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Abstract

We investigate the generalized Stérmer problem, which includes electromagnetic and gravitational forces on a charged
dust grain near an axisymmetric planet. For typical charge-to-mass ratios neither force can be neglected. The effects of the
different forces are discussed in detail. Thus, including the gravitational force gives rise to stable circular orbits lying in a
plane entirely above/below the equatorial plane. A modified third Kepler’'s law for these orbits is found and analyzed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the early milestones of space physics was Stérmer’s theoretical analysis of charged particle motion in
a purely magnetic dipole fielfll,2]. This seminal study provided the basic physical framework that led to the
understanding of the radiation belts surrounding the Earth and other magnetized planets. The radiation belts are
now known to be composed of individual ions and electrons whose motion is often well described by magnetic forces
alone. These classical results are also relevant to the dynamics of charged dust grains in planetary magnetosphere
However, the much smaller charge-to-mass ratios produce a more complex dynamics, as planetary gravity and the
corotational electric field must also be taken into acc¢8nT].

In a series of recent papej8-11] equilibrium and stability conditions were derived for charged dust grains
orbiting about Saturn. These orbits can be highly non-Keplerian and include both positively and negatively charged
grains, in prograde or retrograde orbits. The first article was restricted to equatorial orbits, while the second treated
nonequatorial “halo” orbits, i.e. orbits which do not cross the equatorial plane. Both assumed Keplerian grav-
ity, an ideal aligned and centered magnetic dipole rotating with the planet, and concomitant corotational electric
field (nonzero in an inertial frame). The third paper dealt with the effects of planetary oblatdpgsaggnetic
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quadrupole field, and radiation pressure. While the first two forces were found to have a negligible effect on par-
ticle confinement, the effects of radiation pressure can be large for distant orbits. Interestiraghg radiation
pressure can act synergistically to spread out the distributioruof frains in the E-Ring12]. The final paper

in this series allowed the surface potential of a grain, and hence its charge, to adjust to local photoelectric and
magnetospheric charging currents. It was concluded that stable halo orbits were mostly likely to be composed of
rather small(~ 100 nm positively charged grains in retrograde orbits. A dust grain “road map” was drawn for
the Cassini spacecraft now en route to Saturn, showing where to expect dust grains of a given composition and
radius.

This paper presents a more comprehensive treatment of dust grain dynamics, but under the simplified assumptions
of Keplerian gravity, pure dipole magnetic field, constant charge, and no radiation pressure. Some of the results were
already presented in the lett¢859]; here we fill in the details of the necessary calculations and also present some
new results. Our primary goal is a mathematically rigorous yet simplified derivation of equilibrium and stability
conditions which highlights the relative importance of the several different forces acting on an individual grain.

As is well known, there are no stable circular orbits for the Stérmer problem of charged particle motion in a pure
dipole magnetic field. It is the addition of planetary gravity and spin that gives rise to stable families of equatorial
and nonequatorial orbits. We begin with a general discussion of charged particle motion in axisymmetric geometry,
which is then specialized to the motion of charged grains in a planetary magnetosphere. Equilibrium conditions
are derived first for equatorial orbits, then for halo orbits. Next we take up the issue of stability for each family of
equilibrium orbits. Results are presented for four distinct problems: the classical Stérmer problem (CSP) in which
a charged particle moves in a pure dipole magnetic field, the rotational Stérmer problem (RSP), with the electric
field due to planetary rotation included, the gravitational Stérmer problem (GSP), with Keplerian gravity included
but not the corotational electric field, and the full system (RGSP) including both fields. For each case one must also
consider each charge sign in prograde or retrograde orbits. Our results may be summarized as follows:

CSP. No stable circular orbits, equatorial or nonequatorial exist. However, under adiabatic conditions important
families of guiding center orbits confined to a potential trough calledTti@weg exist. Such trajectories lie
outside the scope of the present paper.

RSP. Stable equatorial relative equilibria exist for both charge signs. There are no halo orbits.

GSP. Stable equatorial relative equilibria exist for both charge signs. Positive halos are retrograde and negative
halos are prograde. Both types are stable wherever they exist.

RGSP. Stable equatorial relative equilibria exist for both charge signs. There is a range of positive charge-to-mass
ratios without stable equatorial relative equilibria. Negative halos are prograde, while positive halos can be pro-
or retrograde. For stability the frequency must be sufficiently different from twice the rotation rate of the planet.

Therefore halo orbits do exist with and without the corotational electric field. However, the corotational electric
field is required in order to sustain stable positive prograde halos.

2. Charged particledynamicsin axisymmetric geometry

The equations of motion of a particle of magsand charge in R3, r = (x, y, z) are, in Gaussian units:

mit =Lt x B—vu ),
C

where the potential/ (r) generates the gravitational and electric forces. Let us denofe dyotation about the
z-axis and assume that the magnetic fidldnd the potential/ are invariant with respect to this rotation:

B(Rr) = RB(r),  VU(Rr) = RVU(r).
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In particular this is true for the fiel8 = V x A of a magnetic dipole of strengtht along the positive;-axis
centered in the planet, with vector potential (in the Coulomb gauge):

-y
M
A(r):}’—3 x |, r2=x2+y2+z2.
0

The relevant inner part of the magnetosphere of, e.g. Saturn is a highly conducting plasma and may therefore be
assumed to be in a state of rigid corotation with the planet with uniform angular velecithe plasma at has

bulk velocityV = £ x r. The MHD condition for the field being frozen to the flow (i.e. rigid corotation) can be
written asE + (1/¢)V x B = 0. A more detailed model including the interaction of lonosphere and Magnetosphere

is discussed ifil3]. The resulting corotational electric field in the inertial frame is given by

1
E=——(2xr)xB.
c

This electric field is accounted for by a stream functioin the potential energy/, determined by

x2+y2
r3

E=IBx@xr)=—yQve, =
Cc

wherey = gM/c. Note that the corotational electric field is unipol®rx E = 0, and is therefore not induced
by a changing magnetic field. Moreover, it is perpendicular to the magnetic Bel® = 0, with V- E =
2y 2(2z% — x? — y?)/r®, so that there is a space charge distribution originating from the redistribution of charges in
the plasma. A full derivation of the forces generated from a rigidly rotating and perfectly conducting magnetosphere
can be found if13].

In an inertial frame the potential now reads

wm
uwr)= —GgT + ory 2V,

where the parametesg andoy serve as markers for the gravitational and electric forces in order to track the origin
of the various terms after scaling away excess parameters. Usually we cansigesy = 1; the CSH1] has
or = og = 0. The case; = 0 andog = 1 has also been studied by StorrieR] we shall refer to it as the GSP.
While it is simpler than our case, it will turn out that the most important physical effects can already be seen in this
subcase. Another interesting special casgyis= 0 ando; = 1. This takes into account the effect of the electric
field in the rotating plasma, but the particle is still massless. We call this case the RSP. It will turn out that in this
case halo orbits do not exist.

The Hamiltonian of the above equations of motion is

_ 1 q 2
H=— (p - EA(r)) FUm. 6]

Owing to the symmetry of the problem theaxis is an invariant set. Because it is singular in coordinates adapted to
the symmetry of the problem it is best analyzed in Cartesian coordinates. The magnetic field is parallel to this axis,
so that for motion on this axis there is no Lorentz force. For initial conditions in the sety = p, = p, =0

the equations of motion in Cartesian coordinates show that the derivatives 0p,, p, are zero; hence itis an
invariant set, on which the Hamiltonian is purely gravitationdl, = pf/Zm — um/z. Depending on the initial
conditions in the invariant set a particle either collides with the planet or escapes to infinity; there are no stationary
points on this axis.
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In cylindrical coordinatesp = /x2 + y2, ¢ = arctan(y/x), z) H becomes

H=%<P,;+Pz+?(19¢—)’w) —UgT-I-UrV-Q'J’ (2)

with the dipole stream functio® = p?/r3. For systems witts§1 symmetry a stream functio# independent of
¢ can always be introduced. The corresponding vector potentiaiigy, — cosg, 0)'¥/p, the magnetic field is
(x¥, y¥,, —plI/p)‘/,oz, and the electric field i (x¥,, y¥,, p¥;)"/p.

We may distinguish three types of constants in the problem:

e Parameters describing the planet’'s mass GM and spin rate2. They are the most fixed parameters.

e Parameters describing the dust particle’s massd charge, measured py= g M /c.

e The angular momenturp, and total energy: = H are constants of the motion determined by the initial
conditions. Fixing bottk andp4 defines a region of possible motion in configuration space.

We now introduce a convenient scaling to reduce the number of parameters. Time is measured by the inverse
frequency of the planetary spin rafz Distances are measured in terms of the radius of the Keplerian synchronous
orbit:

w\1/3
R=(g)"
while mass is measured in units of the particle mas$he scaled Hamiltonian is then
s 1o o (B A)) o p?
Hzé(pp+pz+<z_8,¢_3 —7+0r3’¢—3, 3)

where the variables with hat are measured in the new scale. From now on we drop all hats. The essential dimensionless
parameters are
Ry gqgM 2 wc§2

_ X8 and § = =
p—p¢y C omp mcGM_wlf’

wherewe = gBg/mc is the cyclotron frequencyio the planetary magnetic field on the equadar,= ,/GM/ RS the

Kepler frequency, witlRs the planetary radius, and the parametés just the angular momentup, measured in

the new units. The single parameter for the dust gradnughich is essentially the charge-to-mass ratio. Recall that
thez-axis is oriented so tha? > 0. In the following we will loosely talk about positive/negative charge when we
mean positive/negative This correspondence is correct if the magnetic dipole moowins positive, i.e. the spin

and the field are aligned. This is true for Saturn, the main application that we have in mind. Our results are valid in
both cases.

3. Relative equilibria
3.1. Equatorial orbits

Here we shall find it advantageous to work in spherical coordinates,/p2 + z2, § = arccosz/r), ¢), rather
than the cylindrical coordinates {#,9]. The Hamiltonian becomes

1 p2
H=§<p3+r_g>+Ueﬁv 4)
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where the effective potentidles is the part of the Hamiltonian independent of the non-constant momsgraad
De-
(pr — 8sin0)?>  og — or8sin?

U, .0, p) = - 5
eff(r.6. ) 2r4sin20 r ®)
The equations of motion are then

. . pe .

r=pr, gzr_zv ¢=apUeff7 (6)

P2

br="3 = 0Uet,  po=—0Uet,  pp=0. (7

In order to facilitate the calculation of the partial derivatived/gf we introduce the frequency
. p )
w(r,0) =¢ = 0pUert = (8)

r2sin2g  r3¥
In analyzing circular relative equilibria it is preferable to employather thanp, as parameter, as it is the sign

of w that determines whether the orbit is rotating in the same direction as the planet (prograde) or opposite to
it (retrograde). Recall that in the scaled variable frequencies are measured in tefmyeficew = 1 means
synchronous motion. From now on we will elimingién favor of w = w(r, 6) in the potential to get

o0 ov8 sin20

r r

1 .
Ust = szrz sin2p —

9

It is important to notice that when calculating derivativedfgf with respect ta- andd we have to treab as a
function ofr andé. The derivatives of (re-expressed in terms af) are

w 6 8
o =—-2—4 —, dpw = —2 cotf <a) + —3>
r r r
so that
. 1 .
0, Ueit = —w?r Sin%0 + = (8(w — 07) sin?6 + o), (10)
r
1 .
3o Ueft = —— €OSH SiNB (w?r> + 2w8 — 205). (11)
r

If all partial derivatives with respect tq 6, andp are zero there is no motion at all. The latter is justvhich we set
to zero. Ther{11)require® = 7 /2. The other possibility = 0, x is the coordinate singularity, and it has already
been treated using,. The uncharged case= 0 is not of interest here. Fér = /2 andw = 0 (10) reduces to
og = oré. Therefore particles at rest can occur anywhere in the equatorial plane but only whegy o;. Therefore
8 = 1 can be considered as the case where electrical and gravitational forces are balanced. Iothe G2 0
both equations are automatically satisfied aéce 0. In this case we can place a particle at rest anywhere in space;
since there is no potential there are no forces if there is no motion. In any case itis true that for these trivial solutions
at rest the angular momentupnis nonzero; fronw = 0 and(8) we find p = §/r. The energy is zero for all these
equilibrium points.

The system has a discrete symmetry: the equations of motion are invariant under tde map—> (& —6, —pg).
The set thatis invariant under this map is the equatorial plane with no transverse moménium= (xr/2, 0). As
always this is also an invariant set for the dynamics. The physical reason for thisBgithat parallel to the;-axis
if r = (x, y, 0), so that for motion within the equatorial plane there is a Lorentz force, however, with direction in
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the plane. MoreoveE (r) is perpendicular t@(r), and therefor&(r) lies in the equatorial plane if = (x, y, 0).
The Hamiltonian restricted to the equatorial plane reads

1(, 1 8\%\ og—ors
ny=§(p,+r—2(p—;))—f.

This is an integrable system with one effective degree of freedom that can be solved in terms of elliptic functions.
The effective potential in the equatorial plane is

U= 5 (£ ) = B0 = et - BT

The minimare of Uyy(r) correspond to circular orbits in the equatorial plane because the right hand sides of all
the equations of motion except= w are zero. The calculation of critical points biy(r) leads to the solution

of a cubic polynomial in- given byrza,ny. If instead we eliminate in favor of w we obtain a much simpler
polynomial

P(r,») = 0°r® — w8 + 078 — og. (12)
Solving P = 0 for r yields a generalization of Kepler’s third law for equatorial orbits:
og + 8(w — oy)
Ve(a))3 = L 2 ' s (13)
w

which for§ — 0 reduces to the ordinary Kepler's law. The corresponding angular momegntam be calculated
from (8) and ispe = a)rez — 8/re. The radius is positive if

wgor—(;—g and § <0 (14)
or

%

wzo,——? and § > 0. (15)
For negatives there are always pro- and retrograde orbits. For positites is only true fors < og/oy, while for
8 > og/oy all orbits are prograde. IRig. 1the possible combinations efands for which circular equatorial orbits

exist are shaded gray. The horizontal asymptotes haves,. The hyperboloidal boundaries and the limit> oo
correspond to zero radius. In the Stormer case= oy = 0 all equatorial circular orbits of negatively charged

Fig. 1. Existence of equatorial orbits.
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=
: )

2 3 4 5
Fig. 2. Curves of constant radius=0.1i,i =1, ..., 20 for equatorial orbits. The thick lines hawe= 1.

particles § < 0) are retrograded < 0), while positively charged particles have prograde orbits. The gravitational
and/or electric field perturbations create small regions of the opposite behavior fo§ doraddition some motions
for large positives and small positiveo are made impossible by switching on the additional fields.

The equation for equatorial orbit®, = 0, can be solved fa¥ in order to gives as a function ot for givenr:

5 — r3w? — ag.

w — oy
These curves are shown liigs. 2 and 3Note the two thick straight lines with = 1, which in our scaling is the
radius of the synchronous orbit in the Kepler problem. The horizontal one corresponds to the synchronous orbits
(w = 1) which exist for anys. Hence the synchronous Kepler orbit is not affected by the addition of both fields.
This is not true for the three Stérmer cases (see below). Another prominent feature is th@ pojnt (1, 0),
which is intersected by hyperbolas with alllt corresponds to the equilibrium points discussed above.

Let us briefly discuss the corresponding diagrams for the three Stérmer cases shiawr3inn the classical
caseaw ands are proportional. Small slope means larg&he relation breaks down for the liae= 0 for which all
radii are possible. There are only two types of equatorial orbits: positively charged prograde and negatively charged
retrograde. In the gravitational Stérmer case the relation betwesds is quite similar, but now there are also
small regions of the two types of motions: positively charged retrograde and negatively charged prograde. In the
rotating Stérmer case the positive retrograde orbits have disappeared again. The main new feature is the appearan
of orbits of small negative charge with smalland small radius.

3.2. Halo orbits

Our goal is the calculation of periodic orbits that encircle the planet in a plane parallel to the equatorial plane but
entirely above/below it. Circular orbits correspond to critical point&§gf, i.e. points(rg, 8g) at which both deriva-
tives of U vanish. This is so because(@to, p,, ps) = (ro, 6o, 0, 0) the right hand sides of Hamilton’s equations
are zero, except fap. They are given by the minima @fe. Their stability will be calculated in the next section.
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c

Fig. 3. Curves of constant radius for equatorial orbits of the (a) classicat (og = 0), (b) gravitational ¢ = 0, oy = 1), and (c) rotational
(or = 1, og = 0) Stérmer problem. Thick lines have= 1.

Circular orbits are therefore given by the solutioddfe = 0 anddy Uess = O for arbitraryw (see(10) and (11).
The second equation has the soluttba= /2, which gives the equatorial orbits we already analyzed. Also the
solutions withé = 0, = have already been described using the reduced Hamiltghiahe remaining solutions
are given byQ = 0 with

o@r,w) = 0?r3 + 208 — 2078, (16)

which describe the nonequatorial circular (or halo) orbits. The equatien0 can be solved for3, which can then
be eliminated fron{11) resulting in an angular equatioh= 0 with

A0, w) = og + 38(w — or) Sin?0. (17)

The functionsQ andA completely describe the halo orbits. In particular these equations can easily be solved for
andé, so that all circular orbits are obtained in parametric form, withs a parameter. Explicitly we find

Oor —w

rn(w)® =28 — (18)

Og

3oy — w) (19)

sin%0), (w) =
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®

Fig. 4. Existence of halo orbits.

The second equation clearly shows that without the gravitational forges=(0) there are no halo orbits. In

particular in the CSP there are no halo orbits (except for the trivial equilibrium points discussed above). Adding the

electric field alone there still are no halo orbits. In both equations it is obvious that the electric field merely shifts the

frequencyw of circular halo orbits. We conclude that the electric field is not essential for the existence of halo orbits.
For halo orbits the essential condition for their existence is that6sia 1, which implies Eig. 4)

99
wZUr—§ and §<0 (20)
or
w<or—22 and 5>0. (1)
= 35 =

These conditions automatically imply that the corresponding ragliispositive. Note that the ordering of the
inequalities is reversed compared with the equatorial ddggsand (15)Hence for negative charge only prograde
orbits exist while for small positive charge only retrograde orbits exist. Ordy i 0 ands > og/30; can both
types of orbits exist. The electric field does make a difference for the existence of synchronous halo eybitst If
thenw = 1 is impossible for finiteS. If or = 0 synchronous halo orbits exist f6r< —og/3. Note thatw = oy
(in particular a synchronous orbit & = 1) is impossible for finiteS. Without the electric field there do exist
synchronous halo orbits with negative charge. In ordetdgt)f x B to balance gravitation for positive charge we
have to reversg, hencew = —1.

To get an overview of all possible halo orbits we plot curves of constantlé in thes-w plane. The family of
curves of constant radius is given by

_ }’3(1)2

The family of curves of constant azimuhis given by

8

_ %
" 3(oy — w)sin?6’

Both families are shown ifrig. 5for oy = oy = 1 and inFig. 6for the Stérmer problem with gravitation.

The regions of existence in tldew-plane for equatorial and halo orbits only overlap in a small region bounded
by hyperbolae. They are in a sense connected at the hyperboloidal boundary of the halo orbits, because in the ne>
section we will find that this line marks a pitchfork bifurcation of an equatorial orbit changing its stability and
creating halo orbits.

1)
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4. Stability

In [8,9] explicit stability boundaries for both equatorial and halo orbits were calculated. Here we obtain these
boundaries more easily using the fact that all circular orbits may be parameterized\myrcular orbit is stable if
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it corresponds to a local minimum &f, for which we need the second derivatived gf;. Using the chain rule
gives

3&)-0} 82 . 92 20'9
3 +r—6> Sin Q—r—s,

r

32Ueft = (3w2 - 28

82 -
Uett = <2r2a)2 4@ty 4—4> cos?0 + r2w? + 282"
r r r

2w — oy 82 .
Ccos6 sing.

_ 2 _ 7
8,89Ueﬁ—2<ra) + 6 p: =

4.1. Equatorial orbits

For equatorial orbits we inseft= /2 andr = re(w) as given above. We use the subsceifii denote quantities
related to equatorial orbits. The mixed derivative vanishes and the other two are

1 w 2
07 Ueftle = —5 <m> ((2w8 — 078 + 0g)* — 3(0v8 — 0g)?),  3Uettle = 0g + 38(w — o7).

The radial derivative diverges for thosehat correspond to = 0. It vanishes fow = 0; however, the corresponding
radiusre is not finite (except foé = oy/or, the case of equilibrium points). It also vanishes when either one of two
nontrivial factors vanishes that correspond to tangent bifurcations of equatorial orbits with

Ye =T 3

The vanishing of the secortdderivative indicates the loss of transverse stability. Because of reflection symmetry
6 — —0 this results in a pitchfork bifurcation with

+ 1:|:\/1_3<0r ag)'

28
WPF = Oy 38 .
All three curves are hyperbolas in the spacésotv) shown inFig. 7. The intersection of the curvespr anda)gE
occurs at

8i=@5i2ﬁ.

€ Oy 3

Using the above formulas for the second derivatives it is easy to check that stability only holds in the fotlowing
ranges (compargig. 7).

8 <0:wg <w < wpF, 0<d8<ég iwpF< o < wg, 8>8é“:a)p|:<a)<a):§.

For the first two range® = 0 is (partially) included, which means that the corresponding family of orbits ex-
ists for arbitrary large radius. The radibusas given by(13) as a function ofv is a monotone function for most
of these orbits except for unstable orbits with> 1. This gives the additional curve in the diagram. The fact
that the radius is not monotonic can already be sedridn 2, where the turning points are marked by a gray
line.

For comparison we also show the diagrams in the two nonclassical Stormer cadeg (8gdn the CSP with
or = og = O the derivativearteme is always negative, hence there are no stable equatorial orbits. In the purely
gravitational case stable orbits exist between the pitchfork curve and the tangent bifurcation correspangling to
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(O]

Fig. 7. Regions of stability for equatorial orbits are dark. OveRay. 2

The curvew is always outside the region of existence. In the RSP the pitchfork curves and the existence curves
coincide forw = 1. The stable region fat < 0 is betweeno; and 1, while fors > 0 it is between 1 andy .
Comparing these pictures wiffig. 7 one clearly observes that for largfg (i.e. small mass) the systems behaves

like the rotating case, while for small| (i.e. large mass) the behavior is dominated by gravity and looks like the
gravitational case. In the gravitational case there exist stable pro- and retrograde orbits fothangystem is
symmetric with respect to change of signswfinds. In the rotational case this symmetry is broken and pro- and
retrograde orbits simultaneously only exist for negative charge. Trying to interpolate between the large ahid small

behavior the full system creates an intenval [§4 ] of charge-to-mass ratios for which no stable equatorial circular
orbits exist.

-3 a b

Fig. 8. Regions of stability for equatorial orbits of the (a) gravitational, and (b) rotating Stérmer problem are dark. Bigerday
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4.2. Nonequatorial orbits

In Ref. [9] the stability of halo orbits was analyzed by examining the zeros of a quinjic ltere we obtain
similar results more easily. For nonequatorial orbits the calculation is essentially the same as for their equatorial
cousins, except that all three second derivatives are nonzero and we have to calculate the determinant and the trac
of the Hessian, which turns out to be

202(0? — dwoy + arz)((rg + 35(w — ov))

detD?Ue|y = og

3S(w — 1)3 ’
it D2y = —o ®*(130° — 1600t +40?)  2(w — 201)*(0g + 33(w — 1))
e = T 125w — 0p)3 3 (@) (@ — o7)2

We use the subscriit to denote quantities related to halo orbits. The determinant vanishes in three cases: (1) for
o = 0, which again fo # 1 does not correspond to finite orbits. (2) In the case that the last factor is zero, which
reproduces the conditian = wpg. (3) There are two new criticab given by the remaining factor as

wf =2+ V3.

These frequency values correspond to tangent bifurcations of halo orbits. The corresponding horizontal lines are
shown inFig. 9. A pair of stable and unstable orbits is created for this frequency. The stable orbit has the frequency
closer to 2. The lines only extend up to the intersection with the pitch fork curve, which occurs at

h_Ur 6 ’

Foré < O the upper curve extends updp, the lower curve is valid fof > 0 and extends fror’f‘i;lF to infinity.
For§ < 0 halo orbits have to be above the pitchfork line. Inserting into the invariants of the Hessian we find that

®

Fig. 9. Regions of stable halo orbits are dark. OveHRay 5.



H.R. Dullinet al./Physica D 171 (2002) 178-195 191

they are stable if they are abowe= ;" and unstable otherwise. In the unstable family there occurs a maximum
in radius atw = 2. Otherwise the radius is a monotonous functiowofFors > 0 stability is reversed: orbits exist
below the pitchfork line and are stabledf < w, . At passage through = 0 the radius goes to infinity, so that
(sufficiently) positively charged retrograde halo orbits exist for all large radii. Hence we obtain the follewing
ranges of existence of stable halo orbits:

§<d_:w>wy, 5_ <8 <0:w> wpF, 0<d <é4:w< wpF, §>81 w<w_.

A simple way to characteriZgig. 9is to say that halo orbits with frequencies too close to synchronous are unstable.
However, the range of unstable frequencies is centered around orbits with, i.e. orbits that go around twice for

one revolution of the planet. Halo orbits with frequencies further away f@irom this are stable. Note that the
equatorial orbits behave approximately in the opposite way. For them only orbits withusarallstable (except for

small$§). This can also be interpreted in terms of the pitchfork bifurcation: once equatorial orbits become too fast,
they become unstable and create stable nonequatorial orbits. The corresponding picture for the GSP is not shown,
because itis trivial; in this casery halo orbit is stable, as can be seen from the above expressions for determinant
and trace of the Hessian.

5. Stablehalo orbitsin space

ConsideringFig. 5we see that the curves of constarndé transversely intersect each other in the regions
of existence. This means that the transformation fieyd) to (8, w) is invertible, which we will now show. In-
stead of transforming to spherical coordinate®) we directly transform to cylindrical coordinatdsgs. (18) and
(19) can be considered as a transformation fr@ine) = (r cosh, r sinf) to (8, w). For each of the four types
of orbits distinguished by pro/retrograde and positive/negative charge this is a global transformation because the
Jacobian is

Az, p) 2
9(8, w) 98w3rsind cosh’

det

which is only singular whew, 8, r, or sin @ is zero. We already know that the latter two are only zero at the
boundaries of the valid region (@, w) space. The inverse of the transformation is given by
w221
3r3sin2g’
1 1
" 3(0y —w)sin20’

(22)

(23)

The first is a generalization of Kepler's third law for halo orbits, which surprisingly is independent of the electric
field. Compared to the usual law it has effective frequeng{d/2 sind. From the second equation the corresponding
charge-to-mass ratio can be calculated. These two equations give a precise prediction about what dust particles with
what velocities should be observable at a given nonequatorial poéitién

To get an idea about what particles to expect at what position we now plot the curves of carstaidton the
p-z plane. The simplest way to do this is to 48) and (19)o generate a parametric form of these curves in the
p-z plane Figs. 10 and 1)t

(0, z) = (rp SINGy, 1y, COSHY).
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' ' ' ' P

1 2 3 4 5

Fig. 10.(8, w) grid in (p, z) space for halo orbits in the GSP (top left to rights = —2 — +/3, —1, —0.5, =2 + /3, —0.15, —0.1, —0.08;
bottom+§ = 0.1,0.5,1, 2, 3,4, 5, 6).

In the gravitational Stormer case the formulas are

2\ 1 L 1
W—(‘Z) "o (T G )

/e

‘ ' ' . P

1 2 3 4 5

NS

o
ol

Fig. 11. (5,w) grid in (p,z) space for retrograde positive halo orbitso (@s in Fig. 10 bottom left to right, then up
3 =0.050.1,02,0.3,1/3,05,1, 2,3,5,10).
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8}

S}

Fig. 12. (8, w) grid in (p, z) space for (a) prograde positive» (= 2 — +/3,0.15, 0.1, 0.08; left top to bottoms = 1.5,1,0.8,0.6,0.5,
(1 + +/3)/6,0.4,0.37), and (b) prograde negative» (= 15,8,5,2 + +/3; right top to bottoms = —50, —25, —10, -3, -1, —0.3,
(1-+/3)/6, —0.06, —0.03) halo orbits.

8 andw have to be restricted to the range of existence, respectively, stability, which is the same in the present case.
The resulting diagram is shown kig. 10 Because there is no coupling to the rotation, prograde and retrograde
orbits are the same up to the sigruaf

For the full system there is an additional region of prograde orbits §vith O (seeFig. 12. In this case only
(8, ) values from the stable regions are taken to draw the grids. This is the reason for the cutoffs in the prograde
case. Note that all the retrograde halo orbits are stable, and therefore for every poinnzhelane there exists
a unique halo orbit.

Note that all four figures share the same set of lines const. This is a result of the fact that the generalized
third Kepler's law(22) is independent oy, §, and independent of the sign of Using the transformation from
(r, 0) to (p, z) we can convert this equation into

9 /w\*
2_ 2 (* 2
Z_4<p> P
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which is the explicit form of the curves = constant in all four figures. A similar explicit form for the curves
8 = constant can only be obtained with = 0. Then we findt? = (—v/68p)*°> — p2. With oy = 1 the curves

in (p, z) are described by a polynomial of degree Zfnand p?, so that the above parametric form is the most
convenient representation.

Our most important conclusion is that the dependence tthe same with or without the electric field. The
distribution of grain sizes as given by the curves of constamsignificantly changed. The changes are fairly small
for stable retrograde positive orbits. In both cases they exist at any point in space. The prograde negative orbits nee
quite high angular velocity and only survive close to thaxis. Stable prograde positive halo orbits do not exist
at all without an electric field. With the field they need to have a minimal distance of a little more then twice the
synchronous radius, asdmust be aroundl + +/3)/6 in order to be able to be close to the planet. It follows that
retrograde positive orbits are the most likely candidates for halo orbits.

6. Discussion

We have calculated explicit equilibrium and stability conditions for arbitrary circular orbits in an axisymmetric
combination of gravitational, magnetic and corotational electric fields. The equilibrium and stability boundaries
were conveniently parametrized by the charge-to-massdainal the orbital frequency. The individual effects of
planetary gravitational field, magnetic field and corotational electric field on the existence and stability of charged
dust grain orbits were elucidated.

Our principal result is that halo orbits cannot exist without inclusion of gravitational forces. Without the corota-
tional electric field all halo orbits are stable. The distribution of orbital frequencies of stable halo orbits in space is
the same with- and without the corotational electric field, which is the content of a generalized Kepler’s third law
(22). The inclusion of the corotational electric field alone does not give halo orbits. Adding it to the gravitational
field does not have a strong effect on positive retrograde orbits, which are still all stable. It destabilizes negative
prograde orbits with small frequencies. Adding the corotational electric field has a surprisingly strong effect on the
character of both equatorial and nonequatorial (halo) orbits. In particular, prograde positively charged halos require
a corotational electric field for their very existence.

For halo orbits lying several Saturn radii above the equatorial plane the typical surface potential of a dust grain
is expected to be aroundsV, due to the low plasma density there and resultant dominant photoelectric charging.

If stable retrograde grains are present, even the very small grains predicted by our theory should be detected by th
CDA experiment on board the Cassini orbiter due to arrive in 2004.
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