg

δ
and δ ≥ 0. (15)

For negativeδ there are always pro- and retrograde orbits. For positiveδ this is only true forδ < σg/σr, while for
δ > σg/σr all orbits are prograde. InFig. 1the possible combinations ofω andδ for which circular equatorial orbits
exist are shaded gray. The horizontal asymptotes haveω = σr. The hyperboloidal boundaries and the limitω → ∞
correspond to zero radius. In the Störmer caseσr = σg = 0 all equatorial circular orbits of negatively charged

Fig. 1. Existence of equatorial orbits.
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Fig. 2. Curves of constant radiusr = 0.1i, i = 1, . . . ,20 for equatorial orbits. The thick lines haver = 1.

particles (δ < 0) are retrograde (ω < 0), while positively charged particles have prograde orbits. The gravitational
and/or electric field perturbations create small regions of the opposite behavior for someδ. In addition some motions
for large positiveδ and small positiveω are made impossible by switching on the additional fields.

The equation for equatorial orbits,P = 0, can be solved forδ in order to giveδ as a function ofω for givenr:

δ = r3ω2 − σg

ω − σr
.

These curves are shown inFigs. 2 and 3. Note the two thick straight lines withr = 1, which in our scaling is the
radius of the synchronous orbit in the Kepler problem. The horizontal one corresponds to the synchronous orbits
(ω = 1) which exist for anyδ. Hence the synchronous Kepler orbit is not affected by the addition of both fields.
This is not true for the three Störmer cases (see below). Another prominent feature is the point(δ, ω) = (1,0),
which is intersected by hyperbolas with allr. It corresponds to the equilibrium points discussed above.

Let us briefly discuss the corresponding diagrams for the three Störmer cases shown inFig. 3. In the classical
caseω andδ are proportional. Small slope means larger. The relation breaks down for the lineω = 0 for which all
radii are possible. There are only two types of equatorial orbits: positively charged prograde and negatively charged
retrograde. In the gravitational Störmer case the relation betweenω andδ is quite similar, but now there are also
small regions of the two types of motions: positively charged retrograde and negatively charged prograde. In the
rotating Störmer case the positive retrograde orbits have disappeared again. The main new feature is the appearance
of orbits of small negative charge with smallω and small radius.

3.2. Halo orbits

Our goal is the calculation of periodic orbits that encircle the planet in a plane parallel to the equatorial plane but
entirely above/below it. Circular orbits correspond to critical points ofUeff , i.e. points(r0, θ0) at which both deriva-
tives ofUeff vanish. This is so because at(r, θ, pr , pθ ) = (r0, θ0,0,0) the right hand sides of Hamilton’s equations
are zero, except foṙφ. They are given by the minima ofUeff . Their stability will be calculated in the next section.
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Fig. 3. Curves of constant radius for equatorial orbits of the (a) classical (σr = σg = 0), (b) gravitational (σr = 0, σg = 1), and (c) rotational
(σr = 1, σg = 0) Störmer problem. Thick lines haver = 1.

Circular orbits are therefore given by the solution of∂rUeff = 0 and∂θUeff = 0 for arbitraryω (see(10) and (11)).
The second equation has the solutionθ = π/2, which gives the equatorial orbits we already analyzed. Also the
solutions withθ = 0, π have already been described using the reduced HamiltonianHz. The remaining solutions
are given byQ = 0 with

Q(r, ω) = ω2r3 + 2ωδ − 2σrδ, (16)

which describe the nonequatorial circular (or halo) orbits. The equationQ = 0 can be solved forr3, which can then
be eliminated from(11) resulting in an angular equationA = 0 with

A(θ, ω) = σg + 3δ(ω − σr) sin2θ. (17)

The functionsQ andA completely describe the halo orbits. In particular these equations can easily be solved forr

andθ , so that all circular orbits are obtained in parametric form, withω as a parameter. Explicitly we find

rh(ω)3 = 2δ
σr − ω

ω2
, (18)

sin2θh(ω) = σg

3δ(σr − ω)
. (19)
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Fig. 4. Existence of halo orbits.

The second equation clearly shows that without the gravitational forces (σg = 0) there are no halo orbits. In
particular in the CSP there are no halo orbits (except for the trivial equilibrium points discussed above). Adding the
electric field alone there still are no halo orbits. In both equations it is obvious that the electric field merely shifts the
frequencyω of circular halo orbits. We conclude that the electric field is not essential for the existence of halo orbits.

For halo orbits the essential condition for their existence is that sin2θ ≤ 1, which implies (Fig. 4)

ω ≥ σr − σg

3δ
and δ ≤ 0 (20)

or

ω ≤ σr − σg

3δ
and δ ≥ 0. (21)

These conditions automatically imply that the corresponding radiusrh is positive. Note that the ordering of theω
inequalities is reversed compared with the equatorial cases(14) and (15). Hence for negative charge only prograde
orbits exist while for small positive charge only retrograde orbits exist. Only ifσr �= 0 andδ > σg/3σr can both
types of orbits exist. The electric field does make a difference for the existence of synchronous halo orbits: Ifσr = 1
thenω = 1 is impossible for finiteδ. If σr = 0 synchronous halo orbits exist forδ < −σg/3. Note thatω = σr

(in particular a synchronous orbit ifσr = 1) is impossible for finiteδ. Without the electric field there do exist
synchronous halo orbits with negative charge. In order for(q/c)ṙ × B to balance gravitation for positive charge we
have to reversėr, henceω = −1.

To get an overview of all possible halo orbits we plot curves of constantr andθ in theδ-ω plane. The family of
curves of constant radius is given by

δ = r3ω2

2(σr − ω)
.

The family of curves of constant azimuthθ is given by

δ = σg

3(σr − ω) sin2θ
.

Both families are shown inFig. 5for σr = σg = 1 and inFig. 6for the Störmer problem with gravitation.
The regions of existence in theδ-ω-plane for equatorial and halo orbits only overlap in a small region bounded

by hyperbolae. They are in a sense connected at the hyperboloidal boundary of the halo orbits, because in the next
section we will find that this line marks a pitchfork bifurcation of an equatorial orbit changing its stability and
creating halo orbits.
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Fig. 5. Curves of constantr andθ for halo orbits. Thick lines haver = 1, r = 0.2i, sinθ = 0.1i, i = 1, . . . ,10.

4. Stability

In [8,9] explicit stability boundaries for both equatorial and halo orbits were calculated. Here we obtain these
boundaries more easily using the fact that all circular orbits may be parameterized byω. A circular orbit is stable if

Fig. 6. Curves of constantr andθ for halo orbits in the GSP. Thick lines haver = 1, r = 0.2i, sinθ = 0.1i, i = 1, . . . ,10.
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it corresponds to a local minimum ofUeff , for which we need the second derivatives ofUeff . Using the chain rule
gives

∂2
r Ueff =

(
3ω2 − 2δ

3ω − σr

r3
+ δ2

r6

)
sin2θ − 2σg

r3
,

∂2
θ Ueff =

(
2r2ω2 + 4δ

ω + σr

r
+ 4

δ2

r4

)
cos2θ + r2ω2 + 2δ

ω − σr

r
,

∂r∂θUeff = 2

(
rω2 + δ

2ω − σr

r2
− δ2

r5

)
cosθ sinθ.

4.1. Equatorial orbits

For equatorial orbits we insertθ = π/2 andr = re(ω) as given above. We use the subscripte to denote quantities
related to equatorial orbits. The mixed derivative vanishes and the other two are

∂2
r Ueff |e = −1

2

(
ω

σg + δ(ω − σr)

)2

((2ωδ − σrδ + σg)
2 − 3(σrδ − σg)

2), ∂2
θ Ueff |e = σg + 3δ(ω − σr).

The radial derivative diverges for thoseω that correspond tor = 0. It vanishes forω = 0; however, the corresponding
radiusre is not finite (except forδ = σg/σr, the case of equilibrium points). It also vanishes when either one of two
nontrivial factors vanishes that correspond to tangent bifurcations of equatorial orbits with

ω±
e = 1 ± √

3

2

(
σr − σg

δ

)
.

The vanishing of the secondθ derivative indicates the loss of transverse stability. Because of reflection symmetry
θ → −θ this results in a pitchfork bifurcation with

ωPF = σr − σg

3δ
.

All three curves are hyperbolas in the space of(δ, ω) shown inFig. 7. The intersection of the curvesωPF andω±
e

occurs at

δ±
e = σg

σr

5 ± 2
√

3

3
.

Using the above formulas for the second derivatives it is easy to check that stability only holds in the followingω

ranges (compareFig. 7).

δ < 0 : ω−
e < ω < ωPF, 0 < δ < δ−

e : ωPF < ω < ω−
e , δ > δ+

e : ωPF < ω < ω+
e .

For the first two rangesω = 0 is (partially) included, which means that the corresponding family of orbits ex-
ists for arbitrary large radius. The radiusre as given by(13) as a function ofω is a monotone function for most
of these orbits except for unstable orbits withδ > 1. This gives the additional curve in the diagram. The fact
that the radius is not monotonic can already be seen inFig. 2, where the turning points are marked by a gray
line.

For comparison we also show the diagrams in the two nonclassical Störmer cases (seeFig. 8). In the CSP with
σr = σg = 0 the derivative∂2

r Ueff |e is always negative, hence there are no stable equatorial orbits. In the purely
gravitational case stable orbits exist between the pitchfork curve and the tangent bifurcation corresponding toω−

e .
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Fig. 7. Regions of stability for equatorial orbits are dark. OverlayFig. 2.

The curveω+
e is always outside the region of existence. In the RSP the pitchfork curves and the existence curves

coincide forω = 1. The stable region forδ < 0 is betweenω−
e and 1, while forδ > 0 it is between 1 andω+

e .
Comparing these pictures withFig. 7 one clearly observes that for large|δ| (i.e. small mass) the systems behaves
like the rotating case, while for small|δ| (i.e. large mass) the behavior is dominated by gravity and looks like the
gravitational case. In the gravitational case there exist stable pro- and retrograde orbits for anyδ; the system is
symmetric with respect to change of sign ofω andδ. In the rotational case this symmetry is broken and pro- and
retrograde orbits simultaneously only exist for negative charge. Trying to interpolate between the large and smallδ

behavior the full system creates an interval [δ−
e , δ+

e ] of charge-to-mass ratios for which no stable equatorial circular
orbits exist.

Fig. 8. Regions of stability for equatorial orbits of the (a) gravitational, and (b) rotating Störmer problem are dark. OverlayFig. 3.
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4.2. Nonequatorial orbits

In Ref. [9] the stability of halo orbits was analyzed by examining the zeros of a quintic inρ. Here we obtain
similar results more easily. For nonequatorial orbits the calculation is essentially the same as for their equatorial
cousins, except that all three second derivatives are nonzero and we have to calculate the determinant and the trace
of the Hessian, which turns out to be

detD2Ueff |h = σg
2ω2(ω2 − 4ωσr + σ 2

r )(σg + 3δ(ω − σr))

3δ(ω − 1)3
,

tr D2Ueff |h = −σg
ω2(13ω2 − 16ωσr + 4σ 2

r )

12δ(ω − σr)3
− 2(ω − 2σr)

2(σg + 3δ(ω − σr))

3rh(ω)(ω − σr)2
.

We use the subscripth to denote quantities related to halo orbits. The determinant vanishes in three cases: (1) for
ω = 0, which again forδ �= 1 does not correspond to finite orbits. (2) In the case that the last factor is zero, which
reproduces the conditionω = ωPF. (3) There are two new criticalω given by the remaining factor as

ω±
h = σr(2 ±

√
3).

These frequency values correspond to tangent bifurcations of halo orbits. The corresponding horizontal lines are
shown inFig. 9. A pair of stable and unstable orbits is created for this frequency. The stable orbit has the frequency
closer to 2. The lines only extend up to the intersection with the pitch fork curve, which occurs at

δ±
h = σg

σr

1 ± √
3

6
.

For δ < 0 the upper curve extends up toδ−
h , the lower curve is valid forδ > 0 and extends fromδ+

h to infinity.
For δ < 0 halo orbits have to be above the pitchfork line. Inserting into the invariants of the Hessian we find that

Fig. 9. Regions of stable halo orbits are dark. OverlayFig. 5.
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they are stable if they are aboveω = ω+
h and unstable otherwise. In the unstable family there occurs a maximum

in radius atω = 2. Otherwise the radius is a monotonous function ofω. Forδ > 0 stability is reversed: orbits exist
below the pitchfork line and are stable ifω < ω−

h . At passage throughω = 0 the radius goes to infinity, so that
(sufficiently) positively charged retrograde halo orbits exist for all large radii. Hence we obtain the followingω

ranges of existence of stable halo orbits:

δ < δ− : ω > ω+, δ− < δ < 0 : ω > ωPF, 0 < δ < δ+ : ω < ωPF, δ > δ+ : ω < ω−.

A simple way to characterizeFig. 9is to say that halo orbits with frequencies too close to synchronous are unstable.
However, the range of unstable frequencies is centered around orbits withω = 2, i.e. orbits that go around twice for
one revolution of the planet. Halo orbits with frequencies further away than

√
3 from this are stable. Note that the

equatorial orbits behave approximately in the opposite way. For them only orbits with smallω are stable (except for
smallδ). This can also be interpreted in terms of the pitchfork bifurcation: once equatorial orbits become too fast,
they become unstable and create stable nonequatorial orbits. The corresponding picture for the GSP is not shown,
because it is trivial; in this caseevery halo orbit is stable, as can be seen from the above expressions for determinant
and trace of the Hessian.

5. Stable halo orbits in space

ConsideringFig. 5 we see that the curves of constantr andθ transversely intersect each other in the regions
of existence. This means that the transformation from(r, θ) to (δ, ω) is invertible, which we will now show. In-
stead of transforming to spherical coordinates(r, θ) we directly transform to cylindrical coordinates.Eqs. (18) and
(19) can be considered as a transformation from(z, ρ) = (r cosθ, r sinθ) to (δ, ω). For each of the four types
of orbits distinguished by pro/retrograde and positive/negative charge this is a global transformation because the
Jacobian is

det
∂(z, ρ)

∂(δ, ω)
= 2

9δω3r sinθ cosθ
,

which is only singular whenω, δ, r, or sin 2θ is zero. We already know that the latter two are only zero at the
boundaries of the valid region in(δ, ω) space. The inverse of the transformation is given by

ω2 = 2

3

1

r3 sin2θ
, (22)

δ = 1

3

1

(σr − ω) sin2θ
. (23)

The first is a generalization of Kepler’s third law for halo orbits, which surprisingly is independent of the electric
field. Compared to the usual law it has effective frequencyω

√
3/2 sinθ . From the second equation the corresponding

charge-to-mass ratio can be calculated. These two equations give a precise prediction about what dust particles with
what velocities should be observable at a given nonequatorial position(r, θ).

To get an idea about what particles to expect at what position we now plot the curves of constantω andδ on the
ρ-z plane. The simplest way to do this is to use(18) and (19)to generate a parametric form of these curves in the
ρ-z plane (Figs. 10 and 11):

(ρ, z) = (rh sinθh, rh cosθh).
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Fig. 10.(δ, ω) grid in (ρ, z) space for halo orbits in the GSP (top left to right±ω = −2 − √
3,−1,−0.5,−2 + √

3,−0.15,−0.1,−0.08;
bottom±δ = 0.1,0.5,1,2,3,4,5,6).

In the gravitational Störmer case the formulas are

(ρ, z) =
(

−2δ

ω

)1/3
(√

− 1

(3δω)
,

√
1 + 1

(3δω)

)
.

Fig. 11. (δ, ω) grid in (ρ, z) space for retrograde positive halo orbits. (ω as in Fig. 10, bottom left to right, then up
δ = 0.05,0.1,0.2,0.3,1/3,0.5,1,2,3,5,10).
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Fig. 12. (δ, ω) grid in (ρ, z) space for (a) prograde positive (ω = 2 − √
3,0.15,0.1,0.08; left top to bottomδ = 1.5,1,0.8,0.6,0.5,

(1 + √
3)/6,0.4,0.37), and (b) prograde negative (ω = 15,8,5,2 + √

3; right top to bottomδ = −50,−25,−10,−3,−1,−0.3,
(1 − √

3)/6,−0.06,−0.03) halo orbits.

δ andω have to be restricted to the range of existence, respectively, stability, which is the same in the present case.
The resulting diagram is shown inFig. 10. Because there is no coupling to the rotation, prograde and retrograde
orbits are the same up to the sign ofω.

For the full system there is an additional region of prograde orbits withδ > 0 (seeFig. 12). In this case only
(δ, ω) values from the stable regions are taken to draw the grids. This is the reason for the cutoffs in the prograde
case. Note that all the retrograde halo orbits are stable, and therefore for every point in the(ρ, z) plane there exists
a unique halo orbit.

Note that all four figures share the same set of linesω = const. This is a result of the fact that the generalized
third Kepler’s law(22) is independent ofσr, δ, and independent of the sign ofω. Using the transformation from
(r, θ) to (ρ, z) we can convert this equation into

z2 = 9

4

(
ω

ρ

)4

− ρ2,
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which is the explicit form of the curvesω = constant in all four figures. A similar explicit form for the curves
δ = constant can only be obtained withσr = 0. Then we findz2 = (−√

6δρ)4/5 − ρ2. With σr = 1 the curves
in (ρ, z) are described by a polynomial of degree 5 inz2 andρ2, so that the above parametric form is the most
convenient representation.

Our most important conclusion is that the dependence onω is the same with or without the electric field. The
distribution of grain sizes as given by the curves of constantδ is significantly changed. The changes are fairly small
for stable retrograde positive orbits. In both cases they exist at any point in space. The prograde negative orbits need
quite high angular velocity and only survive close to thez-axis. Stable prograde positive halo orbits do not exist
at all without an electric field. With the field they need to have a minimal distance of a little more then twice the
synchronous radius, andδ must be around(1 + √

3)/6 in order to be able to be close to the planet. It follows that
retrograde positive orbits are the most likely candidates for halo orbits.

6. Discussion

We have calculated explicit equilibrium and stability conditions for arbitrary circular orbits in an axisymmetric
combination of gravitational, magnetic and corotational electric fields. The equilibrium and stability boundaries
were conveniently parametrized by the charge-to-mass ratioδ and the orbital frequencyω. The individual effects of
planetary gravitational field, magnetic field and corotational electric field on the existence and stability of charged
dust grain orbits were elucidated.

Our principal result is that halo orbits cannot exist without inclusion of gravitational forces. Without the corota-
tional electric field all halo orbits are stable. The distribution of orbital frequencies of stable halo orbits in space is
the same with- and without the corotational electric field, which is the content of a generalized Kepler’s third law
(22). The inclusion of the corotational electric field alone does not give halo orbits. Adding it to the gravitational
field does not have a strong effect on positive retrograde orbits, which are still all stable. It destabilizes negative
prograde orbits with small frequencies. Adding the corotational electric field has a surprisingly strong effect on the
character of both equatorial and nonequatorial (halo) orbits. In particular, prograde positively charged halos require
a corotational electric field for their very existence.

For halo orbits lying several Saturn radii above the equatorial plane the typical surface potential of a dust grain
is expected to be around+5V , due to the low plasma density there and resultant dominant photoelectric charging.
If stable retrograde grains are present, even the very small grains predicted by our theory should be detected by the
CDA experiment on board the Cassini orbiter due to arrive in 2004.

Acknowledgements

HRD was partially supported by a European Commission Grant for the Research Training NetworkMechanics
and Symmetry in Europe ‘MASIE’ (HPRN-CT-2000-00113).

References

[1] C. Störmer, The Polar Aurora, Clarendon Press, Oxford, 1955.
[2] A. Dragt, J. Finn, J. Geophys. Res. 81 (1971) 2327.
[3] T.G. Northrop, J. Hill, J. Geophys. Res. 88 (1983) 1.
[4] D.A. Mendis, H.L.F. Houpis, J.R. Hill, J. Geophys. Res. 87 (1982) 3449.
[5] D. Hamilton, Icarus 101 (1993) 244.



H.R. Dullin et al. / Physica D 171 (2002) 178–195 195

[6] R.-L. Xu, L.F. Houpis, J. Geophys. Res. 90 (1985) 1375.
[7] T.J. Birmingham, T.G. Northrop, J. Geophys. Res. 84 (1979) 41.
[8] J.E. Howard, M. Horányi, G.A. Stewart, Phys. Rev. Lett. 83 (1999) 3993.
[9] J.E. Howard, H.R. Dullin, M. Horányi, Phys. Rev. Lett. 84 (2000) 3993.

[10] J.E. Howard, M. Horányi, Adv. Space. Res., in press.
[11] J.E. Howard, M. Horányi, Geophys. Res. Lett. 28 (2001) 1907.
[12] M. Horányi, J.A. Burns, D.P. Hamilton, Icarus 97 (1992) 248.
[13] F. Bagenal, Ann. Rev. Earth Planet. Sci. 20 (1992) 289.


	Generalizations of the Stormer problem for dust grain orbits
	Introduction
	Charged particle dynamics in axisymmetric geometry
	Relative equilibria
	Equatorial orbits
	Halo orbits

	Stability
	Equatorial orbits
	Nonequatorial orbits

	Stable halo orbits in space
	Discussion
	Acknowledgements
	References


